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Abstract: In the present study, a numerical analysis on free convection Casson fluid flow from a spinning cone
in non-Darcy porous medium with radiation, partial slip, cross diffusion and viscous dissipation is considered.
The surface of the cone is heated under linear surface heat flux (LSHF). The boundary layer partial differential
equations were converted into a system of ordinary differential equations which were then solved using spectral
relaxation method (SRM). In this study, we demonstrate the accuracy of the SRM as an alternative method in
solving boundary value problems. The results obtained in this study were compared with others in the literature
and found to be in excellent agreement. The boundary layer velocity, temperature and concentration profiles are
computed for different values of the physical parameters. In particular, the effect of the Casson parameter, spin
parameter, Eckert number, Soret number, velocity slip factor, thermal slip factor and concentration slip factor on
velocity, temperature and concentration profiles was studied. It is shown that increasing the Casson parameter
decrease velocity profiles. Increasing the velocity slip factor tend to assist the flow, while increasing the thermal
and concentration slip factors tend to reduce temperature and concentration profiles respectively.
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1 Introduction
The problem of heat transfer in spinning objects is im-
portant due to its application in industry. In particular,
the design of automatic cooking machinery and move-
ment of automotive parts in engines. These designs
incorporate different solid shapes including spinning
cones immersed in lubricants. It is important to study
how the heat generated at these surfaces, the partial
slip due these lubricants, and the presence of solid
particles affects the ambient fluid. Other examples
arise in engineering, where double diffusion is seen
in the formation of microstructures, cooling of molten
metals and fluid which flows close to shrouded fins
[1]. Casson fluid flow can be buoyant driven and this
situation is found in many practical applications such
as soup simmering in a pot, effect of application of
heat on blood and synovial fluid in humans, flow of
sewage sludge on heated surfaces. Other applications
are found in metallurgy, drilling operations, manufac-
turing of paints, manufacturing pharmaceutical prod-
ucts [2]. It is therefore necessary to investigate the
flow of Casson fluid in different geometries under var-
ious conditions such as porous media and viscous dis-
sipation. Partial slip conditions at the boundary are
also necessary to investigate since this is mostly char-
acteristic of Casson fluid flow due to their lubrication

effects.
The study of free convection from a cone in a

Newtonian fluid was studied by Ece [3] who consid-
ered flow about a cone under mixed boundary condi-
tions and a magnetic field. This study investigated a
flow outside the cone which gave an insight in such
flows. Other similar studies of flows past cones were
conducted by Cheng [4] -[5], who considered various
situations such as Soret and Dufour effects, natural
convection flows in viscoelastic fluid. Among oth-
ers Alim [7] investigated pressure work effect and free
convection from a cone in viscoelastic fluid, Narayana
and Sibanda [8] investigated cross diffusion effects
and free convection from a cone, they studied heat
and mass transfer on this geometry, Awad [9] studied
convection from an inverted cone in a porous medium
with cross diffusion effects. Other cone studies were
conducted by Agarwal [10] who studied flow past a
cone at certain angles of attack. Other studies on
cone geometry include the works of Anilkumar et al.
[11],Takar et al.[12], Saleh et al [13] and Chamkha
[14].

The study of Casson fluid flow was conducted by
many authors, among others Mukhopadhyay and Ve-
jrravelu [15], Mukhopadhyay et al. [16], Nadeem et
al. [17], and Ramachandra et al. [18]. These stud-
ies considered the flow of Casson fluid on different
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geometries such as flow over a stretching sheet and
circular surfaces, others considered partial slip condi-
tions. They also considered blowing and suction situ-
ations on a circular geometry. These studies also con-
sidered diffusion of chemical species, porous media,
MHD flows and unsteady flows. This shows the im-
portance of studying this type of flow and most of the
studies used the well-known Runge-Kutta numerical
method solve their systems of equations. All of these
studies considered a similar constitutive equation for
Casson fluid.

Cross diffusion effects have been studied by
among others Hayat et al. [19] investigated heat and
mass transfer for Soret and Dufour effect on mixed
convection boundary layer flow over a stretching ver-
tical surface in a porous medium filled with viscoelas-
tic fluid. Cheng [6] studied Soret and Dufour ef-
fects on free convection boundary layer over a vertical
cylinder in a saturated porous medium. None of these
studies considered a spinning cone and partial slip on
cone geometry. Each of these studies considered dif-
ferent boundary conditions and used either the cubic
spline or the homotopy analysis methods.

In the present study we investigate the effects of
radiation in natural convection from a spinning cone
with partial slip in non-Darcy porous medium and
cross diffusion effects in Casson fluid with viscous
dissipation. The driving force in caused by tempera-
ture differences between the cone surface and the sur-
roundings. The present work is also a further develop-
ment of the work of Narayana et al. [1] in which the
linear surface temperature (LST) and linear surface
heat flux (LSHF) are considered. The study of Casson
fluid has not been widely investigated for heat transfer
past a rotating cone. The Darcian-drag force term and
the viscous dissipation source terms are introduced in
the governing equations. Similarity transformations
are used to convert the governing equations into a sys-
tem of partial differential equations which are then
solved by using the Runge-Kutta-Felhberg integration
scheme. The numerical method used is not only val-
idated by comparison to previous work by other au-
thors, but also by the use of the successive lineariza-
tion method (SLM). In this work we investigate the
effect of varying physical parameters on the velocity,
temperature and concentration profiles with the pre-
sentation of graphical illustrations.

2 Mathematical formulation

The steady, laminar, viscous and buoyancy driven
convection heat and mass transfer flow from a spin-
ning vertical cone with viscous dissipation and radi-
ation effects in a Casson fluid maintained at a non-
uniform temperature Ta (> T∞). The solute concen-
tration is considered to be Ca(> C∞) at the surface
of the cone and C∞ in the ambient fluid. Ω is the an-
gular velocity of the spinning cone, u, v and w are the
velocity components in the x, y and z respectively. g
is the acceleration due to gravity (see Figure 1).
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Figure 1: Schematic diagram of the spinning cone

The rheological equation of state for an isotropic
and incompressible flow of a Casson fluid is given as

τij =

(
µ

1
n
e + (τy/

√
2π)

1
n

)n
eij , |τij | > τy(1)

if |τij | < τy then π = 0, there is no flow

where µe is plastic dynamic viscosity of the Cas-
son fluid, τy is the yield stress of fluid, π is the prod-
uct of the component of deformation rate with itself,
namely, π = eijeij , eij is the (i, j)-th component of
the deformation rate. For n = 2 we have the simple
model for Casson fluid. In this paper we adopt the
value n = 1 as used in [15],[16],[18]. The governing
equations in this flow are given as;

∂

∂x
(ru) +

∂

∂y
(rv) = 0, (2)

u
∂u

∂x
+ v

∂u

∂y
− w2

x
= ν(1 +

1

β
)
∂2u

∂y2
− ν

K
u (3)

+gβT (T − T∞) cos γ + gβC(C − C∞) cos θ∗

u
∂w

∂x
+ v

∂w

∂y
+
uw

x
= ν(1 +

1

β
)
∂2w

∂y2
− ν

K
w(4)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ D̄

∂2C

∂y2
− 1

ρCp

∂qr
∂y

+
ν

ρCp
(1 +

1

β
)

(
∂u

∂y

)2

(5)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+ S̄

∂2T

∂y2
(6)

Where the radius of the cone r = x sin θ∗, ν is
kinematic viscosity of Casson fluid, β = µB

√
2πc/Py

is the non-Newtonian Casson parameter. α = k/ρCp
is the thermal diffusivity, k is thermal conductivity of
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the fluid, qr is the radiative heat flux, Cp is the spe-
cific heat. g is the acceleration due to gravity, βT
and βC are respectively the coefficients of thermal and
concentration expansions, T is the temperature of the
fluid, C is the solute concentration in the boundary
layer, D is the mass diffusivity, S̄ and D̄ are Soret and
Dufour coefficients respectively.

The Rosseland approximation for radiation may
be written as follows;

qr = − 4σ

3k∗
∂T 4

∂y
(7)

where σ is the Stefan-Boltzmann constant and k∗
is the absorption coefficient. If the temperature differ-
ence within the flow is such that T 4 may be expanded
in Taylor series about T∞ and neglecting higher pow-
ers we obtain T 4−4T 3

∞−3T 4
∞ and therefore the equa-

tion (5) can be written as

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+ D̄

∂2C

∂y2
+

16σT 3
∞

3ρCpk∗
∂2T

∂y2

The boundary conditions are given as

u = N0(1 +
1

β
)
∂u

∂y
, v = −va,

w = rΩ +R0(1 +
1

β
)
∂w

∂y
, T = Ta +K0

∂T

∂Y
,

C = Ca + F0
∂C

∂Y
, at y = 0, (8)

u,w → 0, T → T∞, C → C∞ as y →∞.(9)

where the subscripts a and∞ refer to surface the
free stream conditions respectively. We introduce the
non-dimensional variables

(X,Y,R) =

(
x, yGr

1
4 , r

L

)
, (U, V ) =

(
u, vGr

1
4

U0

)
,

W =
w

ΩL
, T̄ =

T − T∞
Ta − T∞

, C̄ =
C − C∞
Ca − C∞

, Da =
K

L2
,

U0 = [gβT (Ta − T∞) cosψL]
1
2 , Gr = (

U0L

ν
)2 (10)

The governing equations (2)-(6) reduce to

∂

∂X
(RU) +

∂

∂Y
(RV ) = 0, (11)

U
∂U

∂X
+ V

∂U

∂Y
− Re2

Gr

W 2

X
=

(
1 +

1

β

)
∂2U

∂Y 2

+T̄ +NC̄ −
(

1

DaGr
1
2

)
U, (12)

U
∂W

∂X
+ V

∂W

∂Y
+
UW

X
=

(
1 +

1

β

)
∂2W

∂Y 2

−
(

1

DaGr
1
2

)
W, (13)

U
∂T̄

∂X
+ V

∂T̄

∂Y
=

1

Pr

(
∂2T̄

∂Y 2
+Df

∂2C̄

∂Y 2

)
+

4K

3Pr

∂2T

∂Y 2
+ Ec

(
1 +

1

β

)(
∂U

∂Y

)2

,(14)

U
∂C̄

∂X
+ V

∂C̄

∂Y
=

1

Sc

(
∂2C̄

∂Y 2
+ Sr

∂2T̄

∂Y 2

)
. (15)

The non-dimensional parameters in equations
(11)-(15) are the rotational Reynolds number Re,
Grashof number Gr, the Darcy number Da, the
Prandtl number Pr, Dufour parameter Df , the
Eckert number Ec, the Schmidt number Sc and Soret
parameter Sr. These parameters are defined as

Re =
ΩL2

ν
, N =

βC
βT

(
Ca − C∞
Ta − T∞

)
,K =

4σ∗T 3
∞

k∗Gr
1
4

Pr =
ν

α
, Sc =

ν

D
, Ec =

U2
0

Cp(Twa − T∞)
,

Df =
D̄

α

(
Ca − C∞
Ta − T∞

)
, Sr =

S̄

D

(
Ta − T∞
Ca − C∞

)
.

The boundary conditions of system (11)-(15) are
given by

U = Sf

(
1 +

1

β

)
∂U

∂Y
, V = Vw, (16)

W = R+ Sg

(
1 +

1

β

)
∂W

∂Y
, T̄ = 1 + ST

∂T̄

∂Y
,

C̄ = 1 + Sco
∂C̄

∂Y
at Y = 0 (17)

U,W → 0, T̄ → 0, C̄ → 0, as Y →∞. (18)

Introducing the stream function ψ(X,Y ) and
similarity variables

U =
1

R

∂ψ

∂Y
and V = − 1

R

∂ψ

∂X
(19)

ψ(X,Y ) = XRf(Y ), W (X,Y ) = Rg(Y ),

T̄ (X,Y ) = Xθ(Y ), C̄(X,Y ) = Xφ(Y ).(20)
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using the stream function defined in (19) and sim-
ilarity variable in (20), Eqs. (11) together with bound-
ary conditions (16) reduces to the following system of
ordinary differential equations.

(
1 +

1

β

)
f ′′′ + 2ff ′′ − f ′2 + εg2 + θ

+Nφ− kpf ′ = 0,(21)(
1 +

1

β

)
g′′ + 2fg′ − 2f ′g − kpg = 0, (22)

(1 +
4

3
K)θ′′ + Pr(2fθ′ − f ′θ) +Dfφ

′′

+ EcPr

(
1 +

1

β

)
f ′′2 = 0, (23)

φ′′ + Sc(2fφ′ − f ′φ) + Srθ
′′ = 0 (24)

with boundary conditions;

Y = 0, f = fa, f ′ =

(
1 +

1

β

)
Sff

′′,

g = 1 +

(
1 +

1

β

)
Sgg

′, θ = 1 + ST θ
′,

φ = 1 + Scoφ
′, (25)

Y →∞, f ′ → 0, g → 0, θ → 0.φ→ 0. (26)

Where kp = 1/DaGr
1
2 is the Darcian-drag

force term, β is the Casson parameter and ε is
the spin parameter. In the above equations the
primes refer to the derivative with respect to Y ,
Sf = N0Gr

1
4 /L, Sg = M0Gr

1
4 /L, ST = kGr

1
4 /L

and Sco = F0Gr
1
4 /L are the non-dimensional

velocity, rotational, thermal and solutal slip param-
eters respectively. Sf = Sg = ST = Sco = 0,
corresponds to no-slip conditions. The parameter fa
is the blowing/suction parameter. The case fa < 0
represents blowing and fa > 0 represents suction.
The engineering parameters of interest are the local
skin friction coefficient and the local Nusselt number
which are defined as follows.

The shear stress at the surface of the cone is given
by

τa =
µ
(

1 + 1
β

)
U0

LGr−
1
4

Xf ′′(0) (27)

where µ is the coefficient of viscosity,
the skin friction coefficient is given by

Cf =
τa

1
2ρU

2
0

(28)

Using Eqs.(27) and (28) gives

CfGr
1
4 = 2(1 +

1

β
)Xf ′′(0). (29)

The heat transfer from the cone surface into the
fluid is given by

qa =
−k(Ta − T∞)

LGr−
1
4

Xθ′(0), (30)

k is the thermal conductivity of the fluid,
The Nusselt number under LST is given by

Nu =
L

k

qa
Ta − T∞

(31)

Eqs.(30) and (31) together with Eqns. (19) and (20) give

NuGr−
1
4 = −Xθ′(0). (32)

The mass flux at the cone surface into the fluid is
given by

Ja =
−D(Ca − C∞)

LGr−
1
4

Xφ′(0), (33)

The Sherwood number is given by

Sh =
L

D

Ja
Ca − C∞

(34)

Eqs.(33) and (34) together with Eqns. (19) and (20) give

ShGr−
1
4 = −Xφ′(0). (35)

3 Method of solution
In this section we present the implementation of the
spectral relaxation method for the problem of free
convection from a spinning cone with partial slip in
Casson fluid in non-Darcy porous medium with cross
diffusion and viscous dissipation. The method is de-
scribed in Motsa et al. [20] and implemented in the
works of Shateyi [24], Kameswaran [22] and Motsa
and Makukula [21]. The method is based on the
Gauss-Seidel method normally used to solve a system
of linear equations. The system of equations (21) can
be written as a numerical scheme.

f ′r+1 = pr, (36)(
1 +

1

β

)
p′′r+1 + 2fr+1p

′
r+1 − kppr+1 = p2r − εg2r

− θ −Nφr, (37)(
1 +

1

β

)
g′′r+1 + 2fr+1g

′
r+1 − 2pr+1gr+1

− kpgr+1 = 0, (38)

(1 +
4

3
K)θ′′r+1 + Pr(2fr+1θ

′ − pr+1θr+1)

= −Dfφ
′′
r − EcPr

(
1 +

1

β

)
(p′r+1)

2,(39)

φ′′r+1 + 2Scfr+1φ
′
r+1 − ScPr+1φr+1 = −Srθ′′(40)

with boundary conditions;
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f(0)r+1 = fw, p(0)r+1 =

(
1 +

1

β

)
Sfp(0)′r+1,

g(0)r+1 =

(
1 +

1

β

)
Sgg(0)′r+1,

θ(0)r+1 = 1 + ST θ(0)′r+1,

φ(0)r+1 = 1 + Scoφ(0)′r+1, (41)
pr+1(∞)→ 0, g(∞)r+1 → 0,

θ(∞)r+1 → 0, φ(∞)r+1 → 0. (42)
Applying the Chebyshev pseudo spectral method

on (36) - (42) as in Shateyi and Marewo [23]

3.1 Improving the convergence of the spec-
tral relaxation method

In this section we use the concept of successive over-
relaxation (SOR) to accelerate the convergence rate of
the spectral relaxation method (SRM). If the general
SRM scheme is given by equations,

Afr+1 = B. (43)
then the modified SRM scheme is defined as

Afr+1 = (1− ω)Afr + ωB. (44)
WhereAi andBi are matrices and ω is the conver-

gence controlling parameter. By applying this modi-
fied SRM in solving the system (21). Using the values
of the controlling parameter ω = 0.9 (accelerates con-
vergence), ω = 1(usual SRM scheme) and ω = 1.1
(slows down convergence). Figure 2 shows the decou-
pling error Ed against iterations.

4 Results and discussion
In this section we discuss the physics of the problem
by studying the effects of the physical parameters on
velocity, temperature and concentration profiles. We
also study the variation of both skin friction and lo-
cal Nusselt number with the physical parameters. For
validation of the numerical method used in this study,
results for the skin friction coefficient f ′′(0) and heat
transfer coefficient −θ′(0) for the Newtonian fluid
were compared to those of Narayana [1] and the Mat-
lab bvp4c, for 1/β → 0, ε = N = K = Df =
Sr = Sc = Ec = 0 and the Darcian drag force terms
−kpf ′ = kpg = 0. The comparison is shown in Ta-
bles 1 -2 and it is found to be in excellent agreement
to five decimal places.

Table 1: Comparison of the values of f ′′(0) and
−θ′(0) of Narayana [1] with the bvp4c.

Pr Narayana et al. [1] Present
f ′′(0)− θ′(0) f ′′(0)− θ′(0)

1 0.68150212 0.63886614 0.68148625 0.63885897
10 0.43327726 1.27552680 0.43327848 1.27552816

Table 2: Comparison of the values of f ′′(0) and
−θ′(0) of Narayana [1] with the bvp4c

Pr Narayana et al. [1] bvp4c
f ′′(0)− θ′(0) f ′′(0)− θ′(0)

1 0.68150212 0.63886614 0.68148334 0.63885473
10 0.43327726 1.27552680 0.43327820 1.27552877
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Figure 2: Effects of controlling parameter on decou-
pling error

In Figure 2, the SRM error reduces with the in-
creasing numer of iterations, showing the accuracy of
the spectral relaxation method (SRM). The decrease
in the error shows that the method is convergent and
give stale solutions. It is also shown that convergence
can be controlled obtaining results in a fewer numer
of iterations. The results obtained by this method are
discussed in table 3 and 4 and are compared with the
results obtained using the Matlab bvp4c and were
found to e in excellent agreement.

The problem of free convection Casson fluid flow
from a spinning cone in non-Darcy porous medium
with radiation, partial slip, cross diffusion and vis-
cous dissipation effects is solved numerically using
the spectral relaxation method (SRM). The results de-
picted in Table 3 are the results obtained by SRM and
bvp4c. A tolerance of 10−8 for both methods was
used. Comparison of the asic SRM (ω = 1) of the
skin friction coefficient against those SRM with suc-
cessive over relaxation (SOR) (ω = 0.9) and (ω =
1.1). The advantage of accelerating convergence is
noted in all cases in which the results are obtained
accurately in fewer iterations (see also Shateyi and
Marewo [24]). The values are generated at selected
values of the Darcian-drag force term kp, the Prandtl
number Pr, and the Casson parameter β. Increasing
kp and Pr decreases the skin friction coefficient while
increasing the Casson parameter increase skin friction
coefficient. In Table 4, the heat transfer coefficient de-
crease with decreasing Darcian-drag force term kp, ut
increases with increasing both Prandtl, Pr and Casson
parameter β.
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Table 3: Comparison of SRM solutions of the skin friction coefficient f ′′(0) against those of bvp4c.
kp Pr β SRM(basic) it SRM(SOR) bvp4c

(ω = 1)it (ω = 0.9)f ′′(0) f”(0)
0 1 2 100 47 0.68148334 0.68148334
1 1 2 66 40 0.55974072 0.55974072
2 1 2 46 35 0.48675875 0.48675875
3 1 2 40 33 0.43677770 0.43677770
1 7 2 50 35 0.40562674 0.40562674
1 8 2 48 33 0.39565072 0.39565072
1 9 2 48 33 0.38695722 0.38695722
1 1 2 61 38 0.35629327 0.35629327
1 1 5 62 37 0.43037422 0.43037422
1 1 9 63 39 0.49760348 0.49760348

Table 4: Comparison of SRM solutions of the heat transfer coefficient θ′(0) against those of bvp4c..
kp Pr β SRM(basic) it SRM(SOR) bvp4c

(ω = 1)it (ω = 0.9)f ′′(0) f”(0)
0 1 2 91 36 0.59446782 0.59446782
1 1 2 62 37 0.52386360 0.52386360
2 1 2 48 36 0.47594764 0.47594764
3 1 2 42 33 0.44000560 0.44000560
1 7 2 50 33 0.96287011 0.96287011
1 8 2 50 33 1.00136750 1.00136750
1 9 2 49 32 1.03638459 1.03638459
1 1 2 61 37 0.52386360 0.52386360
1 1 5 62 39 0.54308263 0.54308263
1 1 9 63 40 0.54968947 0.54968947
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Figure 3: Effects of spin parameter ε on velocity pro-
files

We study the behaviour of velocity, temperature
and concentration profiles of free convection Cas-
son fluid from a spinning cone emedded in porous
medium with viscous dissipation, a detailed numer-
ical calculation is done for different parameter val-
ues that descrie the flow and the results are shown
as graphs in Figures 3-12. In this study we do not
study the effects of Darcy number, Grashof number,
Prandtl number, Schmidt number and suction/blowing
parameters on velocity, temperature and concentration
profiles. These results are well-known and shown in
among others Ramachandra et al. [18], Shateyi [24],
Narayana et al. [1] and Ece [3]. Figure 3 shows the in-
fluence of the spin parameter ε on velocity profiles. In-
creasing the spin parameter assist the flow clse to the
surface of the cone. The velocity profiles are situated
close to the left side of the graph due to the presence
of the suction effect. A reverse effect is noted further
away from the surface, this is due to the coriolis effect
created y rotation. This effect cause the shrinking of
the oundary layer thickness.
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Figure 4: Effects of buoyancy parameter N on veloc-
ity profiles

Figure 4 shows the effect of buoyancy parame-
ter N on velocity profiles. Increasing the buoyancy

parameter assist the flow. The surface of the cone is
heated under linear heat flux causing the fluid close to
the surface to rise assisting motion. This effect is less
enhanced further away from the surface of the cone.
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Figure 5: Effects of velocity slip factor Sf on velocity
profiles

Figure 5 shows the effect of velocity slip factor Sf
on velocity profiles. Increasing the velocity slip fac-
tor assist the flow, this is characteristic of a luricated
surface. The case Sf = 0 referred to as the no-slip
condition shows a velocity profile similar to that re-
ported in Ece [3].
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Figure 6: Effects of Rotational slip factor Sg on ve-
locity profiles

Figure 6 shows the influence of rotational slip fac-
tor Sg on velocity profiles. Increasing the rotational
slip factor reduce velocity profiles. A slip in the per-
pendicular direction of flow reduce motion in the di-
rection of flow. This effect reduce the momentum
oundary layer thickness.
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Figure 7: Effects of Dufour parameter Df on temper-
ature profiles

Figure 7 depict the effect of Dufour number Df

on temperature profiles. Increasing the Dufour numer
increase temperature profiles. Increasing the Dufour
number is interpreted as increasing the concentration
gradient therey causing increase in thermal transport.
This effect is called diffusion-thermo. Movement of
soulte particles facilitate thermal transport.
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Figure 8: Effects of Eckert numberEc on temperature
profiles

Figure 8 shows the effect of Eckert number Ec
on temperature profiles. Increasing the Eckert number
increase the temperature profiles, this caused by the
heat generated within the fluid thereby increasing the
temperature of the fluid.
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Figure 9: Effects of thermal slip factor ST on temper-
ature profiles

Figure 9 shows the effect of thermal slip fac-
tor ST on temperature profiles. Increasing the ther-
mal slip factor decrease temperature profiles. Ther-
mal slip is associated with sudden temperature drop at
the surface of the cone thereby decreasing the thermal
boundary layer.
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Figure 10: Effects of Soret parameter Sr on concen-
tration profiles

Figure 10 shows the effect of Soret number Sr
on concentration profiles. Increasing the Soret num-
ber in interpreted as increasing the temperature gradi-
ent thereby facilitating solutal transport. This effect
is called thermal-diffusion or thermophoresis effect.
The thermophoretic force drive soulteparticles into the
oundary layer region causing the increase in the con-
centration profiles.
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Figure 11: Effects of Solutal slip factor ST on con-
centration profiles

Figure 11 shows the effect of solutal slip factor
ST on concentration profiles. Increasing the solutal
slip factor decrease concentration profiles. Solutal slip
is associated with siddent drop of solute at the surface
of the cone.
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Figure 12: Effects of Solutal slip factor ST on con-
centration profiles

Figure 12 shows the effect of Casson parameter β
on concentration profiles. Increasing the Casson pa-
rameter decrease concentration profiles. The increase
in the Casson parameter increase velocity profiles and
reduce concentration in the oundary layer.

5 Conclusion
The investigation presented in this analysis of effects
of radiation on free convection from a spinning cone
with partial slip in Casson fluid in non-Darcy porous
medium with cross diffusion and viscous dissipation
provides numerical solutions for the boundary veloc-
ity, heat and mass transfer. The coupled nonlinear
governing differential equations were solved using the
spectral relaxation method (SRM). The interesting re-

sults in this work are the consideration of partial slip
factores and the effect of spinning.

1. It is generally observed that increasing each
of the slip factors Sf , ST , Sco tend to assist
velocity, temperature and concentration profiles
respectively.

2. The reverse effects noted in the boundary layer
for oth velocity and concentration profiles are
caused y the presence of the combination of
suction, slip factors and spinning effects.

3. The spectral relaxation method (SRM) can
e used as an alternative method for solving
oundary value problems.

4. The advantage of the SRM is that it can be con-
trolled to otain accurate solutions in fewer itera-
tions.
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