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Abstract: - In computer simulation of baseball gaming, we deal with selection of strategies by applying Nash 
equilibrium (NE) and Pareto efficiency (PE). NE and PE, each supports that selection of strategies is in a non-
cooperative or a cooperative aim, respectively. During a baseball game, each one of these aims has a relevant 
meaning on the manager’s decision making, as we showed from the results of computer simulation. In order to 
apply these techniques for making strategic choices, the utility function for the strategy profiles selection is 
constructed based on empirical baseball data. A complementary issue on baseball computer simulation is the 
team formation: By applying the Hungarian method (HM) guarantees that the selection of each player is done 
by regarding her contribution to the team’s improved performance, as an assembling of abilities, beyond his 
individual qualification [1]. The results from computer simulation tests hint that the use of HM for team 
formation combined with the use of NE or PE for the selection of strategies, lead to the team’s enhanced 
performance in a match. Furthermore, the performance of teams diminishes when only use NE or PE without 
using the HM. 

Key-Words: - Baseball gaming, team formation, Hungarian method, strategic choices, Nash equilibrium, Pareto 
efficiency. 
 
1 Introduction 
Analysis of baseball game has been made from 
diverse perspectives: medical and health [2], 
psychological-emotional [3], specific players’ 
performance [4], or on the best team formation 
regarding the available players and their skills [1]. 
Baseball is the same cooperative game from 
manager’s perspective, as well as  non-cooperative 
game from players’ perspective [5]. The non-
cooperative games formal account is used on multi-
robot formal planning [6]; as well, as part of the 
methodology that support multi-player games 
mathematical modeling [7, 8]. On a broad 
perspective the formal modeling of games is 
relevant on engineering for computer process 
simulation [7], or in economy for price-based 
coordination on hierarchical systems [9], among a 
lot of other fields. Complementary, concepts form 
engineering like the many valued quantum 
computation is applied for modeling the games’ 
dynamics [10]; or concepts of economy like the 
modeling of the gross-domestic product is taken as 
an ordinary differential game of pursuit, or as a 

hereditary game [11]. Furthermore, sophisticated 
analysis on convergence and computational 
complexity on Lyapunov (repeted) games is graph 
theory analyzed [12]. 

Focus on baseball gaming, new forms of 
calculating player’s valuations have changed 
practices on management or entertainment in MLB 
[3]. Neuromuscular control and stiffness regulation 
strategies in healthy collegiate baseball players are 
basically for adaptations to the throwing arm of 
baseball players [2]. The performance space of 
MLB pitchers using a Data Envelopment Analysis 
(DEA) is on a large dataset to identify their revealed 
preferences or strategies by using historical and 
modern observations [4]. A network DEA model for 
evaluating the relative efficiency of each member of 
a set of organizational units is applied to MLB with 
the aim of detecting inefficiencies that are missed by 
the simpler DEA models [13]. However, insufficient 
analysis of the selection of strategies has been 
conducted so far. Game Theory formal methods are 
essential to this analysis. Equilibrium is the 
mathematical formalism to deal with complex 
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decision-making that involves the aims and 
intentions of members of groups having specific 
skills and/or tasks to deploy in a collective project. 
Analysis of strategies by means of applying 
equilibriums is the point of this paper.  

Multi-player game modeling is highly complex, 
and the strategic analysis of games such as baseball 
should include a huge number of parameters for 
automated decision-making support. In a baseball 
match, selection of the best team to play is essential 
to achieve good results. According to the Hungarian 
method, the optimal team is obtained by assigning 
the baseball positions not necessarily to the players 
having the highest score for those positions, but in 
such a way that, from the all players-positions 
assigned, the emerging team guarantees the 
optimum playing performance [1]. The team 
formation must consider not only each player’s 
individual skills, but also each one’s contribution in 
the assigned position for the best team performance. 
To deal with the assignment of baseball positions 
the Hungarian method [14, 15] combined with Britz 
and Maltitz’s methodology [1], offers the best 
choice. In addition, for baseball strategic analysis 
we use the Nash equilibrium and/or the Pareto 
efficiency. The combination of the best team in the 
field with the selection of strategies by some or both 
of these techniques supports the analytical 
comparison of the performance of the teams, and 
this is the purpose of this proposal.  

The Hungarian method (HM) is a prime method 
to solve the problem of the optimized assignment of 
a set of individuals to a set of tasks, such that the 
total cost of this assignation is minimal, by 
following the approaches of Kuhn [14], Munkres  
[15] and Jacobi [16]. Kuhn's work was based on the 
work of Hungarian mathematicians D. König and E. 
Egervary, hence the name of the algorithm. The 
problem is how best to assign a group of resources, 
sometimes people, to a set of tasks. Mapping this 
problem into our analysis means determining how to 
assign a set of players to a set of baseball positions 
in such a way that the team formed achieves the best 
performance. In [1] HM was applied to assess the 
abilities of baseball players in all practical aspects of 
the sport and to form a team in which all the players 
are assigned to positions such that the collective 
team skill is maximized.  

Baseball is a multi-player game, played on a 
diamond-shaped field, two teams confronted during 
the nine ordinary innings of the match; an inning is 
complete when both teams have played the 
offensive and defensive role; the offensive role goal 
is to score runs while the defensive role is to record 
3 outs of the adversary; extra innings are allowed 

when the match score is tied at the ninth inning. The 
team that scores more runs at the end of the match is 
the winner [17, 18].  

Beyond baseball team formation, HM usefulness 
has been proved on a diversity of applications. A 
feasible envy-free and bidder-optimal outcome for 
settings with budgets on matching markets, uses 
HM to find out solutions in polynomial time [19]. In 
[20], a clustering algorithm uses HM to solve the 
problem of minimal-weight cycle cover that is late 
use as the basic building block of their clustering 
algorithm. A genetic algorithm uses HM to 
minimize the total distance that a salesman should 
use to travel by finding the shortest route [21]. HM 
is also applied to solve manufacturing scheduling 
problems, so generate efficient schedules for not 
complicated machine constraints and scheduling 
horizons are long enough compared with lengths of 
jobs [22].  

In our present analysis, the use of HM for 
assigning baseball player-positions pays especial 
attention to the statistics of pitching, batting and 
fielding to measure the abilities of the players such 
that the emerging team guarantees the optimum 
playing performance. In addition we use the Nash 
equilibrium and the Pareto efficiency for selection 
of strategies in baseball gaming. According to the 
results of computer simulations, the team selected 
by HM and using the Nash equilibrium produces the 
best team performance compared with using any 
other combination of techniques. Based on the 
correct and real occurrence of the plays in a baseball 
match [5], we apply the team selection module by 
the HM [1] along with the selection of strategies by 
NE or PE, as illustrated in Fig 1. 
 

 
Fig.  1. Integrated approach for improving baseball 
gaming performance 
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The rest of the paper is organized as follows: 
Section 2 concerns the Game Theory formal 
methods we use for the analysis of team 
performance. Section 3 describes the selection of 
strategies by the Nash equilibrium or the Pareto 
efficiency. Section 4 shows the comparison of 
baseball teams’ performance, using the HM for team 
formation jointly with the selection of strategies. 
Section 5 presents a discussion and the paper closes 
with conclusions.  
 
 
2 Baseball Gaming and Positions 
Assignment  
 
 
2.1 Baseball Formal Modelling 
In [5, 8], the automation of baseball gaming 
comprises the basic and compound defense or 
offence plays by 𝑖𝑖 player; baseball basic plays are 
weighted and the total is ordered regarding the 
frequency of their occurrence from MLB (Major 
League Baseball) statistics, e.g., strike  occurs more 
frequently than hit, being precision weighted from 
our own computer simulation matches; the formal 
grammar rules set the generation of any simple or 
complex baseball gaming description, including a 
whole match; the baseball formal language is read 
by the associated finite state machine (FSM), hence 

any simple or complex baseball expression is 
formally correct; the occurrence of plays is in a 
realistic manner such that the higher the frequency 
of occurrence of a play in real human matches, the 
higher the probability that the play is included in the 
formal account and simulation of the match; the 
FSM for baseball is modeled like a shape-of-field: 
the home, 1st, 2nd and 3rd bases are modeled as the 
FSM states. 

The generator of baseball plays produces correct 
strings of sequence of moves by regarding the 
baseball rules; as well, each baseball plays should 
occurred according to the average frequency of 
occurrence in real life games, so consistent with 
reality. The generator of strings works once having 
the baseball play to perform, it has to concatenate 
with the previous plays at the right end of a string, 
also indicating the player who performs. The empty 
string (𝜀𝜀) is for the beginning of a match simulation. 
Formal grammar, FSM and the generator of random 
plays are the algorithmic basis for this baseball 
automation that attains similar scores to human 
teams’ matches in real life. 

 
 

2.2 Player-position for the best team 
To select the most effective baseball team, in [1] a 
methodology for tests to evaluate each player’s 
skills is proposed, as summarized in Table 1.  
 

 
Table 1. Britz and Maltitz’s methodology 
Methodology to measure baseball players’ skills 
Step 1: Normalize the statistical data to determine the lowest and upper value for each test  
t̂, t̂  =  1 … t.  The relative score for each observation  i, i = 1 … n, in test t̂  is a transformation of 
the absolute value. 
Step 2: Once all the tests scores have been normalized, we obtain a matrix Tn×t with the relative 
scores; n is the number of players and t is the number of tests. 
Step 3: We define a weight vector for each baseball position such that it ponders its relationship 
with each test t̂ .  These vectors comprise the matrix  Wt×k , where k is the number of baseball 
positions. 
Step 4: With the matrices T and W, we obtain the relationship between each player and each 
position that is given by the cost matrix Cn×k = Tn×t × Wt×k. 
 
The solution is obtained by finding the combination 
of values in 𝐶𝐶 that maximizes the efficiency, subject 
to certain constraints: 
− Select exactly one value for each column, to 

ensure that each position is assigned to a player. 
− Select at most one value for each row, to ensure 

that no player is assigned to more than one 
position. 

 

The team efficiency is defined mathematically as 
follows (1): 

              arg max
𝑥𝑥𝑖𝑖𝑗𝑗

� 𝑐𝑐𝑖𝑖𝑗𝑗

𝑛𝑛

𝑖𝑖,𝑗𝑗=1

𝑥𝑥𝑖𝑖𝑗𝑗                                    (1) 

 
𝑥𝑥𝑖𝑖𝑗𝑗 ∈ {0,1}, when 𝑥𝑥𝑖𝑖𝑗𝑗 = 1if player 𝑖𝑖 is assigned to 
the baseball position 𝑗𝑗 and 0 otherwise. Subject 
to ∑ 𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 1𝑛𝑛

𝑖𝑖=1 , 𝑗𝑗 = 1, … ,𝑛𝑛 and to ∑ 𝑥𝑥𝑖𝑖𝑗𝑗 =𝑛𝑛
𝑗𝑗=1

1, 𝑖𝑖 = 1, … ,𝑛𝑛. 
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For baseball player-positions assignment, the 
HM uses the cost matrix 𝐶𝐶 obtained by Britz and 
Maltitz’s methodology to find the optimal 
assignment such that it maximizes the baseball team 
efficiency. The main steps of the algorithm for 
player-positions assignment are in Table 2. 
 
Table 2. The algorithm of Hungarian method for 
baseball player-positions assignment 
Algorithm 
Step 1: For each row of the cost matrix 𝐶𝐶, subtract 
the smallest element from each element of that row. 
Step 2: For each column, subtract the smallest 
element from each element of that column. 
Step 3: Draw lines through columns and rows so 
that all the zeros of the matrix 𝐶𝐶 are covered with 
the minimal number of lines. 
Step 4: If 𝑘𝑘 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑛𝑛𝑟𝑟𝑜𝑜𝑤𝑤, 𝑛𝑛𝑐𝑐𝑜𝑜𝑙𝑙) is the number of 
lines covered, the zeros provide a unique complete 
assignation set. Otherwise, an optimal assignment of 
zeros is not even possible, so go to step 5. 
Step 5: Find the smallest element not covered by 
any lines. Subtract this element from each 
uncovered row, and then add it to each covered 
column. Return to step 3. 
 

The next section describes the selection of 
strategies to combine with the best team formation 
explained above.  

 
 

3 Equilibrium for Selection Strategies  
The mathematics for the formal description of the 
Nash and the Pareto efficiency, both used for 
baseball selection of strategies, follows. 

 
3.1 Normal Formal Game 

Let 𝑃𝑃 = {1, … ,𝑛𝑛} be the set of players, 𝑖𝑖 ∈ 𝑃𝑃,
𝑎𝑎𝑥𝑥 𝑖𝑖 ∈  Σ𝑖𝑖  be an element of the set of simple plays, 
and 𝑠𝑠𝑥𝑥 𝑖𝑖 be a strategy of player 𝑖𝑖 , 𝑠𝑠𝑥𝑥 𝑖𝑖 ∈  S𝑖𝑖 ; let 
𝐺𝐺 = (𝑆𝑆1, … , 𝑆𝑆𝑛𝑛 ;𝑢𝑢1, … ,𝑢𝑢𝑛𝑛  ) be the game in normal 
form  [23] where:  
• A strategy is a sequence of actions 𝑠𝑠𝑥𝑥 𝑖𝑖 =

𝑎𝑎1
𝑖𝑖 …𝑎𝑎𝑛𝑛 𝑖𝑖 . 

• A strategy profiles is (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) an n-tuple of 
strategies one strategy per player. 

• S𝑖𝑖  is the set of strategies for the 𝑖𝑖𝑡𝑡ℎ  player.  
• {𝑆𝑆1, … , 𝑆𝑆𝑛𝑛} is the set of all the S𝑖𝑖   strategies. 
• {𝑢𝑢1, … ,𝑢𝑢𝑛𝑛} is the set of all payoff functions; one 

per player. 
• 𝑢𝑢𝑖𝑖  (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) = 𝑟𝑟,  𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) ∈ 𝑆𝑆1 ×

 … × 𝑆𝑆𝑛𝑛 , 𝑟𝑟 ∈ ℝ. 
 
3.2 Nash equilibrium and Pareto efficiency 
The Nash equilibrium [23] is a widely used 
mathematical concept, especially in the modeling of 
non-cooperative games. To identify the strategy 
profiles that fit the condition of Nash equilibrium, 
every strategy profile is evaluated with the payoff 
functions of the players, and the chosen profiles are 
those that for every player it is the options that 
produces less loss for each, individually, in a non-
cooperative way. For mathematical definition, let 
𝑠𝑠1
∗, … , 𝑠𝑠𝑛𝑛∗ and 𝑠𝑠𝑖𝑖∗ the each non-cooperative 

player’s strategies from 𝑖𝑖 to the 𝑛𝑛 − 1 other players’ 
strategies, so (𝑠𝑠1

∗, … , 𝑠𝑠𝑖𝑖∗, … , 𝑠𝑠𝑛𝑛∗) fits the Nash 
equilibrium condition if and only if maximizes the 
payoff function in equation (2):  

 
𝑢𝑢𝑖𝑖( 𝑠𝑠1

∗, … , 𝒔𝒔𝒊𝒊∗ , … , 𝑠𝑠𝑛𝑛∗) ≥  𝑢𝑢𝑖𝑖( 𝑠𝑠1
∗, … , 𝒔𝒔𝒊𝒊 , … , 𝑠𝑠𝑛𝑛∗)  

∀𝑖𝑖 ∈ 𝑃𝑃, 𝒔𝒔𝒊𝒊  ∈ 𝑆𝑆𝑖𝑖                                                     (2) 
 
Every strategy profile is each payoff function 

valued and compared with all of the others to 
determine whether or not it is dominated. Given a 
strategy profile 𝑥𝑥1 for each player 𝑖𝑖, the strategy 
profile is modified by altering the player’s current 
strategy whilst keeping the strategies of the other 
𝑛𝑛 − 1 players unchanged; if any deviation from 𝑥𝑥1  
evaluated by 𝑢𝑢𝑖𝑖  dominates, that means, the player 
𝑖𝑖’s profit is higher by 𝑢𝑢𝑖𝑖  (𝑥𝑥2)  then 𝑥𝑥1 is a 
dominated by 𝑥𝑥2 profile and 𝑥𝑥1 is discarded. All the 
dominated profiles are discarded and the non-
dominated profiles fit the Nash equilibrium. Any 
game in (finite) normal form has at least one 
strategy profile that fits the Nash equilibrium [23]. 
Observe that in NE every player is applying a non-
cooperative perspective – less bad for him regarding 
the other players’ strategies. The non-dominated 
strategy profiles, is got by the algorithm which 
rough coding is in Table 3.  

 
Table 3. Nash equilibrium algorithm for selection of strategies in baseball gaming 
Input each strategy profile and its payoff value 
1:for all 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) strategy profiles 
2:  for all player 𝑖𝑖 = (1, … ,𝑛𝑛) 
3:    if 𝑥𝑥 is labelled as non-dominated   
4:      Do the derivations in 𝑥𝑥 for player 𝑖𝑖 
5:      if 𝑥𝑥 is dominated by at least one derivation of 𝑖𝑖 
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6:         labeled 𝑥𝑥 as dominated, move to the next strategy profile 
7:      end if 
8:    end if  
9:    else move to the next strategy profile 
10:  end for 
11:end for 
 
In a broad perspective to deal with valuations on 

strategy profiles for multiple players, definition of 
Pareto dominance follows: a vector �⃗�𝑣 = (𝑣𝑣1, … , 𝑣𝑣𝑘𝑘) 
is said to dominate �̿�𝑣 = (�̅�𝑣1, … , �̅�𝑣𝑘𝑘) if and only if �⃗�𝑣 
is at least partially better off than �̿�𝑣, formally in (3) 
[24]. 

 
 ∀𝑗𝑗 ∈ {1, . . . ,𝑘𝑘}, 𝑣𝑣𝑗𝑗 ≥ �̅�𝑣𝑗𝑗  ∧ ∃𝑖𝑖 ∈ {1, . . . ,𝑘𝑘}:𝑣𝑣𝑖𝑖 > �̅�𝑣𝑖𝑖                                              
                                                                        (3) 

 

Let 𝑥𝑥 = (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) be a strategy profile, and 
𝑢𝑢�⃗ =  (𝑢𝑢1(𝑥𝑥), … ,𝑢𝑢𝑛𝑛(𝑥𝑥)) be the vector with all of the 
valuations from payoff functions 𝑢𝑢𝑖𝑖 , 𝑖𝑖 ∈ 𝑃𝑃. Vector 
𝑢𝑢�⃗  is Pareto efficient if and only if there is not 
another vector 𝑢𝑢� which dominates 𝑢𝑢�⃗ . Thus, one 
strategy profile results in a Pareto efficient valuation 
if and only if it is not dominated. In other words, a 
strategy profile  is Pareto efficient valued if there is 
no other strategy profile such that all players are 
better off and at least one player is strictly better off. 
Algorithm for PE is in Table 4.  

 
Table 4. Pareto efficiency algorithm for selection of strategies in baseball gaming 

Input each strategy profile and its payoff value 
1: for each  𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) strategy profiles  
2:   Create the vectors 𝑢𝑢(𝑗𝑗) = ((𝑢𝑢1(𝑥𝑥), … ,𝑢𝑢𝑛𝑛(𝑥𝑥)), 𝑗𝑗 = 1 to the total number of profiles 
3:  end for 
4: 𝑃𝑃𝐹𝐹 = 𝑓𝑓𝑖𝑖𝑛𝑛𝑑𝑑 − 𝑛𝑛𝑜𝑜𝑛𝑛𝑑𝑑𝑜𝑜𝑚𝑚𝑖𝑖𝑛𝑛𝑎𝑎𝑡𝑡𝑒𝑒(𝑣𝑣), 𝑃𝑃𝐹𝐹 contains profiles which are Pareto efficient 
5: find in 𝑃𝑃𝐹𝐹 the profile(s) which is (are) cooperative (for all players as team) 
 
Pareto efficiency (PE) or optimality is 

foundational for comparisons and discussions on 
social welfare and choice, as well as on the use of 
social welfare functions [25]. By applying Pareto 
efficiency for selection of strategy profiles in 
baseball, we select those where the profits are 
maximized as a group and not only individually. 
Each player uses the strategy such that all players, 
as a team, get maximum utility, so multi-player 
cooperation is achieved.  

A set of payoff matrices comprises the 
quantitative analysis for a whole baseball match, by 
considering: 1) if the match is at the first, middle or 
late innings; 2) the score conditions (up, down or 
tie); 3) the number of outs in the innings; and 4) the 
eight players’ positions on the bases following the 
methodology in [5]. Payoff matrices comprise the 
payoff function valuations of the strategy profiles. 
Each matrix entry arranges each player’s strategy 
profile valuation. The 𝑀𝑀 payoff matrix for the 𝑛𝑛 
players is arranged from the set of 𝑀𝑀𝑖𝑖  payoff matrix 
of every player 𝑖𝑖. The 𝑀𝑀 entries are the strategy 
profiles joint to the profile payoff value 𝑟𝑟𝑧𝑧 , hence 
((𝑠𝑠1, … , 𝑠𝑠𝑖𝑖 , … , 𝑠𝑠𝑛𝑛), 𝑟𝑟𝑧𝑧).The payoff matrices data can 
support the manager’s decision-making in the 
course of a match. One matrix for each analysis, 
based on NE or PE, is constructed.  

 
 

3.3 Payoff functions for batter and runners 
In this section, payoff functions for the baseball 

runners and batters are defined. Parameter 𝜹𝜹 
indicates the score conditions: 𝜹𝜹 = 1, 𝜹𝜹 = 0.5 and 𝜹𝜹 
= 0.2 when team is down, tied and up on score. 
Parameter 𝜼𝜼 gives information about innings: 
𝜼𝜼 = 𝟎𝟎.𝟐𝟐, 𝜼𝜼 = 𝟎𝟎.𝟓𝟓 and  𝜼𝜼 = 𝟏𝟏 when the match is in 
first (1-3), middle (4-6) and late (7-9) innings. 
Parameter 𝜷𝜷 gives information about the number the 
outs in the inning: 𝜷𝜷 = 𝟎𝟎 for two outs and 𝜷𝜷 = 𝟏𝟏 for 
zero or one out. The batter is identified with 𝒂𝒂 and 
the runners with 𝒃𝒃, 𝒄𝒄,𝒅𝒅. Let 𝝍𝝍 ∈ [𝟎𝟎,𝟏𝟏] be a 
weighting factor used in the runners’ payoff 
function to consider the batter’s strategies; and let 
𝜸𝜸,𝝁𝝁 ∈ [𝟎𝟎,𝟎𝟎.𝟏𝟏] be parameters to determine the 
playing style by regarding in turns parameters 𝜶𝜶 and 
𝜼𝜼. Let 𝝆𝝆𝒔𝒔𝒊𝒊 be the statistical occurrence (SO) of the 
strategy 𝒔𝒔 for player 𝒊𝒊, and 𝒗𝒗𝒊𝒊  is the preference 
value of the player 𝒊𝒊 to the profile that is being 
analyzed. The payoff function is given by of 𝝆𝝆𝒔𝒔𝒊𝒊 and 
the parameters described previously. 

 
The strategy profile is (𝒔𝒔𝟏𝟏, … , 𝒔𝒔, … , 𝒔𝒔𝒏𝒏)  

highlighting in bold the focus player's strategy. We 
observe that baseball strategy profiles for the 
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offensive team, with men in the bat position and 
runners are at most a 4-tuple; actually, 3 runners at 
most in the field, one per base, and the batter. Hence 
strategy profile analysis is restricted by this 
condition. To define payoff functions, we should 
regard combinations according to the next 
conditions:  

 
Payoff function for runners 
Let 𝑢𝑢𝑏𝑏(𝑠𝑠1, … , 𝑠𝑠, … 𝑠𝑠𝑛𝑛) be the runner 𝑏𝑏′𝑠𝑠 payoff 

function, with 𝑠𝑠 ∈ {𝑟𝑟,𝑤𝑤𝑏𝑏}; 𝑟𝑟 notation is for try to 
steal the forward base, and 𝑤𝑤𝑏𝑏 for wait the batter’s 
action.  

Case man in 1st or 2nd base. If runner’s statistical 
occurrence to steal a base 𝜌𝜌𝑟𝑟𝑏𝑏  is such that 𝜌𝜌𝑟𝑟𝑏𝑏 < 1 −
𝜌𝜌𝑟𝑟𝑏𝑏 , payoff function is in equation (4), 

𝑢𝑢𝑏𝑏(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) = 0 + 𝑣𝑣𝑏𝑏 , 
𝑢𝑢𝑏𝑏(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛) = 0.1 + 𝑣𝑣𝑏𝑏 .               (4) 
 
Otherwise, if 𝜌𝜌𝑟𝑟𝑏𝑏 > 1 − 𝜌𝜌𝑟𝑟𝑏𝑏 , we need to consider 

if any statistical occurrence of batter’ strategy is 
greater than 𝜓𝜓 , and use equation (5), 

𝑢𝑢𝑏𝑏(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) = 𝜓𝜓 ∗ 𝛽𝛽 + 𝑣𝑣𝑏𝑏 , 
𝑢𝑢𝑏𝑏(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛) = 𝜓𝜓 + 𝑣𝑣𝑏𝑏 .                  (5) 
 
Otherwise, use equation (6), 

𝑢𝑢𝑏𝑏(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) = 0.1 + 𝑣𝑣𝑏𝑏 , 
𝑢𝑢𝑏𝑏(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛) = 0 + 𝑣𝑣𝑏𝑏 .                    (6) 
 
Case man in 2nd and 1st. Let runner 𝑏𝑏 in 2nd base 

and runner 𝑐𝑐 in 1st base. In this case the advance of c 
depends on the advance of 𝑏𝑏, which payoff function 
is obtained as in the previous case. If 𝜌𝜌𝑟𝑟𝑐𝑐  steal a 
base from 𝑐𝑐 is such that 𝜌𝜌𝑟𝑟𝑐𝑐 < 1 − 𝜌𝜌𝑟𝑟𝑐𝑐 , use equation 
(7), 

𝑢𝑢𝑐𝑐(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) = 0 + 𝑣𝑣𝑐𝑐 , 
𝑢𝑢𝑐𝑐(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛) = 0.1 + 𝑣𝑣𝑐𝑐 .                    (7) 
Otherwise, if 𝜌𝜌𝑟𝑟𝑐𝑐 > 1 − 𝜌𝜌𝑟𝑟𝑐𝑐 , consider if 

𝑢𝑢𝑏𝑏(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) > 𝑢𝑢𝑏𝑏(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛),  so if 
runner 𝑏𝑏 tries to steal base greater than wait for the 
batter’s action, and use equation (8), 

𝑢𝑢𝑐𝑐(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) = 𝜌𝜌𝑟𝑟𝑐𝑐 ∗ 𝛽𝛽 + 𝑣𝑣𝑐𝑐 , 
𝑢𝑢𝑐𝑐(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛) = 𝜌𝜌𝑟𝑟𝑐𝑐 + 𝑣𝑣𝑐𝑐 .                     (8) 

Otherwise, use equation (9), 
𝑢𝑢𝑐𝑐(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) = 0 + 𝑣𝑣𝑐𝑐 , 

𝑢𝑢𝑐𝑐(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛) = 0.1 + 𝑣𝑣𝑐𝑐 .                         (9) 
 
Case man in 3rd, or 3rd and 2nd, or 3rd, 2nd and 1st. 

In this case, the payoff function may include when 𝑏𝑏 
is in 3rd base, 𝑐𝑐 in 2nd base and 𝑑𝑑 in 1st base. Base 
stealing is neutralized since it is highly unlikely that 
any runner tries base stealing in these positions, and 
use equations in (10). 

𝑢𝑢𝑏𝑏(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) = 0 + 𝑣𝑣𝑏𝑏 , 
𝑢𝑢𝑏𝑏(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛) = 0.1 + 𝑣𝑣𝑏𝑏 . 

𝑢𝑢𝑐𝑐(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) = 0 + 𝑣𝑣𝑐𝑐 ,           
            𝑢𝑢𝑐𝑐(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛) = 0.1 + 𝑣𝑣𝑐𝑐 .       (10) 

𝑢𝑢𝑑𝑑(𝑠𝑠1, … , 𝒓𝒓, … , 𝑠𝑠𝑛𝑛) = 0 + 𝑣𝑣𝑑𝑑 , 
𝑢𝑢𝑑𝑑(𝑠𝑠1, … ,𝒘𝒘𝒃𝒃, … , 𝑠𝑠𝑛𝑛) = 0.1 + 𝑣𝑣𝑑𝑑 . 

 
Payoff function for batter 
To explain how to define the payoff function for 

batters, we use the strategies, home run ℎ, hit ℎ𝑖𝑖, 
sacrifice flies 𝑓𝑓𝑠𝑠 and sacrifice bunt 𝑡𝑡𝑏𝑏, so,  𝑠𝑠 ∈
{ℎ,ℎ𝑖𝑖,𝑓𝑓𝑠𝑠, 𝑡𝑡𝑏𝑏}, even other strategies may be also 
used. The 𝛾𝛾, 𝜇𝜇 parameters indicate the playing style, 
aggressive or conservative, according to results of a 
set of experiments, and by regarding to the score 
condition  𝛼𝛼 and the information on innings, 𝜂𝜂. To 
model an aggressive style use (𝛿𝛿 ∗ 𝜂𝜂==1), that yield 
to 𝜇𝜇 = 0.03,𝛾𝛾 = 0. For a conservative style use 
(𝛿𝛿 ∗ 𝜂𝜂==0.5) that yields to 𝜇𝜇 = 0, 𝛾𝛾 = 0.08. 
Otherwise, 𝜇𝜇 = 0, 𝛾𝛾 = 0 that means that these 
parameters do not affect the playing style, and 
playing is sole restricted to characteristic of players.  

The values of 𝜇𝜇 and ã came from some 
experiments, and their assignation is open. They are 
independent and will affect to different baseball 
plays in order to induce the playing style. They may 
be asymmetrical or not. The value of 𝜇𝜇 will weight 
to home run and hit plays, for playing aggressively, 
and the value of 𝛾𝛾 will weight to sacrifice fly, for 
playing conservatively.  

Case no-runner. With no runners on bases, we 
only consider the playing style and the statistical 
occurrence of batter’ strategy to define the payoff 
function in (11): 

𝑢𝑢𝑎𝑎(𝒇𝒇𝒔𝒔) = 0. 
𝑢𝑢𝑎𝑎(𝒕𝒕𝒃𝒃) = 𝑝𝑝𝑡𝑡𝑏𝑏𝑎𝑎 ∗ 𝛽𝛽 + 𝛾𝛾. 

                     𝑢𝑢𝑎𝑎(𝒉𝒉) = 𝜌𝜌ℎ𝑎𝑎 + 𝜇𝜇.          (11) 
𝑢𝑢𝑎𝑎(𝒉𝒉𝒊𝒊) = 𝜌𝜌ℎ𝑖𝑖𝑎𝑎 + 𝜇𝜇. 

 
Case one man on base. Runner 𝑏𝑏 is the man in 

base. In this case consider the statistical occurrence 
of batter 𝑎𝑎 strategies, the preference value 𝑣𝑣𝑎𝑎  of the 
batter 𝑎𝑎 on strategy profile (𝑠𝑠, 𝑠𝑠1), 𝑠𝑠1 ∈ {𝑟𝑟,𝑤𝑤𝑏𝑏}, the 
statistical occurrence 𝜌𝜌𝑠𝑠1𝑏𝑏  from runner 𝑏𝑏 on strategy 
𝑠𝑠1, and the playing style. The payoff function 
follows, (12). 

𝑢𝑢𝑎𝑎(𝒇𝒇𝒔𝒔, 𝑠𝑠1) = �(𝜌𝜌𝑓𝑓𝑠𝑠𝑎𝑎  + 𝑣𝑣𝑎𝑎  ) − 𝜌𝜌𝑠𝑠1𝑏𝑏� ∗ 𝛽𝛽 + 𝛾𝛾. 
𝑢𝑢𝑎𝑎(𝒕𝒕𝒃𝒃, 𝑠𝑠1) = ((𝜌𝜌𝑡𝑡𝑏𝑏𝑎𝑎 + 𝑣𝑣𝑎𝑎  ) − 𝜌𝜌𝑠𝑠1𝑏𝑏) ∗ 𝛽𝛽 + 𝛾𝛾. 

     𝑢𝑢𝑎𝑎(𝒉𝒉, 𝑠𝑠1) = ((𝜌𝜌ℎ𝑎𝑎 + 𝑣𝑣𝑎𝑎  )− 𝜌𝜌𝑠𝑠1𝑏𝑏) + 𝜇𝜇.     (12) 
𝑢𝑢𝑎𝑎(𝒉𝒉𝒊𝒊, 𝑠𝑠1) = ((𝜌𝜌ℎ𝑖𝑖𝑎𝑎 + 𝑣𝑣𝑎𝑎  ) − 𝜌𝜌𝑠𝑠1𝑏𝑏) + 𝜇𝜇. 

 
Case: two men on base. 𝑏𝑏 is the more advanced 

runner in base and 𝑐𝑐 is the other runner. In this case, 
we consider the statistical occurrence of each batter 
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𝑎𝑎 strategies, the preference value 𝑣𝑣𝑎𝑎  of the batter 𝑎𝑎 
on strategy profile (𝑠𝑠, 𝑠𝑠1, 𝑠𝑠2), 𝑠𝑠1, 𝑠𝑠2 ∈ {𝑟𝑟,𝑤𝑤𝑏𝑏} for the 
runners 𝑏𝑏 and 𝑐𝑐, the statistical occurrence of 
strategies 𝑠𝑠1 and 𝑠𝑠2 from 𝑏𝑏 and 𝑐𝑐 for the, 
respectively, and the playing style. The payoff 
function follows, (13). 

𝑢𝑢𝑎𝑎(𝒇𝒇𝒔𝒔, 𝑠𝑠1, 𝑠𝑠2) = �(𝜌𝜌𝑓𝑓𝑠𝑠𝑎𝑎 + 𝑣𝑣𝑎𝑎  )− (𝜌𝜌𝑠𝑠1𝑏𝑏 +
𝜌𝜌𝑠𝑠2𝑐𝑐)) ∗ 𝛽𝛽 + 𝛾𝛾. 

𝑢𝑢𝑎𝑎(𝒕𝒕𝒃𝒃, 𝑠𝑠1, 𝑠𝑠2) = ((𝜌𝜌𝑡𝑡𝑏𝑏𝑎𝑎 + 𝑣𝑣𝑎𝑎  )− (𝜌𝜌𝑠𝑠1𝑏𝑏 +
𝜌𝜌𝑠𝑠2𝑐𝑐)) ∗ 𝛽𝛽 + 𝛾𝛾. 

𝑢𝑢𝑎𝑎(𝒉𝒉, 𝑠𝑠1, 𝑠𝑠2) = ((𝜌𝜌ℎ𝑎𝑎 + 𝑣𝑣𝑎𝑎  )− (𝜌𝜌𝑠𝑠1𝑏𝑏 + 𝜌𝜌𝑠𝑠2𝑐𝑐)) +
𝜇𝜇.                                                                         (13) 

𝑢𝑢𝑎𝑎(𝒉𝒉𝒊𝒊, 𝑠𝑠1, 𝑠𝑠2) = ((𝜌𝜌ℎ𝑖𝑖𝑎𝑎 + 𝑣𝑣𝑎𝑎  ) − (𝜌𝜌𝑠𝑠1𝑏𝑏 +
𝜌𝜌𝑠𝑠2𝑐𝑐)) + 𝜇𝜇. 

 
Case: there men on base. Runner 𝑏𝑏 is in 3rd base, 

𝑐𝑐 on 2nd base and 𝑑𝑑 on 1st base. In this case, consider 
the statistical occurrence of each batter 𝑎𝑎 strategies, 
the preference value 𝑣𝑣𝑎𝑎  of the batter 𝑎𝑎 on strategy 
profile (𝑠𝑠, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3),  𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ∈ {𝑟𝑟,𝑤𝑤} for the 
runners 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑, the statistical occurrence of the 
strategies 𝑠𝑠1, 𝑠𝑠2 and 𝑠𝑠3 from 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑, 
respectively, and the playing style. The payoff 
function follows, (14). 
𝑢𝑢𝑎𝑎(𝒇𝒇𝒔𝒔, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3)

= �(𝜌𝜌𝑓𝑓𝑠𝑠𝑖𝑖 + 𝑣𝑣𝑎𝑎  )− (𝜌𝜌𝑠𝑠1𝑏𝑏 + 𝜌𝜌𝑠𝑠2𝑐𝑐
+ 𝜌𝜌𝑠𝑠3𝑑𝑑)) ∗ 𝛽𝛽 + 𝛾𝛾. 

𝑢𝑢𝑎𝑎(𝒕𝒕𝒃𝒃, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3)
= �(𝜌𝜌𝑡𝑡𝑏𝑏𝑎𝑎 + 𝑣𝑣𝑎𝑎  )− (𝜌𝜌𝑠𝑠1𝑏𝑏 + 𝜌𝜌𝑠𝑠2𝑐𝑐
+ 𝜌𝜌𝑠𝑠3𝑑𝑑)) ∗ 𝛽𝛽 + 𝛾𝛾. 

𝑢𝑢𝑎𝑎(𝒉𝒉, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3) = �(𝜌𝜌ℎ𝑎𝑎 + 𝑣𝑣𝑎𝑎  ) − (𝜌𝜌𝑠𝑠1𝑏𝑏 +
𝜌𝜌𝑠𝑠2𝑐𝑐 + 𝜌𝜌𝑠𝑠3𝑑𝑑)) + 𝜇𝜇.                       (14) 

𝑢𝑢𝑎𝑎(𝒉𝒉𝒊𝒊, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3) = ((𝜌𝜌ℎ𝑖𝑖𝑎𝑎 + 𝑣𝑣𝑎𝑎  ) − (𝜌𝜌𝑠𝑠1𝑏𝑏 +
𝜌𝜌𝑠𝑠2𝑐𝑐 + 𝜌𝜌𝑠𝑠3𝑑𝑑)) + 𝜇𝜇. 

3.4 Examples 
Consider the followings circumstances in a 

baseball match: last innings with the match score 
tied, one out in the inning and runner 𝑏𝑏 on 3rd base. 
The 𝑏𝑏 options are, base stealing r, or wait (wb) for 
the batter’s action. For batter 𝑎𝑎 options are, 
homerun h, or a sacrifice hit (fs). Let  𝛽𝛽 = 1, 𝛿𝛿 = 1 
and 𝜂𝜂 = 0.5, hence 𝜇𝜇 = 0, and 𝛾𝛾 = 0.08, so playing 
style is conservative. Using payoff functions the 
strategy profiles values are calculated to identify the 
ones that fit NE or PE. 

For runner 𝑏𝑏, let his statistical occurrence 
of 𝜌𝜌𝑟𝑟𝑏𝑏 = 0.2.  Using payoff function (4): 
• 𝑢𝑢𝑏𝑏(ℎ, 𝒓𝒓) =  0 + 𝑣𝑣𝑏𝑏 =  0 + 0.5 =

0.5.    𝑢𝑢𝑏𝑏(ℎ,𝒘𝒘𝒃𝒃) = 0.1 + 𝑣𝑣𝑏𝑏 = 0.1 + 0.4 = 0.5.  
• 𝑢𝑢𝑏𝑏(𝑓𝑓𝑠𝑠, 𝒓𝒓) =  0 + 𝑣𝑣𝑏𝑏 =  0 + 0.3 =

0.3.    𝑢𝑢𝑏𝑏(𝑓𝑓𝑠𝑠,𝒘𝒘𝒃𝒃) = 0.1 + 𝑣𝑣𝑏𝑏 = 0.1 + 0.3 =
0.4.  

 
For batter 𝑎𝑎, using payoff function (12): 

• 𝑢𝑢𝑎𝑎(𝒉𝒉, 𝑟𝑟) = ((𝜌𝜌ℎ𝑎𝑎 + 𝑣𝑣𝑎𝑎  ) − 𝜌𝜌𝑟𝑟𝑏𝑏) + 𝜇𝜇 = ((0.3 +
0.4 ) − 0.2) + 0 = 0.5. 

• 𝑢𝑢𝑎𝑎(𝒉𝒉,𝑤𝑤𝑏𝑏) =  ((𝜌𝜌ℎ𝑎𝑎 + 𝑣𝑣𝑎𝑎  ) − 𝜌𝜌𝑤𝑤𝑏𝑏𝑏𝑏) + 𝜇𝜇 =
((0.3 + 0.4 ) − 0.8) + 0 = −0.1. 

• 𝑢𝑢𝑎𝑎(𝒇𝒇𝒔𝒔, 𝑟𝑟) =  ((𝜌𝜌𝑓𝑓𝑠𝑠𝑎𝑎 + 𝑣𝑣𝑎𝑎  )− 𝜌𝜌𝑟𝑟𝑏𝑏) ∗ 𝛽𝛽 + 𝛿𝛿 =
((0.62 + 0.0 ) − 0.2) ∗ 1 + 0.08 = 0.5. 

• 𝑢𝑢𝑎𝑎(𝒇𝒇𝒔𝒔,𝑤𝑤𝑏𝑏) = ((𝜌𝜌𝑓𝑓𝑠𝑠𝑎𝑎 + 𝑣𝑣𝑎𝑎  ) − 𝜌𝜌𝑤𝑤𝑏𝑏𝑏𝑏) ∗ 𝛽𝛽 + 𝛿𝛿 =
((0.62 + 0.4 ) − 0.8) ∗ 1 + 0.08 = 0.3. 

 
The strategy profiles and the utility value 

assigned by the payoff function of each player to 
each profile are shown in Fig. 2.  

 

 
Fig.  2. Entries for the payoff matrices of players a 
and b 

 
In Fig. 3 the deviations in the strategy profiles is 

illustrated, such that in the analysis, depending on 
the values assigned by the payoff function, those 
strategy profiles being not dominated are identified. 
The example illustrates the steps to be applied to 
find the profiles that satisfy NE condition. For a 
player, 𝑥𝑥1/𝑥𝑥2 means that profile 𝑥𝑥1 dominates 
profile 𝑥𝑥2, so for player 1 we have 2/4; for player 𝑏𝑏 
domination is by 3/4. Therefore, the non-dominated 
profiles for all players are the profiles 1, (h, r) and 4, 
(fs, wb), and both satisfy the NE condition. The only 
profile that satisfies PE condition is (h, r) because, 
in this profile, both players get the maximum profit 
as a team. 

 

 
Fig. 3. Deviations in the strategy profiles 

 
Table 5 summarizes: the strategy profiles, the 

payoff values assigned to profiles by each player, 
the statistical occurrence of strategies, and the 
profiles which are NE or Pareto efficient or none, 
following the example above. Usually, the strategies 
in NE profiles are statistically more frequent of 
occurrence than strategies in Pareto efficient 
profiles. Particularly, sacrifice hit (𝑓𝑓𝑠𝑠) strategy is in 
NE profile and home run (ℎ) is in Pareto efficient 

𝑥𝑥 = (𝑠𝑠1, … , 𝑠𝑠𝑛) 𝑢𝑢𝑏(𝑥𝑥)

(h, r) 0.5
(h, wb) 0.5
(fs, r) 0.3
(fs, wb) 0.4

𝑥𝑥 = (𝑠𝑠1, … , 𝑠𝑠𝑛) 𝑢𝑢𝑎(𝑥𝑥)

(h, r) 0.5
(h, wb) -0.1
(fs, r) 0.5
(fs, wb) 0.3

1

2

3

4

𝑥𝑥 = (𝑠𝑠1, … , 𝑠𝑠𝑛) 𝑢𝑢𝑎(𝑥𝑥)

(h, r) 0.5
(h, wb) -0.1
(fs, r) 0.5
(fs, wb) 0.3

2

4

𝑥𝑥 = (𝑠𝑠1, … , 𝑠𝑠𝑛) 𝑢𝑢𝑏(𝑥𝑥)

(h, r) 0.5
(h, wb) 0.5
(fs, r) 0.3
(fs, wb) 0.4

3

4
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profile; statistically, 𝑓𝑓𝑠𝑠  is more frequent to occur 
than ℎ, although ℎ is more profitable than ℎ𝑖𝑖. The 
Pareto efficient profiles are the theoretical most 

profitable, but their occurrence in practice is too 
low.  

 
 
Table 5. Summary of the analysis of strategy profiles 

 Strategy profiles Payoff value 
by player 

Statistical occurrence 
(average) 

NE PE 

1 (ℎ, 𝑟𝑟) 0.5, 0.5 0.3, 0.2   
2 (ℎ,𝑤𝑤𝑏𝑏) -0.1, 0.5 0.3, 0.8   
3 (𝑓𝑓𝑠𝑠, 𝑟𝑟) 0.5, 0.3 0.7, 0.2   
4 (𝑓𝑓𝑠𝑠,𝑤𝑤𝑏𝑏) 0.3, 0.4 0.7, 0.8   

 
Profiles (ℎ, 𝑟𝑟) and  (𝑓𝑓𝑠𝑠,𝑤𝑤𝑏𝑏)  fit the NE condition 

because hold equation (2) 
• 𝑢𝑢𝑎𝑎(ℎ, 𝑟𝑟) ≥ 𝑢𝑢𝑎𝑎(𝑓𝑓𝑠𝑠, 𝑟𝑟) 
• 𝑢𝑢𝑏𝑏(ℎ, 𝑟𝑟) ≥ 𝑢𝑢𝑏𝑏(ℎ,𝑤𝑤𝑏𝑏) 
and 
• 𝑢𝑢𝑎𝑎(𝑓𝑓𝑠𝑠,𝑤𝑤𝑏𝑏) ≥ 𝑢𝑢𝑎𝑎(ℎ,𝑤𝑤𝑏𝑏) 
• 𝑢𝑢𝑏𝑏(𝑓𝑓𝑠𝑠,𝑤𝑤𝑏𝑏) ≥ 𝑢𝑢𝑏𝑏(𝑓𝑓𝑠𝑠, 𝑟𝑟) 

Profile (ℎ, 𝑟𝑟)  is Pareto efficient because 
𝑢𝑢�⃗ = ((𝑢𝑢𝑎𝑎(ℎ, 𝑟𝑟),𝑢𝑢𝑏𝑏(ℎ, 𝑟𝑟)) given 𝑠𝑠1 ∈ {ℎ𝑖𝑖,ℎ}, 𝑠𝑠2 ∈
{𝑟𝑟,𝑤𝑤𝑏𝑏}, there is not a vector 
𝑢𝑢� = (𝑢𝑢𝑎𝑎(𝑠𝑠1, 𝑠𝑠2),𝑢𝑢𝑏𝑏(𝑠𝑠1, 𝑠𝑠2))  which dominates 𝑢𝑢�⃗ , see 
equation (3). 

Next, the analytical comparison of the use of HM 
for player-positions assignment combined with NE 
or PE for selection of strategies follows. The way to 
assign player-positions is of great importance and a 
team perspective analysis is needed. In addition, the 
selection of strategies is essential for a good team 
performance.  

 

 
4 Team performance comparisons 
The best team performance is obtained by jointly 
applying the HM for team formation with a method 
for the selection of strategies. Actually, the HM+NE 
combination allows the best team performance 
during matches gaming. The use of HM produces 
the right player-positions assignment regarding the 
best team performance that should be applied based 
on statistical information from the MLB results. 
Data on two MLB teams and each player’s statistics 
are input to a baseball simulator. The statistical 
measures to be considered in this analysis, for 
batting, pitching and fielding, are shown in Table 6. 
A total of 44 players from the 2012 MLB season, 22 
from the Boston Red Sox and 22 from the New 
York Yankees are considered. The different 
combinations gamed by the baseball teams are 
practiced by a baseball simulator. 

 
Table 6. Statistical measure to be considered to quantify the baseball players 
Batting  Pitching  Fielding  
R Runs W-L% Percentage of games won E Errors 

SB Stealing bases ERA Runs allowed per game DP Double 
plays 

OPS OBP + SLG WHIP (BB + Hits) / Innings RF/9 (PO + A) / 
Innings 

GDP Double plays H/9 Hits per game SB Stealing 
bases 

SH Sacrifice hits HR/9 Home runs per game   
SF Sacrifice flys BB/9 Based on balls per game   

IBB BB 
intentional SO/9 Strikeouts per game   

 
In Table 6, OBP is the percentage of times an 

offensive player reaches a base, SLG is the total 
bases reached by the total number at-bat, BB is for 
the bases on balls allowed the player, and PO the 
outs achieved by the defensive team. From the MLB 
players, we selected 12 pitchers and 30 field players, 
6 and 15 from each team, respectively. The 
statistical data is normalized [0, 1] for an easy 

analysis. Applying HM on MLB players statistics, 
we formed a team of 10 players selected from the 42 
possible ones. In this process, a weight matrix 𝑊𝑊 
that indicates the relevance of each measure to each 
position is required, and its values, given by 
baseball experts, are shown in Table 7.  
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Table 7. The W matrix of weight 
Position/ 
Measure C 1B 2B SS 3B LF CF RF D P 

R 0.3 0.25 0.25 0.15 0.2 0.3 0.3 0.35 0.45 0 
SB 0 0.1 0.1 0.05 0.1 0 0 0 0 0 
OPS 0.5 0.45 0.5 0.5 0.55 0.75 0.7 0.75 0.85 0 
GDP -0.05 -0.1 -0.1 0 -0.1 -0.25 -0.25 -0.3 -0.3 0 
SH 0 0.1 0.1 0.1 0.15 0 0 0 0 0 
SF 0.1 0 0.05 0 0.05 0.1 0.15 0.1 0 0 
IBB 0.05 0 0 0 0 0.05 0.1 0.05 0 0 
W-L% 0 0 0 0 0 0 0 0 0 0.6 
ERA 0 0 0 0 0 0 0 0 0 -0.15 
WHIP 0 0 0 0 0 0 0 0 0 -0.05 
H/9 0 0 0 0 0 0 0 0 0 -0.05 
HR/9 0 0 0 0 0 0 0 0 0 -0.1 
BB/9 0 0 0 0 0 0 0 0 0 -0.05 
SO/9 0 0 0 0 0 0 0 0 0 0.8 
E -0.2 -0.2 -0.2 -0.35 -0.15 -0.05 -0.1 -0.05 0 -0.05 
DP 0.05 0.2 0.3 0.25 0.15 0 0 0 0 0.1 
RF/9 0.45 0.4 0.3 0.3 0.2 0.1 0.1 0.1 0 0.15 
SB -0.2 -0.2 -0.3 0 -0.15 0 0 0 0 -0.2 

 
The selected MLB players using HM are listed in 

Table 8, and the probability matrix for offensive 
actions is presented in Table 9, where each 

abbreviation denotes: H-hits, HR-home run, 2B-
doubles, SF-sacrifice fly, SH-sacrifice bunt, SB-
stealing bases, GDP-double plays, SO-strikeouts, 
BB-bases on balls.  

 
Table 8. Players selected by applying the Hungarian method 

Player Original 
position Team Assigned 

position Benefit 

Mark Teixeira 1B Yankees C 1.1187 
Adrián González 1B Red Sox 1B 0.9915 
Dustin Pedroia 2B Red Sox 2B 1.0352 
Robinson Cano 2B Yankees SS 0.8308 
Derek Jeter SS Yankees 3B 0.7256 
Cody Ross RF Red Sox LF 0.7446 
David Ortiz DH Red Sox CF 1.0607 
Curtis Granderson CF Yankees RF 0.9595 
Nick Swisher RF Yankees DH 0.9023 
CC Sabathia SP Yankees SP 1.1444 
TOTAL    9.5134 
 
Table 9. Probability of offensive actions per player 
 H HR 2B SF SH SB GDP SO BB 
1 0.2996 0.0310 0.0764 0.0145 0.0000 0.0000 0.0186 0.1674 0.0641 
2 0.2895 0.0266 0.0693 0.0107 0.0018 0.0355 0.0160 0.1066 0.0853 
3 0.2668 0.0462 0.0714 0.0126 0.0021 0.0042 0.0231 0.2710 0.0882 
4 0.3179 0.0710 0.0802 0.0093 0.0000 0.0000 0.0185 0.1574 0.1728 
5 0.2156 0.0458 0.0515 0.0229 0.0000 0.0038 0.0210 0.1584 0.1031 
6 0.2812 0.0473 0.0689 0.0029 0.0000 0.0043 0.0316 0.1377 0.0875 
7 0.2919 0.0203 0.0432 0.0014 0.0081 0.0122 0.0324 0.1216 0.0608 
8 0.2018 0.0629 0.0263 0.0102 0.0015 0.0146 0.0073 0.2851 0.1096 
9 0.2340 0.0385 0.0577 0.0080 0.0016 0.0032 0.0144 0.2260 0.1234 
Avg 0.2665 0.0433 0.0606 0.0103 0.0017 0.0086 0.0203 0.1812 0.0994 
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4.1 Results  
In modeling and simulation of multi-player games, 
the verification and validation are essential 
prerequisites to the credible and reliable use of a 
model and its results. A total of six hundred 
computer simulations of baseball matches were 
performed for the next items, one hundred (100) 
simulations each.  
− Team 1 (T1) uses HM and NE; Team 2 (T2) uses 

NE. 
− T1 uses HM and NE; T2 uses PE. 
− T1 uses HM and PE; T2 uses NE. 
− T1 uses HM and PE; T2 uses PE.  
− T1 uses HM and NE; T2 uses HM and PE.  
− T1 uses HM and PE; T2 does not use any 

method.  
 
The results in Fig. 4 correspond when T1 uses 

HM to assign player-positions and NE for strategic 

analysis while T2 uses only NE; T1 achieved more 
victories 55/45 and in a total of 5 baseball matches 
reached extra innings. Fig. 5 shows the results when 
T1 uses HM selection and NE while T2 only uses PE; 
T1 won more victories 60/40 and 5 baseball matches 
reached extra innings. Fig. 6 shows the results when 
T1 uses HM selection and PE while T2 only uses NE; 
T1 won more victories 53/47 and 4 baseball matches 
reached extra innings. Fig. 7 shows the results when 
T1 uses HM selection and PE while T2 only uses PE; 
T1 scored more victories 59/41 and 8 baseball 
matches reached extra innings. Fig. 8 shows the 
results when T1 uses HM selection and NE while T2 
uses HM selection and PE; T1 won 54/46 and 4 
baseball matches extended to extra innings. Fig. 9 
shows the results when T1 uses HM selection while 
T2 only uses its statistics; T1 won 61/39 victories 
and only 6 baseball matches reached extra innings.

 
 

 
Fig.  4. HM+NE versus NE 

 
Fig.  5. HM+NE versus PE 

 
Fig.  6. HM+PE versus NE 

 
Fig.  7. HM+PE versus PE 
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Fig.  8. HM+NE versus HM+PE 

 
Fig.  9. HM versus No-Method 

 
 
4.2 Comparative analysis 

In Fig.10 illustrates the behavior when T1 only 
uses HM with NE while T2 uses PE, NE, HM with 

PE and HM with NE. The T1 performance is 
superior to all other techniques used by T2 and the 
T2 performance improves by changing to a better 
technique.  

 
 
Fig. 10. T1 only uses (HM+NE) and T2 uses ( PE, NE, HM+PE, HM+NE). 

 
Fig. 11 describes the use of different techniques 

by T2 while T1 only uses HM+PE. The T1 
performance decays while the T2 performance 
increases and even exceeds the T1 performance 
when T2 uses HM+NE.  
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Fig. 11. T1 only uses (HM+PE) and T2 uses ( PE, NE, HM+PE, HM+NE) 
 
 
In summary, the team selected by HM and using NE 
for selection of strategies showed a better 
performance than any other team which used any 
other combination of methods. In addition, a 
comparison of when T1 used HM for player-
positions assignment when T2 did not use HM or 
perform any selection of strategies shows that the T1 
performance is better. 

 
 

5 Discussions 
The task assignment approaches that use HM [23, 
24], no longer require a strategic analysis after the 
assignment is made. However, in baseball, besides 
the player-positions assignment challenge, there are 
factors during a match that require a meticulous 
strategic analysis to identify suitable strategies to 
guide the team to victory. Nash equilibrium and 
Pareto efficiency for selection of strategies in 
baseball gaming, jointly used with the Hungarian 
method to choose a baseball team, fit the aim of 
improving the team performance. Actually, 
according to our set of computer simulation tests the 
combination HM+NE methods produces the best 
baseball team performance during match playing. 
HE+PE, theoretical best, frequently cannot be 
practiced by empirical reasons ever present in real 
matches. The home run is one of the best baseball 
offensive options and under some circumstances, it 
belongs to Pareto efficient profiles.  If it happened is 
the best option for the team, but has a low of 
statistical occurrence in practice. Whenever the risk 
of trying to perform a home run is less than the 
benefit that the team could get then, it is a good 

option to try to perform it; otherwise it is better to 
use another option. We emphasize, on these kinds of 
games not always the best theoretical options can be 
practiced.  

The classic NE need be complemented to deal 
with interactions in social or enterprise 
organizations so the hybrid approach fine model 
these complexities. The problem of coordination 
when a game has more than one NE, is taken by 
analyzing Pareto and risk dominations as criteria to 
select one of them [26]. In a two-player 
coordination game, the effectiveness of 
communication is sensitive to the structure of 
payoffs and the communication does not necessarily 
lead to the Pareto-dominant equilibrium [27]. The 
reengineering strategy in supply chain should deal 
with the conflicts and benefits of reengineering for 
multiples entities, the variety of reengineering 
modes and reengineering selection for cross-
organizational [28], that cannot be fully allowed by 
lone NE analysis. The lazy bureaucrat scheduling 
problem through a game-theoretic issue [29], define 
the potential functions to prove the existence of a 
Nash equilibrium solution, and present the pseudo 
polynomial time algorithm to find such a solution. 

 As we discuss previously, the theoretical Pareto-
efficient allows an optimal design of strategies. 
However, in real human baseball matches, the 
theoretical design cannot occur by the presence of 
uncertain factors –beyond the team’s control. 
Whereby, the use of theoretical Pareto efficient 
strategies under some circumstances in baseball 
game is low feasible. In a baseball match there are 
many uncertain factors such as, human ways of 
pitching, running and batting, or natural factors like 
wind speed or the height of the place, which affect 
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the playing performance. The stochastic nature of 
the baseball game is well-modeled by our approach, 
and the convergence to some identified equilibrium 
points observes the statistics from real matches.  

In Kantian equilibrium (KE) [30] all players 
have a common strategy space S, so the normal form 
game is 𝐺𝐺 = (𝑆𝑆;𝑢𝑢1, … ,𝑢𝑢𝑛𝑛  ); a strategy profile 
(𝑠𝑠1, … , 𝑠𝑠𝑛𝑛)  fits Kantian equilibrium condition if 
equation (18) holds: 

 
𝑢𝑢𝑖𝑖  (𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) ≥ 𝑢𝑢𝑖𝑖  (α(𝑠𝑠1, … , 𝑠𝑠𝑛𝑛))  ∀ 𝑖𝑖 ∈ 𝑃𝑃, α ∈ ℝ+                                                                   

                                                                     (18) 
All of the player’s action value is weighted by 

the same factor α. Kantian equilibrium models 
community cooperation in equal conditions and no 
one player takes improves doing worse any other. 
By KE usage every player is applying the Pareto 
efficient best own strategy from a cooperative 
perspective, and there is at least one strategy profile 
for a game in normal form that fits Kantian 
equilibrium, as for NE. For KE, all players get the 
maximum profit, in fact the player changes his 
strategy if and only if each player changes its 
strategy by the same multiplicative factor α, we 
interpret α as a change in the strategy profile for all 
players, and perhaps, we do not fit strictly with real 
definition on (18) but we assure at least that the 
profiles be Pareto efficient. Nevertheless, due to the 
lack of interpretation of KE in this kind of games, 
we can use KE as previously discussed. 

 
Couple and team formation 

In game theory (GT), a problem of finding 
a stable matching between two sets of elements is 
known as the stable marriage problem (SMP) [31]. 
In this problem, we have a set of n men and n 
women where each person has his/her own 
preference list of the persons that he/she wants to 
marry. The goal is to have a set of stables marriages, 
such that, there are no two persons of opposite set 
who would prefer other person than his/her current 
partner. Gale and Shapley in [31] proved that there 
is a stable set of marriages. In the case of baseball, 
the solution of SMP does not satisfy the player-
positions assignment because SMP emphases 
finding solutions by couple rather than by group, 
i.e., the couple (player, baseball-position) is 
attended individually without regard the others 
couples.  On the opposite, HM allows to find out the 
best couples (player, baseball-position) thinking of 
forming the best team. The best baseball-positions 
couples are not the assigned sole regarding the best 
statistics-player, but such that all baseball-positions-
player are attended in a way that emerging team 
guarantees the best playing performance.  

 
On the convergence to equilibrium points 

In the examples in Section 3.4, different 
circumstances of a baseball match are analyzed 
using Nash equilibrium and Pareto efficiency for 
making strategic choices. Particularly, one strategy 
profile of sacrifice plays was finding by using Nash 
equilibrium. Qualitative analysis [32] and statistical 
studies [33] about the pertinence of sacrifice plays 
in a baseball match explain the best moment to 
apply them. The equilibrium analysis on the strategy 
profiles of sacrifice plays in a baseball match being 
supported by computer simulations [5], found that 
these profiles fit the Nash profiles when 
circumstances of baseball match are, the last 
innings, the match score tied, one player on third 
base and one/none out(s) in the inning. For these 
circumstances sacrifice plays are applied 
opportunely to reach the best result. The 
convergence to these profiles is by means of 
increase the probability of occurrence of these 
plays; in practice, the manager should indicate his 
players try to perform these plays, so the probability 
to these plays is increased. Moreover, according to 
our experimental results, the probability of 
convergence to the strategy profiles of sacrifice 
plays is over 60 percent, at the last innings and tied 
score. We claim a probabilistic convergence to 
desired profiles because the stochastic nature of the 
baseball game, many uncertain factors –beyond the 
team’s control.  

A convergence method proposed by Clempner 
and Poznyak [12], finds an equilibrium strategy 
profile using a vector Lyapunov-like function in 
strictly dominated games, where strategy profiles 
with dominated strategies are deleted. A Lyapunov 
strategy profile (point) is a Nash equilibrium point. 
The convergence method is applied to the prisoner’s 
dilemma and battle of the sexes, two players and 
two strategies games. For the future, it would be 
interesting analyze the Lyapunov-like function for 
convergence to Lyapunov strategy profiles on multi-
players games, like baseball that have many more 
than two players and strategies.   

 
 

Conclusion 
Results from computer simulations of baseball 

matches show that, although the usual non-
cooperative qualification to NE, it is a relative 
adjective, up to the real circumstance. In the context 
of a baseball match, with several parameters out of 
the players’ and manager’s control, NE allows 
identify strategy profiles for effective cooperation in 
real circumstances of baseball gaming. The use of 
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NE prevents to try plays or strategies with low 
statistical occurrence, so to avoid the risk to lose 
score points. It means that NE strategy profiles 
frequently include plays and strategies with higher 
statistical occurrence, so they are more feasible in 
real circumstances of matches. Furthermore, NE, by 
avoiding the risk to lose score points induces an 
effective cooperation for a team. On the other hand, 
PE formal account, it induces to choose the 
theoretically optimum strategy profiles. We observe 
that the best plays and strategies have low statistical 
occurrence, so few time to be practiced in real 
baseball gaming circumstances. The Pareto efficient 
strategy profiles are less likely to occur than the 
Nash ones. Strategies in Pareto efficient profiles 
may be the most profitable but their probability of 
occurrence is low, and it moderates the use of Pareto 
efficiency to identify circumstances of cooperation 
in real circumstances of baseball gaming. Combined 
application of both, Nash and Pareto efficiency for 
strategic choices on multi-player baseball game is 
relevant. By applying the hybrid methods for 
guiding team actions in order to increase the 
probability of victory, is a major advantage on 
circumstances of complex social interactions. 
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