
Design of High-speed Dynamic Packet Filtering Firewall for

IPv6 based on FPGA

BING LI, PENGCHENG CAI, XIN GUO, LONGFEI ZHANG

School of Integrated Circuits

Southeast University

Sipailou No.2, Nanjing, Jiangsu Province, China

CHINA

pc229c@163.com

Abstract: Network security issues are becoming increasingly acute. A computer network exposed

to the Internet without any security protection is at great risk. This paper proposes the packet

filtering firewalls system based on FPGA. This system connects the high-speed firewall filtering

module and the CPU (OR1200). The Internet Protocol Version 6 (IPv6) network data package is

sent to test successfully by the PC client. Experimental results show that the system process the

whole IPv6 data packet with 920ns and the complete design uses a small portion of the Altera

StratixII/ EP2S60F672C5 FPGA, 25% of the logic blocks and 11% of the memory blocks. So the

system not only has ideal functionality but greatly improves the data transmission speed.

Key words: network security; IPv6; high-speed data package filtering; FPGA

1. Introduction

This paper studies the basic technology

principles of dynamic packet filtering and

proposes a dynamic packet filtering module

with protocol filtering, port filtering, source IP

and destination IP filtering based on FPGA.

The design is implemented by filtering the

communication data included in the header

information, letting safe data packets that

match the rules through and abandoning those

don’t; the header information includes source

IP address, destination IP address, data packet

type (Transport Control Protocol (TCP)

package, User Datagram Protocol (UDP)

package and Internet Control Messages

Protocol (ICMP), etc.), the TCP or UDP

source port number and destination port

number and the MAC address.

The packet filtering firewall which is

implemented by software proposed in

literature [1] can be flexible in the

configuration of filtering strategies but is slow

in speed. Literature [2] gives a design of

firewall based on FPGA whose speed is lifted

and that can be flexible in the configuration of

filtering strategies, but the processor adopted

is customized and the performance can’t be

upgraded in real time. By adopting SOPC

technology based on FPGA it realizes packet

filtering logic and filtering algorithm; with

OR1200 processor based on Wishbone Bus it

can realize the dynamic updating of matching

policy and the coordination of processing

sequence of each module[3]; The design in the

present paper is faster in matching speed and

more flexible in the updating of filtering

policy; besides, it adopts OR1200 processor

which is all open-source, which has high

optimal velocity and much better performance

than NIOS II [4][5].

Structures of this paper are as follows:

the second part presents the whole design

Bing Li et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 120 Volume 2, 2017

mailto:pc229c@163.com

scheme of the dynamic packet filtering

firewall and explains the function and

implementation of each component; the third

part analyzes the firewall filtering modules

and gives a detailed description of the

structure of each module; the fourth part

illustrates the experiment results and verifies

the superiority of this design by comparing the

processing time of each filed in this design

with that in other configurations; the last part

gives the conclusions and prospects and

references are listed in the end of the paper.

2. The Dynamic Packet Filtering

Firewall

Figure 1 shows the overall layout of the

designed dynamic packet filtering firewall

system. The design is composed of the

following parts: 1) OR1200 processor; 2)

Wishbone Bus interconnection matrix; 3)

SDRAM controller; 4) UART controller; 5)

GPIO modules; 6) Flash controller; 7)

Ethernet controller; 8) packet filtering firewall

modules.

WB_CONMAX

OR1200

Processor

Data Bus Instruction Bus
Wishbone Bus

SDRAM

Controller

SDRAM chip

UART Controller

9-pin serial

interface

GPIO

LED、Switch、Nixie tube

Flash Controller

Flash chip

Packet filtering

firewall module

Ethernet

controller

SPI Bus

Interface

Fig.1 System block diagram

Among these parts, the OR1200

processor is the IP core based on Wishbone

Bus from the opencores[3]. The packet

filtering firewall modules are in charge of the

filtering of IPv6 data packet; OR1200

processor controls each slave device through

Wishbone Bus. The host sends Ethernet data

packet via cables, and when Ethernet

controller receives the data packet and

generates the interrupting signal, OR1200

processor interrupts the processing and sends

the IPv6 data packet to the packet filtering

firewall modules. The packet filtering firewall

modules will extract and then parse the fields

from the IPv6 data packet and thus decide to

either receive or discard the data packet.

3. Packet Filtering Firewall Modules

The filtering rule in this paper can be updated

by the processor and Figure 2 shows the

overall layout of the dynamic packet filtering

firewall module which is composed of four

major modules: the Wishbone Bus port

module, the Content Addressable Memory

(CAM) module, the netmask RAM module

and the IPv6 data packet extracting module.

The CAM module is in charge of the

matching operation of relevant data fields

including TCP/UDP destination port number,

TCP/UDP source port number, destination IP

address, source IP address and source Media

Access Control (MAC) address. The OR1200

processor operates the initial configuration

and real-time updating of data on the CAM

module.

The netmask RAM module is used to

store subnet mask data of the source IP

address and the destination IP address.

The IPv6 data packet extracting module

parses the corresponding data packet and

extracts the fields of corresponding

implication according to the header

information and then sends them to relevant

CAM module for matching.

Wishbone bus

Wishbone Bus Interface Module

IPv6 Data

Packet

inFIFO

CAM
module

Netmask RAM

IPv6 Data Packet

Extracting Module

RAM READ

RAM READ

IPv6 Data

Packet

outFIFO

Fig.2 The dynamic packet filtering firewall

block diagram

3.1 Wishbone Bus Interface Module

Figure 3 shows the signal distribution of this

module and its functions include: a. receiving

the initialization and dynamic updating data of

Bing Li et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 121 Volume 2, 2017

the CAM module; b. transmitting the

initialization and dynamic updating data of the

netmask RAM module; c. receiving the IPv6

data packet from the OR1200 processor; d.

delivering the successfully matched IPv6 data

packet in the outFIFO memory to the OR1200

processor. This module is in charge of the

transmission of data by sending the data from

the OR1200 processor to the relevant modules

and thus implementing the operation of the

configuration data.
Wishbone bus

Wishbone Bus

Interface Module

IPv6 Data

Packet

inFIFO

CAM

module
Netmask RAM

IPv6 Data Packet

Extracting Module

RAM READ

RAM READ

IPv6 Data

Packet

outFIFO

Wishbone Bus signal

IPv6 Data Packet inFIFO

IPv6 Data Packet outFIFO

CAM module configuration

data

Netmask RAM

configuration data

Fig.3 The signal distribution of Wishbone Bus

Interface Module

3.2 Content Addressable Memory (CAM)

Module

Content Addressable Memory (CAM) is fast

in matching data. The CAM module in this

design is implemented by dual port RAM and

the specific signal definitions are as shown in

Figure 4. The dual port RAM is 4 Kbits of

memory block and its read data port is

16bit*256 and write data port is 1bit*4096.

Since the system synthesis is implemented by

calling the relevant IP core on an Altera FPGA

device, each port of the dual port RAM is

configured separately to supply two operations

of CAM: write and read [6].

M9K BLOCK

PORTA (1x4096)

PORTB (16x256)

address_a[11:0]

data_a[0]

wren_a

clock_a

q_a[0]

address_b[7:0]

data_b[15:0]

wren_b

clock_b

q_b[15:0]

CAM 16x8

N.C

16'b0

DATA_WRITE[7:0]

ADDR[3:0]

ERASE_WRITE

WRITE_ENABLE

CLK_WRITE

DATA_MATCH[7:0]

CLK_MATCH

MATCH_ENABLE
MATCH[15:0]

Fig.4 CAM signal

The write operation is illustrated in

Figure 5. Among the 12-bit address line in the

dual port RAM, the high 8-bit is used to

represent the valid data to write and the low

4-bit represents the address of the data to be

written. After the 12-bit data is written, put

write/erase signal to 1 and hold it for one

clock cycle, then the data is already written in

the CAM module.

M9K BLOCK

WIRTE PORTA

 (1x4096)

READ PORTB

(16x256)

address_a[11:0]

data_a[0]

clock_a

ADDR[3:0]

0

1

1'b1

1'b0

0

1

RAM_ERASE

(8x16x1s)

WRITE/ERASE

DATA_IN[7:0]

ADDR[3:0]

CLK

Fig.5 the operation of CAM write

The write operation is shown in Figure 6.

The 8-bit matched data is sent to the port B

address wire of the dual port RAM, and then

the match_enable is put to high level for one

clock cycle. If there is data for matching in the

dual port RAM, it will output 16-bit output

signal and any high signal among the 16 bits

indicates successful matching.

M9K BLOCK

WIRTE PORTA

 (1x4096)

READ PORTB

(16x256)

address_b[7:0]
DATA_IN[7:0]

q_b[15:0]

clock_b
MATCH[15:0] ENCODE

MATCH_ADDR[3:0]

Q

Q
SET

CLR

D
MATCH_SIGNAL

CLK

CLK

…

Fig.6 operation of CAM read

Since the source IP address and

destination IP address of the IPv6 data packet

are both 128 bits and a CAM can match data

of only 8 bits, 16 CAM are needed to be

cascaded. The matching operation of

source/destination IP address is shown in

Figure 7. The 128-bit source/destination IP

address is divided into 16 segments and sent

to the source/destination IP address CAM

Bing Li et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 122 Volume 2, 2017

module. The 16bit output of source/destination

IP address CAM module is the 16 segments

anding.

CAM(16x8)

CAM(16x8)
[7:0]

[15:8]

DATA_MATCH[15:0]

CLK_MATCH [15:0]

[15:0] [0]
[0] [0]

[1]
[1] [1]

[15]
[15] [15]

MATCH[15:0]

…

＞

[127:120]

[15:0]

…

…

CAM(16x8)

Fig.7 source/destination IP address matching

In addition, the 16-bit source/destination

port number and 48-bit source physical (MAC)

addresses also need matching and the mode is

the same as that of the source/destination IP

address CAM module. This thesis focuses on

the implementation of IPv6 data packet

filtering examination and CAM resources

needed are as listed in Table 1.

Table 1. CAM module resources

Mode Capacity

(words)

Size

(bit)

Component

(CAM)

Memory

block(Kb)

Dest

port

16 16 2 2x4Kb

Sour

port

16 16 2 2x4Kb

Dest

IP

addr

16 128 16 16x4Kb

Sour

IP

addr

16 128 16 16x4Kb

MAC

addr

16 48 6 6x4Kb

3.3 Netmask RAM Module

The netmask RAM module stores the subnet

mask of IP addresses. It matches the IPv6 data

packet of certain IP address range and the

RAM is implemented by calling the relevant

IP core.

Figure 8 illustrates the operation process

of matching IP address range by the

collaboration of netmask RAM and IP address

CAM. The IPv6 data packet extracting module

parses the IPv6 address anding with the data

from netmask RAM module, and the result is

sent to CAM for data matching. Thus filtering

the data of a certain range is implemented and

comparing to accurate matching of each IP

address, it’s faster and less consuming in

CAM resources. Furthermore, since CAM

needs a high occupancy of memory resources,

this mode also saves memory resources for

users. CAM resources needed in this design

are as listed in Table 2.

IPv6 Data

Packet

Extracting

Module

IP address

…

…
ff02:2001::f000

ff02:2001::f000
~

ff02:2001::ffff

AND

Netmask RAM

…

…
ff02:2001::f000

IP Address CAM

ff02:2001::f000

Match
Success

Fig.8 Netmask RAM module operational

process

Table 2. Netmask RAM module resources

Mode Capacity

(words)

Size

(bit)

Component

(RAM)

Memory

bkock(Kb)

Dest

IP

addr

2 128 32x128 1x4Kb

Sour

IP

addr

2 128 32x128 1x4Kb

3.4 IPv6 Data Packet Extracting Module

Figure 9 illustrates the block diagram of the

IPv6 data packet extracting module. This

module is composed of a finite-state machine

(FSM) and the implementation modes refer to

literature 14. There are altogether 10 states in

the FSM: wait state, MAC data matching state,

extracting data packet information state,

extracting IPv6 data packet head, netmask

RAM comparison state, source/destination IP

address comparison state, extracting

TCP/UDP head, successful matching state,

unsuccessful matching state and written

outFIFO state.

Bing Li et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 123 Volume 2, 2017

Wishbone Bus

Wishbone Bus Interface Module

IPv6 Data

Packet

inFIFO

CAM

modul

e

Netmask RAM

IPv6 Data

Packet

Extracting

Module

RAM READ

RAM READ

IPv6 Data

Packet

outFIFO inFIFO READ

Netmask RAM

READ

outFIFO

WRITE

CAM WRITE

matching data

CAM READ

matching results

Fig.9 The signal distribution of IPv6 Data

Packet Extracting Module

The setup of the FSM is illustrated in

Figure 10. This finite-state machine is the

most critical and most difficult part of the

whole hardware design. The figure shows the

state switching information and conditions

needed for the switching of two adjacent

conditions as well as functions of each

condition. As Figure 10 shows, the FSM has

10 states totally and each state completes a

special function.

1

2

3

4

8 9

5

inFIFO empty

State

1、wait state

2、MAC data matching

state

3、extracting data

packet information state

4、extracting IPv6 data

packet head state

5、netmask RAM

comparison state

6、source/destination IP

address comparison state

7、extracting TCP/UDP

head state

8、successful matching

state

9、unsuccessful

matching state

10、written outFIFO

state

inFIFO not
empty

Ma
tc
h
su
cc
es
s

iP
v6
_s
uc
c
=

5'
b0
00
01

Match fail

Data head != 8'h5a

Not IPv6 data

6

netmask_flag = 2'b00 Match fail

7

Match failMatch success

10

Fig.10 The FSM diagram

This part gave a detailed description of

each module of the firewall hardware design

and functions of the whole design and each

separate module. The whole design completes

the tests on an Altera FPGA device and is

compared with the IPv4 hardware firewall

based on FPGA. Though the design in this

thesis consumes more FPGA resources, it is

aimed at IPv6 network data packet and the bit

wide of the source/destination IP address that

needs filtering is 4 times as that of IPv4 data

packet. Besides, bus and peripherals are added

to the design for the convenience of observing

the experimental results. As a result, the

implementation proposed in this paper bears

certain advantages in lowering the

consumption of hardware logic blocks. FPGA

Resources needed in the two implementations

are listed for comparison in Table 3.

Table 3. FPGA resources

Protocol type IPv4[4] IPv6

Device type Stratix

II/EP2S60F672C

5

Stratix

II/EP2S60F672C

5

Combination

al ALUTs

4595/48352

(10%)

7471/48352

(15%)

Dedicated

logic

registers

3169/48352

(7%)

6032/48352

(12%)

Logic

untilization

11% 25%

Total block

memory bits

164096/2544192

(6%)

275708/2544192

(11%)

4. Experimental Results

To test the processing speed and efficiency of

the design, a corresponding testing

environment is set up. The IPv6 data packet

are sent via cable from the contract award

program on the host PCs to the FPGA device.

The data packet processed by the FPGA

device is then printed through the serial ports

and the indicator light which can indicate the

successful matching of the data packet will

light for 10 seconds. The Nixie tube will show

the number of the data packets that have been

filtered or discarded, which enables the users

to conveniently view the number of valid data

packets which are sent. The files that handle

the initialization and configuration of the

OR1200 processor are compiled by

cross-compiler on Linux and the executable

files generated are downloaded to Flash on the

Bing Li et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 124 Volume 2, 2017

FPGA development board by Flash

downloading tools, which avoids the loss of

files in the case of blackout. The whole

processing flow of the IPv6 data packet is

illustrated in Figure 11.

Flow diagram

1、Initialization

· OR1200 processor sends the filtering rule to CAM module

· OR1200 processor sends the netmask data to RAM module

2、WRITE inFIFO

• The EtherNet module interrupts the utilization of the bus

• OR1200 processor obtains IPv6 data packet from the bus

• OR1200 processor sends the data packet to inFIFO

3、The firewall filtering module filters IPv6 data packet

• READ inFIFO, obtain MAC address and send it to CAM

module for matching

• READ inFIFO, obtain header information of IPv6 data packet

and send it to CAM module for matching

• TCP/UDP, extract the port number and send it to CAM

module for matching

5、WRITE outFIFO4、Discard the data

• Any unsuccessful

matching in CAM, empty

inFIFO

• Wait for next interruption

of the EtherNet module

• Successful matching in

CAM produces signal of valid

data

• Write the IPv6 data

packet in outFIFO

• OR1200 processor prints

the data packet through serial

port

Fig.11 IPv6 data packet processing flow

diagram

Figure 12 is the diagram of the testing

environment which includes a host PC, a cable,

a serial port line and the Altera development

board.

PIO switch

LED

Nixie tube

Fig.12 Testing diagram

When matching the IPv6 data packet, the

next header value is included in the fore

packet and value 6 or 17 is corresponding to

TCP or UDP packet. In this case the source

MAC address, source IP address and

destination IP address will be matched, so as

source port number and destination port

number. In other cases, only the source MAC

address, source IP address and destination IP

address need matching. Table 4 lists the

processing time to handle different types of

data packets. It is worth mentioning that the

working frequency of the FPGA device is 50

MHz.

Table 4. Processing time to handle different

types of data packets

Type Clock cycle Process

time(ns)

TCP/UDP 388 7760

ARP/ICMP/… 379 7580

During the parsing of the IPv6 data

packet, the source port number, destination

port number, source IP address, destination IP

address, source IP address range, destination

IP address range and source MAC address are

accordingly extracted and matched to the

CAM module. Table 5 lists the simulated

processing time of each field.

Table 5. Processing time for matching of each

field

Firewall mode Process

time(ns)[4]

Process

time(ns)

Source port 1840 140

Destination port 1840 140

Source IP addr 1920 120

Destination IP addr 1920 220

Source IP addr

range

none 440

Destination IP addr

range

none 540

MAC addr 1920 300

Table 6. Overall processing time

Match mode Total

time(ns)[1]

Total time(ns)

accurate 10000 920

range none 1560

Time listed in Table 5 shows the sum of

time it takes from the moment the FSM

obtains the fields and sends them to the

relevant CAM module for matching to when

the matching results are found out and

Bing Li et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 125 Volume 2, 2017

comparison is made with that in literature [7],

which indicates that the packet filtering

firewall proposed in this paper can largely

improve the processing speed. Table 6 gives

the sum of matching time in two modes and it

is much faster than that in software operation

mode[3]. What’s more, the OR1200 processor

can timely update the matching rule and thus

realize dynamic updating.

5. Conclusion

The dynamic packet filtering firewall on

SOPC based on an Altera FPGA device

proposed in this paper can be implemented in

two modes for users to choose from: accurate

matching and rough matching. Both modes

have improved a lot in the processing speed.

Since the CAM module is set up by dual port

RAM, the matching results can be worked out

only one clock cycle after the write enable

input of the matching data and thus it greatly

improves the processing speed. As for the

consumption of blocks, the complete design

uses a small portion of the Altera StratixII/

EP2S60F672C5 FPGA, 25% of the logic

blocks and 11% of the memory blocks, which

realizes the balance of the processing speed

and the consumption of the blocks. This

design focuses on the IPv6 data packet to

adapt to the reality that the IP addresses are

running out. As a result, the performance of

the dynamic packet filtering firewall design in

processing speed, area optimization and

security can meet the need of future network

security.

References:

[1] Yingxu Lai, Guangzhi Jiang, Jian Li, Zhen

Yang. Design and implementation of

distributed firewall system for IPv6[C].

The International Conference on

Communication Software and

Networks,2009.

[2] Gouri Shankar Prajapati, Nilay Khare, A

framework of a internet firewall for IPv6

using FPGA[J]. The International Journal

of Computer Applications(0975 - 8887)

Volume 50-No.21, July 2012.

[3] http://www.opencores.org

[4] Raouf Ajami, Anh Dinh, Embedded

Network Firewall on FPGA [C], The

Eighth Internation Conference on

Information Technology: New

Generations IEEE 2011.

[5] Arief Wicaksana, Arif Sasongko, Fast and

reconfigurable packet classification engine

in FPGA-based firewall[C], The

International Conference on Electrical

Engineering and Informatics, Bandung,

Indonesia,17-19 July 2011.

[6] J. Brelet. Using Block RAM for High

Performance Read/Write CAMs.

XilinxCorporation, xapp204 v1.2 edition,

May 2000.

[7] Raouf Ajami, Anh Dinh, Design a

hardware network firewall on FPGA[J],

IEEE CCECE 2011-000674

Bing Li et al.
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 126 Volume 2, 2017

http://www.opencores.org/

