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Abstract: - For steel structures and bridges subjected to fatigue loading, it is possible to determine the 
probabilities for basic phenomena that are related to the growth of fatigue cracks. Emerging new methods of 
probabilistic reliability assessment consider the effects of possible defects in the form of initiation cracks, 
which are the main cause of the propagation of fatigue cracks. The strongly nonlinear dependence between the 
initial crack size and fatigue resistance can lead to unrealistic probabilistic models if the types of probability 
density functions are selected inappropriately. The article discusses the uncertainties present in determining the 
variables in the calculation, which must be logically related to the probabilistic model of fatigue resistance. The 
aim of the present paper is to provide a methodology of inverse stochastic analysis, which is suitable for the 
verification of probabilistic models of fatigue crack propagation. 
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1 Introduction 
In Eurocode 3, the widespread method of design and 
assessment of fatigue is based on the detail category 
specified Wöhler curve (S-N curve) and the 
Palmgren–Miner cumulative damage rule [1]. 
Wöhler curves permits a limited lifetime to failure, 
which is problematically determined, based on 
constant amplitude and the expected number of load 
cycles. The methodology has been gradually 
developed into procedures that describe real 
conditions and facilitate the work of designers; 
however, it is not sufficiently universal [2]. Wöhler 
curves are only available for selected structural 
details given by the classification tables in design 
codes, such as Eurocode 3 [3], BS 5400 [4] and 
AASHTO [5].  

The traditional Wöhler (S-N) method cannot be 
used to determine the effect of a specific defect on 
the fatigue life. Linear elastic fracture mechanics 
presents a tool for the analysis of fatigue crack 
propagation of numerous cracked structural details 
[6, 7]. Approaches based on linear elastic fracture 
mechanics provide information on crack size and 
the growth rate of cracks under actual service 
loads [2]. 

An important input quantity for the analysis of 
fatigue degradation is stress history, which can be 
generated using deformation measurements in 
combination with FE models [8, 9]. The fatigue 

crack propagation life-span of each structural detail 
and critical connection can be predicted using the 
standard Paris-Erdogan crack growth model [10]. 
The prediction of the lifetime of fatigue cracks 
requires stochastic models that consider the 
uncertainty of all parameters, which by their nature 
are random variables, see e.g. [11, 12]. Monte Carlo 
numerical simulation methods are effective, but are 
not the only tools for the analysis of fatigue 
degradation and lifetime of structural steel 
constructions and steel bridges, see e.g. [13, 14]. 
Results of probabilistic studies are mainly used to 
determine inspection times and to analyse their 
results, which in the absence of cracks, lead to the 
conditional probability of their occurrence. 
 
 
2 Linear Fracture Mechanics 
Linear fracture mechanics has been the subject of 
research for many years, especially in the field of 
mechanical engineering and is gradually being 
applied and modified for the design of load bearing 
building structures. Commonly applied linear elastic 
fracture mechanics analyses the propagation of an 
initial crack of magnitude a in dependence on the 
number of fatigue cycles N. Fatigue crack growth is 
generally described by Paris’s rule which is 
expressed by Paris and Erdogan [10]. 
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where m and C are Paris-Erdogan (material-

related) law parameters and the range of stress 
intensity factor ΔK can be determined by [15]. 

 
( )aFaK πσ∆=∆    (2) 

 
where F(a) is the geometric factor (calibration 

function) describing the course of crack propagation 
with respect to the geometry of the sample and Δσ 
is the quasi–constant stress range.  
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where NF is the total number of cycles at crack 

growth from a0 to acr. The quasi–constant stress 
range ∆σ = 50 MPa is considered.  C, m  are 
material constants according (6) 

 
( ) mccC 21log +=    (4) 

 
where c1, c2 can be considered for steel grade 

S235 as c1 = -11.141 and c2 = -0.507 [16]. F(a) is 
the calibration function evaluated for pure bending 
in the form [17]: 
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where a is crack length and W is specimen width 

in the direction of crack propagation.  
 

 
 
   Fig.1: Fatigue resistance NF vs a0, W=400, acr=175 

 

An example of the dependence between NF and 
a0 is shown in Fig.1. With regards to the strongly 
non-linear dependence between NF and a0, it is more 
practical to work with the logarithms of these 
variables. An example of the dependence between 
logarithms NF and a0 is shown in Fig.2. 

 

 
 
   Fig.2: ln(NF) vs ln(a0) for W=400, acr=175 
 
3 Probabilistic Analysis 

The input random variables of the probabilistic 
model are listed in the Table 1. Initial crack size a0 
has a log-normal probability density function (pdf), 
the other random variables have Gauss pdf. The 
Latin Hypercube Sampling (LHS) method [18, 19] 
based on repeated random sampling is used to 
obtain the numerical results. 

 
Table 1: Input random variables 

Random variables Mean 
value 

Standard 
Deviation 

Initial crack size a0 0.526 mm 0.504 mm 
Critical crack size acr 175 mm 14 mm 
Specimen width  W 400 mm 20 mm 

Parameter m 3 0.03 
 
The fatigue resistance NF is the output random 

variable, whose statistical characteristics and pdf are 
examined. The mean value of NF is mNF=16.71E6 
and standard deviation is mNF=7.62E6, which are the 
statistical results, obtained using one million runs of 
the LHS method. The Chi-square goodness-of-fit 
test does not reject the hypothesis that NF has a log-
normal pdf. Practically, it means that the data fit the 
log-normal pdf very well, but it does not necessarily 
imply a hundred percent fit. If NF really has a log-
normal pdf, then we can use this pdf (with 
parameters mNF, mNF) to simulate the random 
realizations of NF and subsequently use inverse 
analysis to obtain random variable a0, which has 
statistical characteristics listed in Table 1. It may be 
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added that the above-described statistical model of 
initial crack size a0 has skewness of 3.7, which is a 
parameter that will also be monitored.  

Let us try to study a0 using inverse analysis. Let 
us consider NF as a random variable whose mean 
value and standard deviation are listed above with 
theoretical consideration of several different types 
of parametric pdfs.  

The aim of the study is to perform an inverse 
analysis and obtain the histogram of a0, whose pdf 
will be subsequently examined. The theoretically 
presumed pdfs introduced for NF are listed in Table 
2 and are also depicted in Fig.3 and Fig.4. The 
second chosen pdf type is the Hermite pdf, which 
has four parameters [20]. The third and fourth 
parameters of this pdf are skewness and kurtosis, 
which are considered to have values of 0.6 and 3. 

 
Table 2: Variants for NF random pdf 

Var. Pdf Mean 
Value 

Standard 
Deviation 

1 Log-normal 16.71E6 7.62E6 
2 Hermite 16.71E6 7.62E6 
3 Truncated Gauss 16.71E6 7.62E6 
4 Decreasing Triangular 16.71E6 7.62E6 
5 Growing Triangular 21.71E6 7.62E6 
 
Statistical analysis of a0 is evaluated using ten 

thousand simulation runs of the LHS method. The 
results are shown in Fig. 5 to Fig. 14. 

 

 
 
   Fig.3: Pdfs of NF - variants 1, 2, 3 
 

 
 
   Fig.4: Pdfs of NF - variants 4, 5 
 

 
 
   Fig.5: Observations of a0 for Variant 1 

 

 
 
   Fig.6: Histogram of a0 for Variant 1 
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   Fig.7: Observations of a0 for Variant 2 

 

 
 
   Fig.8: Histogram of a0 for Variant 2 
 

 
 

   Fig.9: Observations of a0 for Variant 3 
 

 
 
   Fig.10: Histogram of a0 for Variant 3 

 

 
 
   Fig.11: Observations of a0 for Variant 4 

 

 
 
   Fig.12: Histogram of a0 for Variant 4 
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   Fig.13: Observations of a0 for Variant 5 

 

 
 
   Fig.14: Histogram of a0 for Variant 5 
 
From the graphs shown above, it can be observed 
that the selection of inappropriate types of 
probability density functions of fatigue resistance 
lead to remote observations of the size of the initial 
crack. Observations of the initial crack must be 
proportionate to the frequency of the occurrence of 
real failures, which are observed during inspections 
of steel structures or bridges subjected to cyclical 
loads, see e.g. [12, 21, 22]. 

 
 
4 Conclusion 
Inverse analysis a0 is an important part of the 
verification of stochastic models because it provides 
information on crack propagation, which is needed 
to plan regular inspections. The inverse analysis 
performed in this article showed that if the fatigue 
resistance NF has a log-normal pdf then a0 has a log-
normal pdf. However, the statistical characteristics 

a0 correspond to the original values listed in Table 1 
only approximately. Even so, the log-normal pdf is, 
out of all the pdf types introduced for NF, the most 
suitable distribution that can be accepted with a high 
probability in stochastic models of structural 
elements subjected to fatigue damage. The 
unsuitable pdfs include Hermite, Truncated Gauss 
and Growing Triangular pdfs, which lead to the 
occurrence of large (unreal) frequencies of 
observations of high values of a0. The Decreasing 
Triangular pdf, whose random realization maximum 
of a0 determined in this article has a value of 
4.8mm, is also worth considering in probabilistic 
studies. Practically, it is necessary to adopt for a0 
such a pdf, whose probability density function is 
zero in the vicinity of zero values of a0 and at the 
same time decreases very rapidly when observing 
higher values. The log-normal pdf satisfies these 
requirements, but is not necessarily the only suitable 
pdf. 
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