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Abstract: We consider a X−model with fluid queues that can be approximated under heavy-traffic
conditions by a two-dimensional reflected fractional Brownian motion (rfBm). Specifically, we prove a
heavy-traffic limit theorem for this single-server two-station model in which each server helps the other
when free, with feedback allowed and a non-deterministic arrival process generated by a large enough
number of heavy-tailed On/Off sources, say N. Scaling conveniently by a factor r and by N, and letting
N and r approach infinity (in this order), we prove that the scaled (total) workload process converges
under heavy-traffic to a rfBm process on a convex polyhedron.
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1 Introduction
It is well known from the seminal paper of Taqqu
et al. [11] (see Theorem 1 there) that the aggregate
cumulative arrival to a network, generated by the
superposition of many (say N) heavy-tailed On/Off
sources, conveniently scaled by a factor r and by
N, converges when N and r go to infinity, to a
fractional Brownian motion (fBm) process. These
limits should be treated with care, because if they
are taken in the reverse order, the convergence is
to an α−stable Lévy process rather than a fBm.
As fBm is a self-similar process with long-range
dependent increment, this makes the “heavy-tailed
On/Off sources” be a very reasonable assumption
for modeling of broadband network traffic, which

is known to show long-range dependence and self-
similar patterns.

Different works so far have addressed the issue of
transfer of the convergence of the aggregate cumu-
lative arrival process to workload, in a heavy-traffic
environment, the fBm reflected appropriately being
the limit process. Indeed, Debicki and Mandjes [1]
prove that the scaled workload process converges to
the fBm, reflected appropriately to be non-negative,
for a fluid model with only one station. General-
ization to the multi-station setting has been given
in [2], where the limit rfBm process lives in the
positive orthant. It is also possible to find more
sophisticated queueing models with heavy-tailed
On/Off sources for which the scaled workload pro-
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cess converges under heavy-traffic to a rfBm pro-
cess living in a convex polyhedron different from
the positive orthant. For instance, [3] considers
a flow-level model for packet-switched telecom-
munications networks handling elastic flows with
concurrent occupancy of resources, in which dig-
ital objects are transferred at a rate determined by
capacity allocation on each route and the capacity
of each node is dynamically allocated to the routes
passing by it through a weighted proportional fair
sharing policy. Looking for models of different
nature but with the same type of limit process,
a N−model has been considered in [4]. In this
model, which is a single-server two-station polling
system with fluid queues, server 2 is flexible in the
sense that processes its own fluid and when free, it
helps server 1, but the reciprocal is not permissible.
Generalization of this model to the case in which
feedback is allowed, has been studied in [5].
Polling systems are a special class of queue-

ing systems where a single server visits a set of
queues in some order, and have been used in real-
life systems including service centers, production
systems, computer networks with rescheduling of
jobs, parallel computing systems where processors
have overlapping capabilities, and manufacturing
applications in which machines may have differing
primary functions and some overlapping secondary
ones. For a more detailed explanation, see the in-
troduction of [4].
In this paper we consider a different polling sys-

tem, consisting of a network composed of two
single-server workstations that process continuous
fluid, with an infinite-capacity buffer each one,
and feedback allowed, the X−model portrayed
schematically in Figure 1. In this model, each
server can help the other when free, that is, servers
are cross-trained. This kind of models have been
considered in several works. For example, Perry
and Whitt [9] study an ordinary differential equa-
tion which is the deterministic fluid approximation
for an overloaded X call-center model with two
customer classes and two service pools, which is
proved in [10] by the same authors to arise as the

many-server heavy-traffic fluid limit of a properly
scaled sequence of overloadedMarkovianX models
under the fixed-queue-ratio-with-thresholds (FQR-
T) control.

In the X−model there are two fluid classes, and
class- j fluid ( j = 1, 2) is primarily assigned to
server j, which works at station j. We assume
that fluid is processed in a first-in-first-out (FIFO)
basis within each class. Whenever one station be-
comes empty, say station 2, while there is (class-1)
fluid awaiting at the other station, a floodgate opens
and fluid begins to be transferred to station 2 so that
while the situation persists, class-1 fluid is simul-
taneously processed by both servers (possibly at
different speeds). We assume that there is no travel
delay (setup time). The situation continues until ei-
ther the amount of class-1 fluid in the system runs
out, in which case both servers are at rest there-
after until new fluid arrive, or class-2 fluid reaches
station 2 from outside, whichever happens first. In
the latter case, the fluid transfer immediately ceases
(the floodgate closes) and server 2 starts process-
ing of class-2 fluid, while class-1 fluid processing
continues by server 1. The situation is perfectly
symmetrical between the two servers, that is, previ-
ous explanation also applies swapping server roles.
We assume that no server can be idle while there is
fluid awaiting for processing in any of the stations
(nonidling policy). Moreover, feedback is allowed:
after processing of class-1 fluid (by either server), a
proportion p11 needs reprocessing and is sent back
to station 1, while the rest goes outside the network.
Similarly, after processing (by either server) a pro-
portion p22 of class-2 fluid needs to be reprocessed
by server 2, and the rest goes outside. For this pro-
cess we prove a heavy-traffic limit, which shows
that the scaled total workload process converges to
a rfBm process on a convex polyhedron (see Figure
2).
The organization of the paper is as follows. In

Section 2 we set up notation and preliminaries.
Section 3 is devoted to the introduction of the
X−model, the processes used to measure its per-
formance, the convex polyhedron, the heavy-traffic
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condition and scaling, while the heavy-traffic limit
is proved in Section 4. In the Appendix we recall
an Invariant Principle proved in [4], which is a key
ingredient in the proof of the limit result.

2 Notations and preliminaries
Vectors will be column vectors and vT means the
transpose of a vector (or a matrix) v. By diag(v)we
denote the diagonal matrix with diagonal elements
the components of vector v (in the same order).
Inequalities for vectors must be understood in the
componentwise sense. The identity matrix (of any
dimension) is denoted by I . The inner product of
a couple of vectors u, v ∈ Rd is 〈u,v〉= ∑

d
i=1 ui vi .

Let C d be the space of continuous functions ω

from [0,+∞) to Rd , with the topology of the uni-
form convergence on compact time intervals, and
Dd the space of continuous on the right with limits
on the left functions, endowed with the usual Sko-
rokhod J1−topology. All stochastic processes in
this paper will be assumed to have paths in Dd , for
some d ≥ 1. A sequence of stochastic processes
{Xn}n≥1 is said to be tight if the induced measures
on Dd form a tight sequence (that is, the sequence
of induced measures is weakly relatively compact
in the space of probability measures on Dd).

We will use D− lim to denote the convergence
in distribution onC d orDd (orweak convergence).
That is, we write D− lim

n→+∞
Xn = X if the sequence

of probability measures induced in Dd by {Xn}n

converges weakly to that induced by X . The se-
quence of processes {Xn}n is called C−tight if it
is tight, and if each weak limit point, obtained as a
weak limit along a subsequence, almost surely has
sample paths in C d .
Definition 1. (convex polyhedron) A convex

polyhedron S on Rd can be defined algebraically as
the set of solutions to a systemof linear inequalities:

S def
={x ∈ Rd : 〈v`,x〉 ≥ 0 for all `= 1, . . . , d}
={x ∈ Rd : ϒx≥ 0},

v1, . . . , vd ∈ Rd , ϒ being the associated d× d ma-
trix whose row vectors are v1, . . . , vd . Its boundary
is ∂S = ∪d

`=1F̀ , with F̀ = {x ∈ S : 〈v`,x〉= 0} the
boundary faces.

It is assumed that the interior of S is not empty
and the set {v1, . . . , vd} is minimal. Associated to S
we introduce the directions of reflection, which are
constant along each face, as the column vectors of
a d×d matrix R, which are denoted by u1, . . . , ud .
Definition 2. (rfBm on a convex polyhedron) Let

S be a d−dimensional convex polyhedron as inDef-
inition 1, with associated d×d matrix of directions
of reflection R. A reflected fractional Brownian
motion on S associated with data (x, H, θ , Γ, R),
where x∈ S,H ∈ (0, 1), θ ∈Rd andΓ is a d×d pos-
itive definite matrix, is a d−dimensional process
W = {W (t) = (W1(t), . . . ,Wd(t))T , t ≥ 0} such that
(i) W has continuous paths and W (t) ∈ S for all
t ≥ 0 a.s.,
(ii)W = X +RV a.s., with X andV two d− dimen-
sional processes defined on the same probability
space and verifying:
(iii) X is a fractional Brownian motion (fBm) pro-
cess with associated data (x, H, θ , Γ), that is, it is a
continuous Gaussian process starting from x, with
mean function E

(
X(t)

)
= x+θ t for any t ≥ 0, and

with covariance function given by

Cov
(
X(t),X(s)

)
=

E
((

X(t)− (x+θ t)
)(

X(s)− (x+θs)
)T
)
=

ΓH(s, t)Γ if t,s≥ 0 , with

ΓH(s, t) =
1
2
(t2H + s2H −|t− s|2H),

(iv) V has continuous and non-decreasing paths,
and for ` = 1, . . . ,d a.s., V`(0) = 0 and V`(t) =
t∫

0
1{W (s)∈F`} dV`(s) for all t ≥ 0 (only increases if

W is on the boundary face F̀ ).
If conditions (i), (ii) and (iv) aremet, we say that the
pair (W,V ) is a solution of the Skorokhod Problem
associated to X on the convex polyhedron S with
associated matrix of directions of reflection R.
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Remark 1. Strong existence and uniqueness of
the solution of a Skorokhod problem can be ensured
if the column vectors of R are linearly independent,
and matrix Ψ = ϒR verifies that the entries off the
diagonal are nonpositive and the following condi-
tion (the generalized Harrison-Reiman condition),
holds (see Remark 1 [3] for details):

(HR) The matrix Θ obtained from Ψ− Id

by replacing its entries by their absolute
values, has spectral radius < 1 .

Loosely speaking, the rfBm process starts in the
interior of S and behaves like a fBm being con-
strained to remain within S by reflection on the
boundary. Vector u`, gives the direction of the re-
flection at the boundary face F̀ , and v` its intensity.
On the intersection of two or more faces, the direc-
tion of reflection is given by a linear combination
of the corresponding reflection vectors.

3 The X−model
The basic features of the X−model have been ex-
plained in the introduction (see scheme in Figure
1). Now we go deeper into it. For facilitate ac-
cess to the topics, it is rendered as self-contained as
possible. Assume 0≤ p11, p22 < 1, and introduce

P def
=

(
p11 0

p22

)
, and

Q def
= (I−PT )−1 =

(
q11 0
0 q22

)
with q j j =

1
1−p j j

≥ 1, j = 1,2, which is well defined
since matrix P has spectral radius less than one. P
is the (sub-stochastic) “flow” or “routing” matrix
of the fluid model. (If p11 = p22 = 0 we recover
the X−model without feedback.)
As in [2]-[4], we assume that for each sta-

tion there are N i.i.d. external sources sending
fluid to it, and that each source can be On or
Off. The lengths of the On-periods are indepen-
dent, those of the Off-periods are independent,

and the lengths of On- and Off-periods are inde-
pendent of each other. Let f on and f off be the
probability density functions corresponding to the
lengths of On and Off-periods, which are non-
negative and heavy-tailed. Therefore, their (posi-
tive) expected values are µon def

=
∫ +∞

0 u f on(u)du and
µoff def

=
∫ +∞

0 u f off(u)du. Assume that as x→+∞ ,∫ +∞

x
f on(u)du∼ x−β on

Lon(x),∫ +∞

x
f off(u)du∼ x−β off

Loff(x) , (1)

where 1 < β on, β off < 2 and Lon, Loff are positive
slowly varying functions at infinity such that if
β on = β off, then limx→+∞

Lon(x)
Loff(x) exists and belongs

to (0,+∞) . Note that µon and µoff are finite while
variances are not.
In what follows, we use subindex j to denote the

quantities related to class- j fluid, j = 1, 2, subindex
12 specifically to that quantities related to process-
ing of class-1 fluid by server 2, and 21 for pro-
cessing of class-2 fluid by server 1. Define the
cumulative external class- j fluid arrived up to time
t (by the N sources) at station j by:

EN
j (t)

def
= α

N
j

∫ t

0

1
N

( N

∑
n=1

U (n)
j (u)

)
du , (2)

with U (n)
j (t) = 1 meaning that at time t the source

n of station j is On (and it is sending fluid to station
j at constant rate αN

j > 0), and U (n)
j (t) = 0 mean-

ing that it is Off. Let αN = (αN
1 , αN

2 )
T . The two

component processes of the (non-deterministic)
cumulative external fluid arrival process EN =

{EN(t) =
(
EN

1 (t), EN
2 (t)

)T
, t ≥ 0}, are assumed

to be independent. Let α̃N def
= αN µon

µon+µoff and
define λ N = (λ N

1 , λ N
2 )T to be the unique two-

dimensional vector solution to the traffic equation
λ N = α̃N +PT λ N , that is, λ N = Qα̃N . Note that
λ N

j is the long run fluid rate into station j . Assume
that λ = limN→+∞ λ N exists, λ = (λ1, λ2)

T . This
implies that α = (α1, α2)

T = limN→+∞(α
N
1 , αN

2 )
T

also exists.
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α1 α2

λ1 λ2

µ12

p11 p22

1− p11

µ1

Station 1
µ2

Station 2

1− p22

µ21

Figure 1: X−model with feedback

For any r > 0 real valued parameter, we can con-
sider a sequence of fluid models indexed by (r, N),
where N is the number of On/Off sources feeding
the system. For the (r, N) fluid model, suppose
that server 1 processes class-1 fluid at a constant
rate µ

r,N
1 > 0 if station 1 were never idle and class-

2 fluid at constant rate µ
r,N
21 > 0, not necessarily

equal to µ
r,N
1 nor to µ

r,N
2 , if server 1 devoted all

time to this fluid class. Symmetrically for server 2,
that processes class-2 fluid at constant rate µ

r,N
2 > 0

and class-1 fluid at a constant rate µ
r,N
12 > 0. We

assume that limN→+∞(µ
r,N
1 ,µr,N

2 ,µr,N
12 ,µr,N

21 ) exists,
is > 0 and does not depend on r; we denote it by
(µ1, µ2, µ12, µ21) . Let us introduce the fluid traffic
intensity ρr,N = (ρr,N

1 , ρ
r,N
2 )T by

ρ
r,N
1

def
=

λ N
2 −µ

r,N
2

µ
r,N
21

+
λ N

1

µ
r,N
1

,

ρ
r,N
2

def
=

λ N
1 −µ

r,N
1

µ
r,N
12

+
λ N

2

µ
r,N
2

. (3)

Stability of the X−model has been considered in
[6], where it is proved that traffic intensity < 1 is
a sufficient condition for the stability under certain
conditions.

3.1 Performance processes
To measure the performance of our model we
introduce some processes. Definition of work-
load W r,N = (W r,N

1 ,W r,N
2 )T is adopted from [4] and

agrees with the one given in [7]: for j = 1, 2, the
total workload W r,N

j (t) is defined as the total time
of service that would be required to complete pro-
cessing of the total amount of both classes of fluid
in the system at time t, if it were to be performed by
server j without help from the other server. We
assume W r,N(0) = 0 . The cumulative idle-time
Y r,N = (Y r,N

1 , Y r,N
2 )T is defined by: Y r,N

j (t) is the
cumulative amount of time that server j has been
idle in [0, t]:

Y r,N
1 (t) = Y r,N

2 (t) =
∫ t

0
1{W r,N(s)=0} ds (4)

(note that the idle-time for each server is the same,
and corresponds to the time that there is no work-
load, nor for server 1, no for server 2). The to-
tal service time T r,N = (T r,N

1 , T r,N
2 , T r,N

12 , T r,N
21 )T is

defined by: T r,N
j (t) is the total service time de-

voted to class- j fluid (by server j) in the interval
[0, t], j = 1, 2, while T r,N

12 (t) and T r,N
21 (t) are respec-

tively the total service time devoted to class-1 by
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server 2, and to class-2 by server 1, in [0, t]. We
also introduce processes Ar,N = (Ar,N

1 , Ar,N
2 )T and

Dr,N = (Dr,N
1 , Dr,N

2 )T by: Ar,N
j (t) is the total fluid

arrived at station j, as class- j fluid, up to time t,
including both external input and feedback flow.
Note that we do not include fluid transferred from
the other stationwhen the floodgate is open. Dr,N

j (t)
is the total amount of class- j fluid departing, either
by leaving the network or not, from either station,
up to time t. Assume Ar,N(0) = Dr,N(0) = 0 .
As it is done in [4], we introduce the follow-

ing notation: W̃ r,N
j is defined as the portion of the

workloadW r,N
j exclusively due to class- j fluid, that

is,

W̃ r,N
1 =

AN
1

µ
r,N
1

−
(
T r,N

1 +
µ

r,N
12

µ
r,N
1

T r,N
12

)
, (5)

W̃ r,N
2 =

AN
2

µ
r,N
2

−
(
T r,N

2 +
µ

r,N
21

µ
r,N
2

T r,N
21

)
. (6)

The interpretation of (16) is that AN
1 (t)/µ

r,N
1 is the

amount of time required by server 1 to process all
the class-1 fluid arrived up to time t to station 1,
while T r,N

1 (t) + µ
r,N
12

µ
r,N
1

T r,N
12 (t) represents the part of

this time yet consumed at instant t, by server 1,
which is T r,N

1 (t), and by server 2, which is T r,N
12 (t)

conveniently rescaled since the service time for
class-1 fluid is different when processed by server
1 or by server 2. Interpretation of (17) is analo-
gous by symmetry. These processes are related by
means of the equalities:

W r,N
1 = W̃ r,N

1 +
µ

r,N
2

µ
r,N
21

W̃ r,N
2 ,

W r,N
2 = W̃ r,N

2 +
µ

r,N
1

µ
r,N
12

W̃ r,N
1 , (7)

t = Y r,N
1 (t)+T r,N

1 (t)+T r,N
21 (t),

t = Y r,N
2 (t)+T r,N

2 (t)+T r,N
12 (t), (8)

T r,N
1 (t) =

∫ t

0
1{W̃ r,N

1 (s)>0}ds,

T r,N
2 (t) =

∫ t

0
1{W̃ r,N

2 (s)>0} ds, (9)

T r,N
12 (t) =

∫ t

0
1{W̃ r,N

1 (s)>0,W̃ r,N
2 (s)=0}ds,

T r,N
21 (t) =

∫ t

0
1{W̃ r,N

1 (s)=0,W̃ r,N
2 (s)>0}ds. (10)

With respect to (7), total workload W r,N
1 is equal

to W̃ r,N
1 by adding W̃ r,N

2 (t) conveniently rescaled
representing the amount of time required by server
1 to process all the class-2 fluid at buffer 2 at
time t, and analogous for W r,N

2 . On the other
hand, (8) expresses that the length of the inter-
val [0, t] can be split into idle time Y r,N

j (t), and
working time (T r,N

1 (t) + T r,N
21 (t) for j = 1, while

T r,N
2 (t)+T r,N

12 (t) for j = 2). Formulae (9) and (10)
are self-explanatory, taking into account the defini-
tions of the involved processes.
We will use notation rr,N

1
def
=

µ
r,N
1

µ
r,N
21
, rr,N

2
def
=

µ
r,N
2

µ
r,N
12

and

r j = limN→+∞ rr,N
j , assumed to be independent of

r and positive, for j = 1,2. From now on we will
assume r1 r2 6= 1 , which implies that rr,N

1 rr,N
2 6= 1

for all r and for N big enough. Indeed, to fix ideas
and avoid repetition, we assume from now on that
r1 r2 > 1 (the other case is similar). Finally, we
introduce the ancillary processV r,N as the function
of Y r,N and T r,N by

V r,N
1

def
=
(
1+

µ
r,N
2

µ
r,N
21

)
Y r,N

1 +
µ

r,N
12

µ
r,N
1

(rr,N
1 rr,N

2 −1)T r,N
12 ,

(11)

V r,N
2

def
=
(
1+

µ
r,N
1

µ
r,N
12

)
Y r,N

2 +
µ

r,N
21

µ
r,N
2

(rr,N
1 rr,N

2 −1)T r,N
21 .

(12)

We are interested in express workload process
in terms of processes Er,N and V r,N . From this re-
lation, proved in Lemma 2 below, we deduce in
Lemma 3 the Skorokhod decomposition. We begin
with the expression of process Ar,N in terms of Er,N

and W r,N , which is set in the next lemma.
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Lemma 1. Processes Ar,N , Er,N and W r,N are
related by means of:

Ar,N = QEr,N−QPT (Mr,N)−1W r,N (13)

where Mr,N =

( 1
µ

r,N
1

1
µ

r,N
21

1
µ

r,N
12

1
µ

r,N
2

)
.

Proof: By definition of process Ar,N ,

Ar,N = Er,N +PT Dr,N (14)

since PT Dr,N is the total amount of fluid arriving
from feedback. On the other hand, according to
definition of process Dr,N , Dr,N

j = Ar,N
j −µ

r,N
j W̃ r,N

j ,
which in matricial form can be expressed as

Dr,N = Ar,N− (Mr,N)−1W r,N (15)

since by (7),

W̃ r,N
1 =

1

1− rr,N
1 rr,N

2

(W r,N
1 − µ

r,N
2

µ
r,N
21

W r,N
2 ), (16)

W̃ r,N
2 =

1

1− rr,N
1 rr,N

2

(−µ
r,N
1

µ
r,N
12

W r,N
1 +W r,N

2 ), (17)

and using that

(Mr,N)−1 =
1

1− rr,N
1 rr,N

2

(
µ

r,N
1 −rr,N

1 µ
r,N
2

−rr,N
2 µ

r,N
1 µ

r,N
2

)
.

Replacing (15) into (14) yields Ar,N = Er,N +
PT Ar,N −PT (Mr,N)−1W r,N , which establishes (13)
on account of the definition of matrix Q. �

Lemma 2. Processes W r,N , Er,N and V r,N verify
the following relation:

W r,N(t) = Mr,NEr,N(t)−Rr,N
δ

r,Nt +Rr,NV r,N(t)
(18)

where

Rr,N = Mr,N Q−1 (Mr,N)−1 and

δ
r,N = (1+

µ
r,N
2

µ
r,N
21

, 1+
µ

r,N
1

µ
r,N
12

)T .

Proof: From equations (16)-(10), the fact that
Y r,N

1 =Y r,N
2 and the definition of processV r,N given

by (11) and (12), we can rewrite W r,N
1 and W r,N

2 as

W r,N
1 (t) =

Ar,N
1 (t)

µ
r,N
1

+
Ar,N

2 (t)

µ
r,N
21

− (1+
µ

r,N
2

µ
r,N
21

) t +V r,N
1 (t),

W r,N
2 (t) =

Ar,N
1 (t)

µ
r,N
12

+
Ar,N

2 (t)

µ
r,N
2

− (1+
µ

r,N
1

µ
r,N
12

) t +V r,N
2 (t).

In matricial form,

W r,N(t) = Mr,NAr,N(t)−δ
r,N t +V r,N(t). (19)

Finally, we get (18) by replacing (13) into (19),
taking into account that

I +Mr,NQPT (Mr,N)−1 = Mr,N(I +QPT )(Mr,N)−1

= Mr,NQ(Mr,N)−1 = (Rr,N)−1. �

Remark 2. Note that clearly we obtain the exis-
tence of the following limits:

M = lim
N→+∞

Mr,N =

(
1
µ1

1
µ21

1
µ12

1
µ2

)
and

R = lim
N→+∞

Rr,N = MQ−1M−1

=
1

1− r1 r2

 1
q11
− r1r2

q22

µ2
µ21

( 1
q22
− 1

q11
)

µ1
µ12

( 1
q11
− 1

q22
) 1

q22
− r1r2

q11

 .

(20)

3.2 Sequence of convex polyhedra in R2

Let us define (for r1 r2 > 1) S def
= {(x,y) ∈ R2 :

µ21
µ2

x≤ y≤ µ1
µ12

x}, which is the convex polyhedron
in Figure 2 with boundary faces F1 = {(x,y) ∈ S :
y = µ1

µ12
x} and F2 = {(x,y) ∈ S : y = µ21

µ2
x}, and

associated matrix

ϒ =

(
q22 −q22

µ12
µ1

−q11
µ21
µ2

q11

)
.

We also introduce a sequence of convex polyhe-
dra indexed by (r,N) by replacing µ1, µ2, µ12 and
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F1

F2

y

x(0, 0)

S

y =
µ21

µ2
x

y =
µ1

µ12
x

Figure 2: The convex polyhedron for the X−model (case r1 r2 > 1).

µ21 by µ
r,N
1 ,µr,N

2 , µ
r,N
12 and µ

r,N
21 respectively, and

we will use the superscript r,N.
We wish to stress that the key technical difficulty

of our main result (Theorem 1) stems from the fact
that the faces of the convex polyhedron associated
to the (r,N) model actually do depend on r and N.

3.3 Scaled processes

In order to define the scaled processes associ-
ated with the (r, N) model we have to introduce
some notation that goes back as far as the work
of Taqqu, Willinger and Sherman [11] (see also
[2], [4]). Set aon def

= Γ(2−β on)
(β on−1) and aoff def

= Γ(2−β off)
(β off−1) ,

where β on and β off are defined by (1). The nor-
malization factors used below depend on `, de-
fined by `

def
= limt→+∞

Lon(t)
Loff(t) tβ off−β on

, which exists
although it could be infinite. If 0 < `<+∞ (imply-

ingβ on = β off and `= lim
t→+∞

Lon(t)
Loff(t)

), setβ
def
= β on =

β off, L def
= Loff and σ2,lim def

=
2
(
(µoff)2 aon `+(µon)2 aoff

)(
µon+µoff

)3
Γ(4−β )

.

If, on the other hand, ` = +∞ (β off > β on), set
L def
= Lon, β

def
= β on and σ2,lim def

= 2(µoff)2 aon(
µon+µoff

)3
Γ(4−β )

.

If ` = 0 (β off < β on), set L def
= Loff, β

def
= β off and

σ2,lim def
= 2(µon)2 aoff(

µon+µoff
)3

Γ(4−β )
. In either case, β ∈

(1, 2). Let us define

H def
=

3−β

2
(
∈ (

1
2
, 1)
)
. (21)

Now we can introduce the heavy-traffic condi-
tion, which establishes that the fluid traffic intensity
ρr,N defined by (3) tends to e = (1, 1)T in the fol-
lowing sense: there exist (γ̂r)r and γ , in R2, such
that

(HT)
{

limN→+∞

√
N(ρr,N− e) = γ̂r and

limr→+∞
r1−H

L1/2(r) γ̂
r = γ.

This type of condition has been introduced previ-
ously in [4], where it is justified.
We can introduce the scaled processes associ-

ated with the (r, N) fluid model and use a hat to
denote them: Ŵ r,N = (Ŵ r,N

1 ,Ŵ r,N
2 ) is defined by

Ŵ r,N
j (t) def

=
√

N
W r,N

j (r t)

rH L1/2(r)
, (22)

and similarly for the other processes except for
Êr,N = (Êr,N

1 , Êr,N
2 ), which is defined by

Êr,N
j (t) def

=
√

N
EN

j (r t)− α̃N
j r t

rH L1/2(r)
( j = 1, 2). (23)
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From (11) and (12) we obtain

V̂ r,N
1

def
=
(
1+

µ
r,N
2

µ
r,N
21

)
Ŷ r,N

1 +
µ

r,N
12

µ
r,N
1

(rr,N
1 rr,N

2 −1)T̂ r,N
12 ,

V̂ r,N
2

def
=
(
1+

µ
r,N
1

µ
r,N
12

)
Ŷ r,N

2 +
µ

r,N
21

µ
r,N
2

(rr,N
1 rr,N

2 −1)T̂ r,N
21 .

From (4) it follows that

Ŷ r,N
1 (t) = Ŷ r,N

2 (t) =
√

N
r1−H

L1/2(r)

∫ t

0
1
{ ̂̃W r,N

(s)=0}
ds,

and from (10),

T̂ r,N
12 (t) =

√
Nr1−H

L1/2(r)

∫ t

0
1
{ ̂̃W r,N

1 (s)>0, ̂̃W r,N

2 (s)=0}
ds,

T̂ r,N
21 (t) =

√
Nr1−H

L1/2(r)

∫ t

0
1
{ ̂̃W r,N

1 (s)=0, ̂̃W r,N

2 (s)>0}
ds.

The following lemma provides a Skorokhod de-
composition that will prove extremely useful in the
proof of Theorem 1 in the next section.
Lemma 3. (Skorokhod decomposition) The

scaled processes Ŵ r,N , Êr,N and V̂ r,N are related by
means of:

Ŵ r,N = X̂ r,N +Rr,N V̂ r,N ,

with

X̂ r,N(t) = Mr,NÊr,N(t)+

√
Nr1−H

L1/2(r)
Rr,N(ρr,N− e) t .

(24)

Proof: From (22), (18) and (23) we obtain

Ŵ r,N(t) =
√

N
W r,N(r t)
rH L1/2(r)

=

√
N

rH L1/2(r)

(
Mr,NEr,N(rt)−Rr,N

δ
r,Nr t

+Rr,NV r,N(rt)
)

= Mr,NÊr,N(t)+

√
Nr1−H

L1/2(r)
Mr,N

α̃
Nt

−
√

Nr1−H

L1/2(r)
Rr,N

δ
r,Nt +Rr,NV̂ r,N(t).

By using that α̃N = Q−1λ N , we can rewrite this
expression as:

Ŵ r,N(t) = Mr,NÊr,N(t)+

√
Nr1−H

L1/2(r)

(
Mr,NQ−1

λ
N

−Rr,N
δ

r,N)t +Rr,NV̂ r,N(t),

which is our claim, due to the fact that

Mr,NQ−1
λ

N−Rr,N
δ

r,N = Rr,N(Mr,N
λ

N−δ
r,N)

= Rr,N(ρr,N− e). �

Lemma 4. The column vectors of matrix R
given by (20) are linearly independent. Moreover,

as r1 r2 > 1, matrix Ψ = ϒR =

(
1 − µ12

µ1

− µ21
µ2

1

)
verifies that the entries outside the main diagonal
are nonpositive and also condition (HR) (see Re-
mark 1). (Analogously for the (r,N)−model, for
any r and N big enough.)

The proof of this lemma is straightforward and
omitted.

4 The heavy-traffic limit
Our goal is to state that the scaled workload process
Ŵ r,N converges in distribution to a two-dimensional
rfBm process on the convex polyhedron S, when N
first and then r, tend to infinity in this order, under
heavy-traffic. For similar heavy-traffic limits, see
Theorem 1 [2] and Theorem 1 [4].
Theorem 1. (heavy-traffic limit)
Under the heavy-traffic condition (HT) (and

r1 r2 > 1), the following limits exist in C 2:

̂̂W r
=D− limN→+∞Ŵ r,N , W =D− limr→+∞

̂̂W r
,

and W is a two-dimensional rfBm process on the
convex polyhedron S, and associated data (x =
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0, H, θ = Rγ, Γ, R), where H ∈ (1
2 , 1) is defined

by (21), γ ∈ R2 is given by condition (HT),

Γ = σ
2,lim


α2

1
µ2

1
+

α2
2

µ2
21

α2
1

µ1 µ12
+

α2
2

µ2 µ21

α2
1

µ1 µ12
+

α2
2

µ2 µ21

α2
1

µ2
12
+

α2
2

µ2
2


(25)

with σ2,lim given by Section 3.3, and R given by
(20).

Note that is p11 = p22 = 0, then R = I and
Theorem 1 provides a heavy-traffic limit for the
X−model without feedback.
Proof:
Fix r > 0. Let us first show that Proposition 1

in the Appendix can be applied to the sequence
(Ŵ r,N , X̂ r,N , V̂ r,N)N . To see this, note that the pair
(Sr,N , Rr,N) verifies conditions (A1)-(A5) [8] for
any N, which is clear from Lemma 4 (see [4] for de-
tails). It remains to prove that (Ŵ r,N , X̂ r,N , V̂ r,N)N

verifies conditions (i)-(iv) in Assumption (h) in the
Appendix for N big enough. Indeed,

(i) By (16) and (17) and applying scaling, we can
check that for all t ≥ 0, Ŵ r,N(t) ∈ Sr,N . Indeed, for
all r and for N big enough,

Ŵ r,N
1 − µ

r,N
12

µ
r,N
1

Ŵ r,N
2 =

µ
r,N
12

µ
r,N
1

(rr,N
1 rr,N

2 −1) ̂̃W r,N

2 ≥ 0,

Ŵ r,N
2 − µ

r,N
21

µ
r,N
2

Ŵ r,N
1 =

µ
r,N
21

µ
r,N
2

(rr,N
1 rr,N

2 −1) ̂̃W r,N

1 ≥ 0.

(ii) Lemma 3 gives the Skorokhod decomposition.

(iii) By (11), V̂ r,N
1 (t) can only increase if ̂̃W r,N

2 = 0,
that is, if − µ

r,N
1

µ
r,N
12

Ŵ r,N
1 +Ŵ r,N

2 = 0 by (16) and (17),

which means Ŵ r,N ∈ Fr,N
1 . Symmetrically, V̂ r,N

2 (t)

can only increase if ̂̃W r,N

1 = 0, which means Ŵ r,N ∈
Fr,N

2 .
(iv) is consequence of the weak convergence of
X̂ r,N as N→+∞, which, in turn, is a consequence
of Theorem 1 [11] and Theorem 7.2.5 [12]. Indeed,

for any j = 1, 2 , from (23) and (2) we can write

Êr,N
j (t) =

αN
j

rH L1/2(r)
1√
N

N

∑
n=1

(∫ r t

0
U (n)

j (u)du− µon

µon +µoff r t
)

and deduce the existence of the limit ̂̂Er
= D −

limN→+∞ Êr,N ,which has paths inC 2, and the exis-
tence of the limit

D− lim
r→+∞

̂̂Er
= BH , (26)

BH being a two-dimensional fBm process with data
(x = 0, H, θ = 0, diag(α)2 σ2,lim ), which is con-
dition (a) in Proposition 1. Combining (24), (HT)
and the continuous mapping theorem, according
to the above limit ̂̂Er

, we deduce the existence of̂̂X r
= D− limN→+∞ X̂ r,N , which verifies that

̂̂X r
(t) = M ̂̂Er

(t)+
r1−H

L1/2(r)
Rγ̂

rt, (27)

implying the continuity of the paths of ̂̂X r
and (iv).

Secondly, since hypothesis (b) is accomplished
by Lemma 4 and Remark 1, we can apply Proposi-
tion 1 to obtain that there exists the following limit:

D− lim
N→+∞

(
Ŵ r,N , X̂ r,N , V̂ r,N)= (

̂̂W r
,
̂̂X r
,
̂̂V r
),

and that the limit satisfies conditions (i), (ii) and (iv)
of Definition 2, that is, ( ̂̂W r

,
̂̂V r
) is a solution of the

Skorokhod Problem associated to ̂̂X r
on the convex

polyhedron S with associated matrix of directions
of reflection R. The repeated application of Propo-
sition 1 to the sequence {

( ̂̂W r
,
̂̂X r
,
̂̂V r)
}r, enables

us to complete the proof. Indeed, from (27), (26),
(HT) and the continuous mapping theorem, we can
ensure the existence of D− lim

r→+∞

̂̂X r
= X , with

X(t) = MBH(t)+Rγt, which is a two-dimensional
fBm process with associated data

(
x = 0, H, θ =

Rγ, Γ
)
, where Γ = σ2,limMdiag(α)2MT is given

by (25). Moreover, by Lemma 4 we can assert that
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(b) in Proposition 1 holds, by Remark 1, and by
Proposition 1 it follows the existence of

D− lim
r→+∞

( ̂̂W r
,
̂̂X r
,
̂̂V r)

= (W, X ,V ) ,

where the triplet (W, X ,V ) satisfies conditions (i)-
(iv) of the Definition 2.

Thus, W = X +RV is a two-dimensional rfBm
on the convex polyhedron S with associated data
(x = 0, H, θ = Rγ, Γ, R) , which is our claim. �
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Appendix: The invariance principle

Kang and Williams prove in Theorem 4.3 [8] an
Invariance Principle for Semimartingale reflecting
Brownianmotions (SRBMs) living in the closure of
a domain with piecewise smooth boundaries. This
provides sufficient conditions for a process that sat-
isfies the definition of a SRBM except for small
random perturbations in the defining conditions, to
be close in distribution to an SRBM. The version
of this result stated in [4] gives sufficient condi-
tions for validating approximations involving rfBm
processes on a convex polyhedron with a constant
reflection vector field on each face, in such a way
the approximating processes live in a sequence of
convex polyhedra.
For the convenience of the reader, we reproduce

here the invariance principle in [4] without proof,
thus making our exposition self-contained. Let
{Sn}n denote a sequence of convex polyhedra that
converges to the convex polyhedron S. The invari-
ance principle requires the following hypothesis,
which is a version of Assumption 4.1 [8]:

Assumption (h) For each positive integer n, there
are processes W n, Xn having paths in Dd and V n

having paths in C d defined on some probability
space (Ωn, F n, Pn) such that Xn(0) ∈ Sn and:

(i) Pn−a.s., W n(t) ∈ Sn for all t ≥ 0 ,

(ii) Pn−a.s., W n(t) = Xn(t)+RnV n(t)

for all t ≥ 0,

(iii) Pn−a.s., for each i = 1, . . . , d , V n
i (0) =

0,V n
i is nondecreasing and V n

i (t) =∫ t
0 1{W n(s)∈Fn

i } dV n
i (s) ,

(iv) {Xn}n is C−tight.

Proposition 1. (Invariance Principle) Sup-
pose Assumption (h) and assumptions (A1)-(A5)
[8] hold, and also that limn→+∞ Rn = R. Then,
the sequence {(W n, Xn,V n)}n is C−tight and
any (weak) limit point of this sequence is of the
form (W, X ,V ) where W, X and V are continuous
d−dimensional processes defined on some prob-
ability space (Ω, F , P), such that conditions (i),
(ii) and (iv) of Definition 2 hold, W (0) = X(0)
and V (0) = 0, that is, (W,V ) is a solution of the
Skorokhod Problem associated to X on the convex
polyhedron S with associated matrix of directions
of reflection R. If, in addition,

(a) {Xn}n converges in distribution to a d−di-
mensional fBm process with associated data
(x, H, θ , Γ) , and

(b) the Skorokhod Problem associated to X on the
convex polyhedron S with associated matrix of di-
rections of reflectionR has a unique strong solution,

thenW is a rfBm process on S with associated data
(x, H, θ , Γ, R) .
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