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Abstract: In a hidden Markov model (HMM), the system goes through a hidden Markovian sequence of states (X) 

and produces a sequence of emissions (Y). We define the hidden Gaussian Markov model (HGMM) as the HMM 

where the hidden process is Gaussian and is affected by a normal white noise. The Kalman filter (KF) is a fast 

optimal statistical estimation method for the HGMMs and is very popular among the practitioners.  However, the 

classic HGMM formulation is too restrictive. It extends to recent pairwise Gaussian Markov model (PGMM) where 

we assume that the pair (X, Y) is Gaussian Markovian. Moreover, there exists a KF version for the PGMM. The 

PGMM is more general than HGMM and in particular, the PGMM hidden process is not necessarily Markovian. The 

authors share their findings on about enhancing the KF when improving HGMM to PGMM. We discover singular 

cases where HGMM is at least ten times less accurate than the PGMM. On average, PGMM outperforms HGMM by 

twenty percent. 
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1 Introduction 
Let us consider two random sequences )...,,( 1 NXXX , 

and )...,,( 1 NYYY , taking their values in mR  and qR , 

respectively. We consider that the pair ),( YX  
is a zero-

mean Gaussian Markovian process. Its distribution is 

characterized by TTT YX ),( 111 Z  
and the equations (for 

1n , …, 1N ):  
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where TTT VU ))(,)(( 22 , …, TT
N

T
N VU ))(,)((  

are white 

noise normal vectors and )1,1(1nA , …, )2,2(1nB  are 

matrices. If TT
n

T
nn YX ))(,)((Z , TT

n
T

n VU ))(,)(( 11  1nW  

and ),...,,( 1 NΖZZ   we represent (1.1) by 

 

.1n1nn1n1n WBZAZ       (1.2) 

 

This model is known as the pairwise Gaussian 

Markov model (PGMM). It generalizes the classic 

hidden Gaussian Markovian model (HGMM). The 

HGMM equations are: 

 

1111   nnnnn UQXFX ;   (1.3)
 

11111   nnnnn VRXHY ,   (1.4) 

 

where 1nF  , 1nQ  , 1nH  and 1nR  are matrices and 1U , 

2V , …, NU , NV  are white noise normal vectors [1,2]. 

Indeed, HGMM
 
(1.3)-(1.4) verifies  
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which shows that a HGMM is a PGMM thanks to (1.1). 

Note that for each n , the PGMM transition kernel 

),,( 11 nnnn yxyxp   depends on the eight matrices 

)1,1(1nA , … , )2,2(1nB , while HGMM depends only on 

four matrices 1nF , 1nQ  , 1nH  and 1nR .  

Let us recall that there exist HGMM and PGMM 

versions of the Kalman filter (KF) [3,4]. In the paper, we 

aim to apprehend the difference between them from the 

perspective of simulation experiments. That is to know if 

the PGMM outperforms the HGMM significantly. The 

scope of this paper includes only the context of scalar 

state and observation spaces, i.e. where 1 qm .  

The paper structure is the following. The next section 

is devoted to KF in the PGMM framework: we describe 

the algorithm and we prove the involved equations. 

Section 3 presents the scalar stationary reversible 

Gaussian processes which we study through simulations. 

Section 4 contains experiments and last section contains 

concluding remarks and perspectives. 
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2 Kalman filter in pairwise Gaussian 

Markov models 
Let us consider a PGMM (1.1). The PGMM-KF runs as 

follows. 

If we set 
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 1111 ,)(  Myxp N  where 
1M  and 

1  are 

 

1
1

1 ][ yM xyx   and .][ 1
1

xyxyxy     (2.1) 

  

Formally, we can consider that for all n  

 nn
n

n Myxp  ,)( 1 N  which leads us to focus on how to 

compute 
1nM
 
and 

1n  
from 1ny , 

nM  and 
n : 

(i) compute the mean and the variance

 

of ),( 111
n

nn yxp y
 

by 
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; (2.2) 

 

(ii) compute 
1nM
 
and 

1n  
by 

 

1nM )( 2
11

1
11

1
1 


  nnnnn MyM  ,   (2.3) 

1
1
1111 


  nnnnn  .  

 

Proof  We use the law of total expectation 

]][[][ VUEEUE   with 
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. Then we use the formula for 

multivariate normal distributions to compute the 

conditional probability density function 
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         □ 

 

3 Gaussian stationary reversible Markov 

models 
A stationary PGMM (1.1) is such that 

),,,( 11  nnnn yxyxp  does not depend on n : for each 

1n , …, ,1N  

 

).,,,(),,,( 221111 yxyxpyxyxp nnnn    (3.1) 

 

For TT
n

T
nn YX ))(,)((Z , the distribution of a 

stationary PGMM derives from the variance-covariance 

matrix 
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with  
21 ZZ ΓΓ  . 

We say that a stationary PGMM is reversible if 

),,(),,( 22111122 yxyxpyxyxp   holds. 

 

 

4 Experiments 
Let us now consider scalar stationary reversible 

PGMMs. Since we study the correlations-induced effect, 

we restrict our study to the case where the variances of 

1X , 2X , 1Y , 2Y  are all unitary. So the covariance 

matrix of 1(X , 2X , 1Y , )2Y  is: 
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bcd

bda

cdb

dab
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  (4.1) 

 

Thus, we define a stationary reversible PGMM with 

four correlations a , b , c  and d . In fact, we can 

establish that the HGMM derived from such a PGMM is 

constrained to abd   and 2abc  . Thus, for given a  

and b , the difference between a PGMM and the 

corresponding HGMM increases when the difference 

between d  and ab  or c  and 2ab  increases.  

A PGMM is a HGMM if the conditions below hold: 

(H1) 
2X  and 

1Y  are independent given 
1X ; 

(H2) 
1Y  and 

2Y  are independent given ),( 21 XX . 
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In order to study the influence of each of these 

limiting conditions, we also consider two intermediary 

models: PGMM with “independent noise” (PGMM-IN), 

in which (H1) holds, but not (H2), and HGMM with 

“correlated noise” (HGMM-CN), in which (H2) holds 

but not (H1). In the sequel we refer the genuine PGMM 

as PGMM “with correlated noise” (PGMM-CN), and the 

classic HGMM as HGMM-IN.  

We supply the graphical representations of these sub-

models in Fig. 1-4. Note that if ),( YX  is stationary 

reversible, (H1) holds if and only if X  is Markovian [9]. 
 

 

          1y             c              2y            c              3y  

 

                      d         d                     d          d  

        b                                 b                                b  

 

 

 

          1x             a              2x              a            3x  

 
Fig. 1.  The dependence graph of the PGMM-CN: free (a,b,c,d). 

 

          1y                             2y                            3y  

 

                       d         d                     d         d  

        b                                 b                              b  

 

 

 

          1x             a              2x              a            3x  

 

Fig. 2. The dependence graph of the PGMM-IN : free (a,b,d); 
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Fig. 3. The dependence graph of the HGMM-CN: free (a,b,c); d 

constraint to d=ab. 
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Fig. 4. The dependence graph of the HGMM-IN: free (a,b); c and 

d are constraint to 2abc  , abd  . 

 

In the case where PGMM is stationary reversible, 

1nA   and 1nB   in (1.2) do not depend on n  and verify 
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We study how the quality of the estimate of the state 

vector worsens due to the miss-modeling. The equations 

to transform PGMM into PGMM-IN, HGMM-CN and 

HGMM-IN (see Remark 1 for )(2 r ) are: 

 

);,
1

)()(
,,()(

22 d
a

adbdabdb
bar




   (4.4) 

);,,,()(3 adcbar      (4.5) 

),,,,()( 2
4 adabbar      (4.6) 

 

where ),,,( dcba . To cast a PGMM-CN in PGMM-

IN, we have to modify the value of c  to come up with 

the expected conditional independence of nY  and 1nY  

with regard to ),( 1nn XX . The overall vector is 

multivariate normal, therefore the covariance matrix of 

distribution of ),( 1nn YY conditional on ),( 1nn XX  is cf. 

(4.1): 
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Therefore, the conditional covariance of  nY  and 1nY

is zero if and only if 
21

)()(

a

adbdabdb
c
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We also have:  

 

 )(1r      (4.7) 

 

because the PGMM-CN is the most inclusive. 

 

Let us now denote by )(k  the asymptotic 

error rate of the Kalman filter which uses the proposal 

model )(kr to estimate the state vector which arises 

from  .  In other words, we define  

 

],)))(([(lim)( 2
1  n
n

knnk XrE  YL   (4.8) 

 

where  )(kn rL  stands for the KF response at the step n 

with the proposal )(kr .  We involve the conditional 

expectation in a sense that the distribution of ),( 1
n

nX Y  

depends on   (the base model parameter). Let us 

observe that for each  , we have  )(1r   therefore, 

for each k, )()( 1  k . We can expand and simplify 

the expression of )(k : 

 

],1)())((2))(()())(([lim

)(

,11









n
nn XYknk

T
nYknn

k

rrr ΣLLΓL

 

where ])([)( 11
1

Tnn

Y
En YYΓ  is the variance matrix of 

the vector n
1Y  and ][)( 1,1

n
n

XY
XE

n
n YΣ   is the 

covariance between n
1Y  and nX . Both are available 

analytically. For our computations, we suppose that we 

reach the limit at 100n . 

We go further and we define for each k, k’ the cross-

model error rate: 

 

)).(()( '',  kkkk r    (4.9) 

 

We present in Table 1 the cross-model error rates 

for )025.0,925.0,250.0,325.0(),,,(  dcba . This 

parameter, found empirically by looping over all 

possible parameters, gives a maximal error gap 

)()( 14   . The related parameters )(2 r , )(3 r  and 

)(4 r  are given in Table 2. 

We conclude from Table 1 that there exist 

situations in which using the classic HGMM-IN instead 

of the PGMM-CN (with the same a  and b  in both 

models) significantly worsens the KF efficiency. 

Besides, we observe that HGMM-CN was not as 

accurate as PGMM-CN. Therefore, we conclude 

generally that the effectiveness of the PGMM-CN is not 

only due to relaxing condition (H2) but to relaxing both 

(H1) and (H2). Indeed, we note that the KF is 

particularly sensitive to the value of d in this case study. 

 

 

 Base model parameters )(kr  

Proposals 

HGMM  

-IN 

HGMM 

 -CN 

PGMM 

-IN 

PGMM 

-CN 

HGMM-IN 0,931 0,984 0,939 0,998 

HGMM-CN 0,931 0,721 0,940 0,489 

PGMM-IN 0,931 0,984 0,937 0,958 

PGMM-CN 0,931 0,721 0,937 0,020 

 

Table 1. The cross-model error rates )(',  kk  for   which 

maximizes the error gap )()( 14   . Each model name relates to a 

projection indexed by k or k’. 

 

 

 Parameters 

Projections  a  b  c  d  

HGMM-IN 0,325 0,250 0,020 0,081 

HGMM-CN 0,325 0,250 0,925 0,081 

PGMM-IN 0,325 0,250 -0,009 0,025 

PGMM-CN 0,325 0,250 0,925 0,025 

 

Table 2. The parameter   which maximizes the error gap 

)()( 14   , and its projections to the PGMM–IN, HGMM–CN 

and HGMM–IN parameter spaces. Each model name relates to a 

projection. 

 

 

To make the text easier to read, we drop the 

suffixes of PGMM-CN and HGMM-IN for the 

remainder of the paper. That is, for the sake of 

consistency, PGMM stands for PGMM-CN and HGMM 

stands for HGMM-IN.  

We now evaluate the average gain in 

performance resulting from using PGMM instead of 

HGMM on average. Our methodology is to sample 

random matrices (4.1) from the related uniform 

distribution [5], and we note the log-gap 
)(

)(

1 

 k  for each 

of them. In order to imitate the real-world data, we 

discard any   for which 5.0a , db  or cb  . We 

report in Fig. 5 the empirical cumulative density 

function (cdf) that we obtain in our experiment. We also 

report in Table 3 the average cross-model error rates.  
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Fig. 5. The cdf of the log-gaps between PGMM and HGMM. 

 

 

 Base model parameters )(kr  

Proposals 

HGMM  

-IN 

HGMM 

 -CN 

PGMM 

-IN 

PGMM 

-CN 

HGMM-IN 0,489 0,477 0,486 0,475 

HGMM-CN 0,489 0,466 0,491 0,458 

PGMM-IN 0,489 0,477 0,482 0,468 

PGMM-CN 0,489 0,466 0,482 0,444 

 

Table 3. Average cross-model error rates )]([ ',  kkE . Each model 

name relates to a projection indexed by k or k’. 

 

 

Here are the conclusions that we have done: 

 

(i) the average log-gap is 1.216, what enables us to state 

that the PGMM should improve the HGMM by 22% on 

average; 

(ii) according to Fig. 5, the PGMM has a 15% chance to 

outperform HGMM by 25%, 10% chance to outperform 

by 50% and 5% to outperform by 100%; 

(iii) in our simulations, the maximum values of c  and d  

are inferior to a . That allows obtaining relevant 

parameters for describing the real-world systems. 

Without these limits, PGMM outperforms HGMM by 

39% on average; 

(iv) the study-case from Table 1 is the most 

disadvantageous for HGMM; even if parameters may 

not refer to real word, it shows that the effectiveness of 

the PGMM over HGMM may have no limit. 
 

 

 

 

5 Conclusion 
We show from the perspective of simulation 

experiments that the PGMM should improve the HGMM 

by 20% on average. Our future works will concern with 

the triplet Gaussian Markov models [6] and 

PGMM/TGMM parameter learning [7-9].   
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