

Optimization Techniques for Virtual Machine Placement and Migration

SATORU OHTA

Department of Electrical and Computer Engineering,
Toyama Prefectural University,

5180 Kurokawa, Imizu-shi, Toyama 939-0398
JAPAN

ohta@pu-toyama.ac.jp

Abstract: Virtualization is widely used due to its flexibility, scalability, and cost reduction. In virtualization,
virtual machines (VM) should be placed optimally onto physical machines (PM) to reduce power consumption
and avoid resource shortages. VM placement is an intractable combinatorial optimization problem. Moreover,
optimal VM placement changes if the loads on VMs change over time. This means that load change necessitates
VM migration among PMs. Since VM migration incurs network load, migration frequency must be small. Thus,
both power consumption and the number of migrations should be minimized when determining VM placement.
This research formulates the problem and examines algorithms that solve it. The examined algorithms include
two metaheuristics, i.e., simulated annealing and tabu search methods. A method previously presented by the
author was also tested for comparison. These methods were evaluated through computer simulation.

Key-Words: virtualization; optimization; metaheuristic; cloud computing; simulated annealing; tabu search

1 Introduction
Currently, virtualization [1] is widely used as the
basis of cloud computing due to its multiple
advantages, including high flexibility, scalability,
security, and low cost [2]. Generally, in a virtualized
environment, multiple virtual machines (VM) are
hosted on a physical machine (PM). Shared
computational resources are assigned to each VM by
the host PM. However, the host PM’s resources
should not be consumed excessively for sufficient
VM performance.

Assume that multiple VMs are hosted on multiple
PMs and that the load varies among VMs. Each VM
should be allocated sufficient resources to ensure
satisfactory performance. The number of required
PMs and power requirements depend on the
placement of VMs among the PMs. Efficient
placement of VMs among PMs is a combinatorial
optimization problem that cannot be resolved easily.
In some cases, VM placement optimization is
equivalent to a bin-packing problem [3]. Thus, the
problem is NP-hard.

Optimal VM placement will change when the
loads on VMs vary over time. This requires migration
of VMs among PMs. The live migration technique
[4] enables VMs to be moved among PMs without
interrupting services. However, VM migration incurs
a load on the network. Thus, placement and migration
relative to load changes must be determined so as to
minimize power consumption and network load.

Methods to optimize VM placement and
migration have been reported in the literature [5-8].
Reference [5] attempted to minimize several
efficiency metrics. However, it is unclear whether the
objective function used in [5] is practical. The
optimization methods reported in [6, 7] minimize
power consumption. However, they do not consider
load incurred by migration. The method proposed in
the author’s previous work [8] optimizes VM
placement considering both power consumption and
network load incurred by migration. However, this
method assumes the computational capability of each
PM is identical. Optimization should consider the
heterogeneity of computational capability because
PMs may have different specifications in a real-world
environment. In addition, a solution obtained by the
author’s previously proposed method [8] may not be
sufficiently close to the strict optimum.

This study investigates VM placement and
migration optimization assuming a time-varying load,
multiple computational resources that affect
performance, and heterogeneous PM specifications.
The objective function considers power consumption
and the network load incurred by migration. This
study examines two metaheuristics, i.e., simulated
annealing and tabu search methods. These methods
are known to be effective for complex optimization
problems, such as VM placement. The previous
method [8], which has been modified for
heterogeneous PM capability, is also tested. The
algorithms are assessed through computer simulation,

Satoru Ohta
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 429 Volume 1, 2016

and the results show that the simulated annealing and
tabu search metaheuristics provide better solutions
than the method of [8].

The remainder of this paper is organized as
follows. Section 2 describes the problem. The
examined algorithms are discussed in Section 3.
Section 4 evaluates the algorithms through computer
simulation. Related work is reviewed in Section 5,
and conclusions are provided in Section 6.

2 Problem Description
Assume m VMs denoted by VM1, VM2,…, VMm.
Each VM is hosted by one of n PMs denoted by PM1,
PM2,…, PMn. The computational capability of the
PMs may vary. Consider that the computational
capability of a certain PM, for example PM1, is the
standard. Then, the computational capability of PMj
is j (1)j n times greater than that of the PM
with standard capability.

The performance of a VM depends on the
consumption of K computational resources, e.g.,
CPU, memory, and network I/O, indexed as 1, 2, …,
K. Let ui, k(t) (1 ,i m 1)k K denote the
consumption of resource k at time t assuming that
VMi runs on the standard capability PM. Note that
ui, k(t) is expressed as a percentage. If VMi is hosted
by PMj, it consumes ui, k(t)/ j % of resource k of PMj.
The load on VMi is specified by resource
consumptions ui, 1(t),…, ui, K(t).

Let Uj, k(t) denote the percentile consumption of
resource k on PMj at time t. Then, Uj, k(t) is expressed
as follows.

,
,

{ | VM is assigned to PM }

()
()

i j

i k
j k

i i j

u t
U t (1)

Resource consumption Uj, k(t) should not be
greater than that required to provide VMs with
sufficient resources to achieve good performance.
Thus, this study introduces a constant C, and the VMs
are assigned resources such that the following
constraint is satisfied.

, ()j kU t C (2)

Power consumption depends on the utilization of
computational resources [9]. Also, PMj can be turned
off (i.e., no power is consumed) if it is not hosting
any VMs. Here let Pj(t) denote the power consumed
by PMj. Power Pj(t) is expressed as follows:

, ,
,0

1

0, PM is turned off
() ()

, otherwise
100

j

K
j j k j k

j
k

P t P U t
P

 (3)

where Pj, 0 is the portion not affected by the load and
Pj, 1,…, Pj, K are the coefficients showing how the
consumption of resources 1,…, K affects the power.

The placement of VMs is expressed by a binary
variable xi, j(t) defined as follows.

,

1, if VM is placed to PM at
()

0, otherwise
i j

i j

t
x t (4)

Assume that the VM load is given at a discrete
time t0, t1, t2, … Then, the problem is to determine
xi, j(t) at t = t0, t1, t2, … such that Pj(t) and the
migration load are minimized and Eq. (2) is satisfied.

The network load incurred by migration is
roughly determined by the memory size assigned to
the VM [10]. Consequently, if memory size is
identical for each VM, the network load is
proportional to the number of migrated VMs. Here,
binary variable yi(t) for VMi and time t is used to
estimate the number of migrating VMs. At time ts (s
= 1, 2,…), yi(ts) is 1 if VMi is being migrated.
Otherwise, yi(ts) is 0. If VMi migrates to PMj, xi, j(ts)
is 1 and differs from xi, j(ts – 1). Therefore, yi(ts) for
s > 0 is expressed as follows.

, , 1() () (),i s i j s i j sy t x t x t 1 j n (5)

At t0, yi(t0) is 0 because no previous placement
exists. Let v(t) denote the number of migrated VMs.
v(t) is the sum of yi(t), which is expressed as follows.

1
() ()

m

i
i

v t y t (6)

Let x denote the vector of decision variables,
including xi, j(t), yi(t), v(t), Uj, k(t), and Pj(t). The
objective function f(x) is defined as the weighted sum
of the power consumed by the system and the number
of migrations:

1
() () ()

n

j
j

f P t w v tx (7)

where w (0)w is the weight parameter. Then, the
problem is to determine x that minimizes f(x) for a
given ui, k(ts) and xi, j(ts – 1) at time ts (0)s . This is
formulated as the following mixed integer
programming (MIP) problem:

minimize
1 1

() () ()
n m

j s i s
j i

f P t w y tx (8)

Satoru Ohta
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 430 Volume 1, 2016

subject to
, ,

,
1

() ()
()

m
i k s i j s

j k s
i j

u t x t
U t C ,

1 ,j n 1 k K (9)

,
1

() 1,
n

i j s
j

x t 1 i m (10)

, , 1() () (),i s i j s i j sy t x t x t 1 j n (11)

, ,
,0 ,

1 1

()
() ()

100

m K
j k j k s

j s j i j s
i k

P U t
P t P x t ,

1 j n (12)

where s > 0. When s = 0, the restriction of Eq. (11) is
omitted and yi(t0) is set to 0. This means that
migrations do not need to be considered when the
initial placement is determined at t0.

In the above formulation, Eq. (9) is equivalent to
Eqs. (1) and (2). Thus, the equation represents a
restriction that avoids resource shortage. Eq. (10)
requires all VMs to be placed on a PM. Eq. (11) is the
same as Eq. (5) and determines the number of
migrations. Eq. (12) is an alternate expression of
Eq. (3), i.e., it is derived by rewriting Eq. (3) using
xi, j(ts). This equation determines the power
consumption of a PM.

3 Algorithms
3.1 Greedy Method for Initial Placement
The two metaheuristics examined in this study
require an initial solution, which is obtained using a
greedy algorithm. For a given ui, k(t), the greedy
algorithm assigns VMs to their hosts as follows.

Algorithm Greedy-Fit
1. Uj, k(t):= 0 for all (j, k);
2. V:= set of all VMs;
3. while V Ø do
4. max:= – ;
5. for each pair of VMi in V and PMj do
6. U*

k:= Uj, k(t) + ui, k(t)/ j for all k;
7. Compute Pj for resource consumption U*

k;
8. Compute efficiency metric ej;

9. if ej > max then
10. max:= ej;
11. VMbest:= VMi;
12. PMbest:= PMj;
 end if
 end for
13. Assign VMbest to PMbest;
14. V:= V – {VMbest};
 end while

The efficiency metric ej is defined for PMj as
follows:

*
1

KK
j kk

j
j

U
e

P
, (13)

where U*
k is the tentative resource utilization

obtained assuming VMi is assigned to PMj. With this
metric, a placement that achieves low power
consumption, higher resource utilization, and higher
performance has higher priority. Thus, a good
solution is expected by determining VM placement
such that efficiency metric ej is maximized.

3.2 Previous Method [8]
The first examined method is a modified version of
the algorithm described in [8]. This method
calculates VM placement at time ts by modifying ts – 1
using two types of migration.

 Type 1: migration that avoids overload

 Type 2: migration that reduces power
consumption by deploying VMs onto as few PMs
as possible

The solution at t0 is found by the Greedy-Fit
algorithm. At t1, t2, …, the algorithm selects the
source PM, destination PM, and VM to be moved by
evaluating the efficiency metric for the migration.
Specifically, in Type 1, the metric difference caused
by migration is estimated for all possible
combinations of an overloaded source PM, a
destination PM with spare resource capacity, and a
VM hosted by the source PM. Then, migration is
performed for the combination that maximizes the
metric difference. This is repeated until overload is
eliminated from all PMs. In Type 2, the metric
increase is estimated for all combinations of a source
PM, a destination PM, and a VM hosted by the source
PM. Again, the migration is executed such that the
metric increase is maximized. This is repeated until
no combination can increase the metric.

The efficiency metric employed in this study is
slightly different from that used in [8] in order to
assess heterogeneous PM performance. In other
words, PM and VM selection is performed using the
metrics in Eq. (13).

3.3 Simulated Annealing
Simulated annealing [11] is a powerful metaheuristic
for solving complex optimization problems. This
method repeatedly updates a solution by searching a
neighborhood of the current solution. In the update
process, the neighborhood solution is accepted as a
new solution if the objective function decreases. The

Satoru Ohta
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 431 Volume 1, 2016

neighborhood solution is accepted with some
probability p even when the objective function
increases. Here, let T denote the parameter that
controls p. This parameter is called temperature.
Moreover, let xn°w and xbest be the decision variables
of the current solution and the best discovered
solution, respectively. The method is then described
as follows.

Algorithm Simulated-Annealing
1. xbest:= xn°w:= the output of Greedy-Fit;
2. T:= T0;
3. for q:= 1 to Q do
4. if q = Q1 or Q2 then T:= T1;
5. while the system is not in equilibrium do
6. xnext:= neighborhood of xn°w;
7. if f(xnext) < f(xbest)
8. then xbest:= xn°w:= xnext
9. else with probability p, xn°w:= xnext;
 end while
10. T:= T;
 end for
11. Output xbest and f(xbest);

In the algorithm, Q1 and Q2 are integers, where
Q1 < Q2 < Q, parameter is a real number, where
0 < < 1, T0 is a positive constant, and T1 is a
constant, where T1 < T0.

The method enables the solution to escape a local
minimum by allowing the tentative solution to
become degraded. The acceptance probability p for
the objective function increase is defined by the
increase rate of the objective function f and
temperature T.

/f Tp e (14)

The increase rate f is defined as follows.
next now

now

() ()
()

f ff
f

x x
x

 (15)

Temperature T is first set to a large value T0. The
process is then repeated with decreasing T. Thus, the
acceptance probability p also decreases, as implied
by Eq. (14). As step 10 suggests, T is decreased
gradually with the completion of steps 5-9. In other
words, the system is cooled after it reaches
equilibrium. A near-optimal solution is obtained
when T becomes sufficiently low.

A neighborhood solution xnext is generated from
xn°w by randomly executing one of the following
methods.

 Method 1: A VM is selected randomly. A PM is
then selected randomly from the PMs not hosting

the selected VM in xn°w. Subsequently, xnext is
created by reassigning the VM to the selected PM.

 Method 2: Two VMs hosted by different PMs are
chosen randomly from xn°w. Then, xnext is created
by exchanging the PMs for these VMs.

 Method 3: Two VMs hosted by different PMs are
chosen randomly from xn°w. A PM that differs
from the hosts is also selected randomly. Then,
xnext is generated by reassigning the first VM to
the PM that hosts the second VM and reassigning
the second VM to the third PM.

In a simulation, the probabilities of selecting
Methods 1, 2, and 3 were tuned to 0.5, 0.2, and 0.3,
respectively. The state for each value of T was
considered to be in equilibrium if the neighbor
solution is accepted X times or unaccepted Y times.
Initial temperature T0 was set to 0.07 in the
simulation. Parameters X, Y, , and Q were set to
100mn, 400mn, 0.995, and 3000, respectively.

In the above algorithm, step 4 provides a “re-
annealing” process. This process increases the
temperature to T1 after the system is cooled
sufficiently. Then, the cooling process is resumed
from temperature T1. The behavior of the temperature
is shown in Fig. 1.

Fig. 1 Temperature behavior employed in the
simulated annealing method

In the re-annealing process, parameters Q1 and Q2
determine when the temperature increases to T1. Here,
the values of Q1, Q2, and T1 were tuned to 1200, 2100,
and 0.015, respectively. The re-annealing process is
considerably effective at improving solution
goodness without increasing computational time.

3.4 Tabu Search

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1000 2000 3000

Te
m

pe
ra

tu
re

, T

Number of Repetitions, q

q = Q1 q = Q2

T1

Satoru Ohta
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 432 Volume 1, 2016

Tabu search [12] is another powerful metaheuristic
used for optimization problems. This method updates
a solution repeatedly by searching a neighborhood of
the current solution. The update is performed
according to a rule that is determined to effectively
search the solution space. In other words, recently
examined variable changes are recorded in a “tabu”
table and then avoided. The frequency at which a
variable changes is also considered, and infrequent
changes have higher priority. Even for a change that
does not satisfy these rules, the neighborhood
solution is accepted only if it improves the solution.
The algorithm is written as follows.

Algorithm Tabu-Search
1. xbest:= xn°w:= output of Greedy-Fit;
2. for r:= 1 to R do
3. G1:= {x | neighborhood of xn°w and x satisfies the

rule};
4. G2:= {x | neighborhood of xn°w and x does not satisfy

the rule};
5. xn°w:= x that minimizes f(x) for x in G1;
6. if f(x) < f(xbest) and f(x) < f(xn°w) for some x in G2

then xn°w:= x;
7. if f(xn°w) < f(xbest) then xbest:= xn°w;
 end for
8. Output xbest and f(xbest);

In this study, steps 3 and 4 are executed by
randomly selecting one of the following methods at
equal probability.

 Method 1: Sets G1 and G2 are constructed by each
pair of VMi and PMj that does not host VMi in xn°w.
For each pair, x is obtained by reassigning VMi to
PMj. Solution x is added to G2 if VMi is listed in
the tabu table or the frequency of assigning VMi
to PMj exceeds a threshold. Otherwise, x is added
to G1.

 Method 2: A neighborhood is found by each pair
of VMs hosted by different PMs in xn°w. For such
a pair, x is obtained by changing the hosting PMs.
Solution x is added to G2 if the VMs are included
in the tabu list. Otherwise, x is added to G1.

The tabu table and frequency are updated after
steps 3-7 are completed. The tabu table used in
Method 1 lists the VMs recently used to create the
new solution. Its size is denoted by S1. The tabu table
of Method 2 also lists the VMs affected in the
recently accepted neighborhood solution. The size is
denoted by S2. In Method 1, let variable Fi, j and R1
denote the frequency of reassigning VMi to PMj and
the frequency of executing the method, respectively.

The frequency criteria for creating G1 is expressed as
follows:

1
1, ,i j

RF
mn

 (16)

where is a constant and is the smallest integer
not less than . The probability of randomly selecting
a combination of VMi and PMj is (mn)–1. Thus,
Eq. (16) omits the combination of VMi and PMj from
G1 if it has been used times more frequently for a
new neighborhood than the average.

Parameters S1, S2, , and R were tuned to 7, 8, 2.6,
and 6 106, respectively, in the simulation.

4 Evaluation
The optimization algorithms were evaluated through
a computer simulation, and the algorithms were
executed for randomly generated problems. The
solutions obtained by each algorithm were then
compared.

The simulation model is specified as follows. The
number of VMs, m, was 40 and the number of PMs,
n, was 20. The number of computational resources
was two, and constant C was set to 90. The
performance parameter j and power coefficients Pj, k
for PMj were set as shown in Table 1.

Table 1 PMj parameters
Range of j j Pj, 0 Pj, 1 Pj, 2

1 5j 1.0 80.0 40.0 10.0
6 10j 1.5 120.0 60.0 20.0

11 20j 1.0 120.0 60.0 20.0

The load on the VMs was provided at times t0,
t1, …, t14, and VM placement was determined for
these times. The load on VMi was specified by ui, k(t).
The base value denoted by ũi, k was used to determine
ui, k(t). This base value is an integer randomly
selected in the range [1, 50] for each pair of i and k
with equal probability. Load ui, k(t) was then
determined as summarized in Table 2.

Table 2 VM resource consumption
VMs ui, k(t)

VM1, …, VM20
Randomly selected integer
from [1, ũi, k]

VM21,…, VM40
ũi, k, for t5, t6, …, t9
ũi, k / 2, otherwise

Thirty problems were generated by changing the
random seed for ũi, k and ui, k(t). The algorithms

Satoru Ohta
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 433 Volume 1, 2016

described in Section 3 were programmed in the C
language and executed for the generated problems.
The programs were executed on a Linux (CentOS 7)
PC with a Core i5 CPU and 16 GB RAM.

The generated problems were also solved by
optimization software [13] for comparison. This was
performed by formulating each problem as a MIP
problem according to Eqs. (8)-(12) and feeding it to
GAMS/CPLEX [14], which runs on the Microsoft
Windows operating system.

Fig. 2 compares the objective function value
obtained for each method. Here, the x axis is the
weight parameter w and the y axis is the objective
function value. The value is the average of the sum
for t0, t1, …, t14 over 30 problems.

Fig. 2 Objective function values

Fig. 2 clearly shows that the simulated annealing
and tabu search methods provide good solutions that
are very close to those obtained by MIP. These
metaheuristics are superior to the algorithm of [8]
relative to solution goodness. The tabu search method
provides better solutions when 10,w whereas the
simulated annealing method is superior when 15w .
Thus, it is inconclusive which metaheuristic is more
advantageous. The best method should be determined
by considering whether power or network load is
more important.

Fig. 3 plots power consumption against the
number of migrations for different w values. The
power consumption and the number of migrations are
the average of the sum for t0, t1, …, t14. As can be seen,
the number of migrations is greater for the simulated
annealing method to obtain smaller power
consumption (i.e., a smaller w value). This method
yields worse solutions than the MIP and tabu search
methods for small w values due to this characteristic.
In contrast, the simulated annealing method yields a

solution that is very close to that of the MIP approach
when w is large. However, the reason for this
behavior remains unclear. Thus, further study is
required to examine this problem.

Fig.3 Relation between power consumption and
number of migrations

Table 3 compares computational time. The
computational time was measured using the Linux
"time" command for the execution of each
algorithm. The time is the average over 15 time
periods for 30 problems. As can been seen, the
computational time is much greater for the simulated
annealing and tabu search methods than the method
proposed in [8]. However, the time is acceptable
when the placement interval is greater than several
minutes. Note that the computational time for a single
time period for the MIP approach is longer than three
hours for some problems. Thus, the assessed
metaheuristics are more advantageous and practical
than the MIP approach relative to computational time.

Table 3 Average computational time to obtain a
solution for a single time period

Method of [8] Simulated
annealing Tabu search

0.000311 s 123.34 s 53.15 s

5 Related Work
VM placement and migration optimization has been
reported in several studies [3, 5-8, 15-17]. Reference
[3] explored multiple aspects of the problem, i.e.,
demand characteristics, a benefit evaluation of
dynamic VM placement, demand forecasting, and the
placement algorithm. The algorithm proposed in [3]

12000

13000

14000

15000

16000

17000

18000

0 5 10 15 20 25 30

O
bj

ec
tiv

e
Fu

nc
tio

n
Va

lu
e

Weight Parameter, w

MIP
Method of [8]
Simulated Annealing
Tabu Search

13000

13500

14000

14500

15000

15500

16000

16500

0 50 100 150 200 250

Su
m

 o
f P

ow
er

 C
on

su
m

pt
io

n
[W

]

Number of Migrations

MIP

Method of [8]

Simulated Annealing

Tabu Search

w = 1

w = 30

Satoru Ohta
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 434 Volume 1, 2016

attempts to reduce the number of PMs and satisfy a
given service level agreement.

The method proposed in [5] considered
temperature, performance, and power efficiency
metrics. That method determines initial and dynamic
VM placement to maximize the utility function that
combines these metrics. The considered
computational resources include a CPU, I/O, and a
network. However, the validity of their utility
definition is unclear.

Reference [6] presented a VM placement
optimization method assuming heterogeneous power
consumption and computational capability
represented by MIPS (million instructions per
second). The objective of this optimization is to
minimize only power consumption. Thus, the method
does not consider the network load incurred by
migration. Moreover, the method considers CPU
utilization as the sole computational resource.
However, other resources can influence performance.

Reference [7] applied the ant colony heuristic to
the VM placement problem. Similarly, this method
did not consider the network load incurred by
migration.

The author’s previous research [8] attempted to
optimize both power consumption and migration load.
However, the method assumes uniform
computational capability for all PMs. In addition, the
employed algorithm does not necessarily provide
good solutions compared to the MIP approach.

Some studies have dealt with optimal VM
placement from a quite different perspective. For
example, the purpose of [15, 16] is to determine VM
placement that minimizes data access latency. In
these studies, the power consumption and load by
migration were not considered even though they are
practically important.

Reference [17] considered average power
consumption and wastage balance between the CPU
and memory. However, this may not be relevant
because it is not always necessary to consume two
resources equally to obtain good performance or less
power consumption. In addition, in some cases, the
performance of a system can depend on three or more
resources, e.g., CPU, memory, and network I/O. It is
unclear how the method in [17] treats such cases.

6 Conclusion
This study has investigated algorithms to optimize
the placement and migration of VMs among PMs.
The algorithms determine placement and migration
to minimize cost assuming PMs have heterogeneous
power consumption and computational performance.
In this study, cost was defined by the weighted sum

of power and the number of migrations. The
examined algorithms included the method proposed
in [8] and two metaheuristics, i.e., simulated
annealing and tabu search methods. These methods
were evaluated in a computer simulation. The
simulation results demonstrate that the
metaheuristics obtained better solutions than the
previously proposed method.

Acknowledgment
The author would like to thank Takuma Iwami for
parameter tuning of metaheuristics. The author
would also like to thank Enago (www.enago.jp) for
the English language review.

References:
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauery, I. Pratt, and A.
Warfield, “Xen and the art of virtualization,” in
Proc. SOSP’03, Bolton Landing, New York,
USA, 2003, pp. 164-177.

[2] J. Sahoo, S. Mohapatra, and R. Lath,
“Virtualization: a survey on concepts, taxonomy
and associated security issues,” in Proc. ICCNT
2010, Bangkok, Thailand, 2010, pp. 222-226.

[3] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic
placement of virtual machines for managing
SLA violations,” in Proc. IM’07, Munich,
Germany, 2007, pp. 119-128.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E.
Jul, C. Limpach, I. Pratt, and A. Warfield, “Live
migration of virtual machines,” in Proc.
USENIX NSDI’05, Boston, MA, USA, 2005, pp.
273-286.

[5] J. Xu and J. A. B. Fortes, “A multi-objective
approach to virtual machine management in
datacenters,” in Proc. ICAC’11, Karlsruhe,
Germany, 2011, pp. 225-234.

[6] D. G. D. Lago, E. R. M. Madeira, and L. F.
Bittencourt, “Power-aware virtual machine
scheduling on clouds using active cooling
control and DVFS,” in Proc. MGC2011, Lisbon,
Portugal, 2011.

[7] S. R. M. Amarante, F. M. Roberto, and A. R.
Cardos, “Using the multiple knapsack problem
to model the problem of virtual machine
allocation in cloud computing,” in Proc. IEEE
CIT 2013, Sidney, Australia, 2013, pp. 476-483.

[8] S. Ohta, “Strict and heuristic optimization of
virtual machine placement and migration,” in
Proc. WSEAS CEA’15, Dubai, UAE, 2015, pp.
42-51.

Satoru Ohta
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 435 Volume 1, 2016

[9] S. Ohta, “Obtaining the knowledge of a server
performance from non-intrusively measurable
metrics,” International Journal of Engineering
and Technology Innovation, Vol.6, No.2, 2016,
pp. 135-151.

[10] T. Tanabe and S. Ohta, “Experimental
evaluation of network load caused by live
migration,” in Proc. 2015 Joint Conference of
Hokuriku Chapters of Electrical Societies,
Nonoichi, Japan, 2015, E-31 (in Japanese).

[11] S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi,
“Optimization by simulated annealing,” Science,
Vol.220, No.4598, 1983, pp. 671-680.

[12] F. Glover, “Tabu search: a tutorial,” Interfaces,
Vol.20, No.4, 1990, pp. 74-94.

[13] J. J. More and S. J. Wright, Optimization
Software Guide, Philadelphia: SIAM, 1993.

[14] GAMS, https://www.gams.com, 2017.
[15] M. Alicherry and T. V. Lakshman, “Optimizing

data access latencies in cloud systems by
intelligent virtual machine placement,” in Proc.
IEEE INFOCOM 2013, Turin, Italy, 2013, pp.
647-655.

[16] J. Kuo, H. Yang, and M. Tsai, “Optimal
approximation algorithm of virtual machine
placement for data latency minimization in
cloud systems,” in Proc. INFOCOM 2014,
Toronto, ON, Canada, 2014, pp.1303-1311.

[17] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A
multi-objective ant colony system algorithm for
virtual machine placement in cloud computing,”
Journal of Computer and Systems Science,
Vol.79, No.8, 2013, pp. 1230-1242.

Satoru Ohta
International Journal of Mathematical and Computational Methods

http://www.iaras.org/iaras/journals/ijmcm

ISSN: 2367-895X 436 Volume 1, 2016

