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Abstract— Hybrid Boundary Value Methods (HyBVMs) are a 

new class of Boundary Value Methods (BVMs) proposed recently for 

the approximation of Ordinary Differential Equations (ODEs). Just 

like the BVMs, the HyBVMs are also based on the Linear Multistep 

Methods (LMMs) while utilizing data at both step and off-step 

points. Numerical tests on both linear and nonlinear Boundary Value 

Problems (BVPs) were presented using HyBVMs of order 6. The 

results were compared with two symmetric schemes: Extended 

Trapezoidal Rule (ETR) and Top Order Method (TOM). 
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I. INTRODUCTION 

OUNDARY value Problems (BVPs) are applicable in 

Sciences and Engineering as they result from the 

modelisation of real world phenomena. 

This class of problem is more difficult to handle, since it is a 

broader class of continuous problems unlike the Initial Value 

Problems (IVPs). They are usually solved by the Shooting 

Method (SHM). The SHM works by reducing the BVP to its 

equivalent IVP but it suffers from numerical instability as a 

result of this [1]. 

The Boundary Value Methods (BVMs) were proposed to 

remove this instability. The process of developing and 

applying the BVMs makes them suitable for solving BVPs 

without necessarily converting the BVPs to their equivalent 

Initial Value Problems (IVPs). For instance, in the derivation 

of BVMs, the same continuous scheme used to generate the 

main methods is also used in generating the additional 

methods; these are then applied at the end points thereby 

avoiding some of the stability problems encountered in the 

application of the SHM. 

Lots of BVMs have been proposed by different authors and 

used for the approximation of different types of differential 

problems. Their convergence and stability properties have also 

been fully discussed [3] – [9]. 

Our focus in this work is to develop new BVMs that utilize 

data at off-step points and which will be called Hybrid 

Boundary Value Methods (HyBVMS). In deriving these 
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methods, we will be adopting the Adams Moulton methods, 

which is a LMM of the form: 
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This is done by using the Adam Moulton Methods at both step 

and off-step points. These methods are then applied as BVMs 

and used to solve the BVP of the form: 

    ,y x f x y x               (1.2) 

       0 0 0 1 1 10 0  ,   1 1a y b y a y b y      

where all 2 2:f   are continuous functions that satisfy the  

existence and uniqueness conditions, guaranteed by Henrici in 

[10]. 

Several authors have proposed different hybrid methods for 

the approximation of ODEs [11] – [16]. 

The application of BVMs for the numerical approximation 

of BVPs was first proposed by Brugnano and Trigiante in [17] 

with the two symmetric schemes: Extended Trapezoidal Rule 

(ETR) of order 4 and Top Order Method (TOM) of order 6. 

II. BOUNDARY VALUE METHODS [18] 

In this section, we present some of the important definitions 

on BVMs. 

Definition 1: A polynomial  p z  of degree 
1 2k k k   is 

called an ,1 2k kS - polynomial if its roots are such that 

1 11 2 k k 1 kz z z 1 z z       . 

Definition 2: A polynomial  p z  of degree 
1 2k k k   is 

called an ,1 2k kN - polynomial if its roots are such that 

1 11 2 k k 1 kz z z 1 z z        

Definition 3: A BVM with  ,1 2k k - boundary conditions is 

,1 2k kO - stable if its polynomial  p z  is an ,1 2k kN - polynomial. 

Definition 4: A BVM with  ,1 2k k - boundary conditions is 

 ,1 2k k - Absolutely stable for a given complex q  if the 

stability polynomial,  ,z q  is an ,1 2k kS - polynomial. 
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Definition 5: The region 
,1 2k kD  of the complex plane defined 

by 

     , : ,  is of type , ,
1 2k k 1 2D q z q k 0 k 

 
 

is called the region of  ,1 2k k - Absolute stability. 

III. HYBRID BOUNDARY VALUE METHODS 

The HyBVMs are generalizations of the hybrid Adams-
Moulton (AM) Methods. The hybrid AM can be written as: 
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These methods are used as IVMs but not BVMs and have been 
used in the past for the approximation of ODEs. 
However, if we choose k = v in (3.1) 
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we obtain the HyBVMs. 
For instance, the HyBVMs with an odd number of steps 

have the form: 
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with the polynomial of the form:    1 1vp z z z  . They are 

to be used with (v-1,v) boundary conditions and of order 2k+2. 
In this work, we apply one of the even HyBVMs (k=2) in the 
solution of some BVPs. 
The sixth order HyBVM is given as: 
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  (3.3) 

which is to be used together with the following initial methods: 

1 3
2 2
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and the final methods 
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IV. NUMERICAL EXAMPLES 

In this section, we apply the HyBVM stated above to two 

(2) systems of BVPs. The maximum errors and Rate of 

Convergence (ROC) are compared with ETRs and TOMs. 

 

Example 1: Consider the nonlinear second order BVP [19]: 

 
2 2

2 x

y y
y

e

 
    ,      0 1x ,  

with boundary conditions: 

   0 0 0y y  ,     1 1 2y y e    

with exact solution:       xy x e  

 

To solve, we first recast to its equivalent first order system: 

1 2y y 
 
 

   
2 2

2 1

2
2 x

y y
y

e


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for  0 1x ,  

with boundary conditions: 

   1 20 0 0y y  ,     1 21 1 2y y e    

with exact solutions:     1 2,   x xy x e y x e   

 

 

Example 2: Consider the linear second order BVP [17]: 
2 44 16 12 4y y x x x       ,      0 1x ,  

with boundary conditions: 

   0 1 0y y   

with exact solution:       4 4y x x x   

 

To solve, we first recast to its equivalent first order system: 

1 2y y   
2 4

2 14 16 12 4y y x x x      

for  0 1x ,  

with boundary conditions: 

 1 0 0y  ,   2 1 0y    

with exact solutions:     1 2,   x xy x e y x e        
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Fig. 1: Exact Solution of Example 1 
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Fig. 2: Exact Solution of Example 2 

 

 

V. CONCLUSION 

In this work, we have applied a sixth-order HyBVM to two 

systems of BVPs and compared the maximum error and rate of 

convergence of the solutions with other two BVMs: ETR and 

TOM called symmetric schemes. In constructing these 

methods, we have adopted the Adams Moulton methods 

derived through interpolation and collocation procedure by 

utilizing data at both step and off-step points and implemented 

them as BVMs. 
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Table I: Maximum errors for HBVM with ETR and TOM for Example 1 

 

N 

HBVM of order 4 

e


               Rate 

ETR 

e


                Rate 

TOM 

e


                

20 1.592e-11 - 7.448e-08 - 3.189e-11  

40 1.765e-13 6.50 1.480e-09 5.65 1.972e-14  

80 4.082e-15 5.43 2.576e-11 5.84 5.722e-16  

160 6.280e-16 2.70 4.234e-13 5.93 6.732e-14  

       

 

 

 

 

 

Table II: Maximum errors for HBVM with ETR and TOM for Example 2 

 
 

h 

HBVM of order 4 

e


               ROC 

ETR of order 4 

e


                ROC 

TOM of order 6 

e


                

0.25 1.332e-15 - 2.628e-3 - 1.776e-15  

0.125 6.280e-16 1.08 1.955e-4 3.75 1.776e-15  

0.0625 4.965e-16 0.34 1.359e-5 3.85 1.332e-15  

0.03125 4.578e-16 0.12 8.989e-7 3.92 2.664e-15  

0.015625 1.601e-16 1.52 5.785e-8 3.96 6.661e-15  
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