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Abstract: Let G = (V, E) be a connected graph. An edge set F' C E is a 3-restricted edge cut, if G — F'is
disconnected and every component of G — F" has at least three vertices. The 3-restricted edge connectivity A3(G)
of G is the cardinality of a minimum 3-restricted edge cut of G. A graph G is called Az-optimal, if A\3(G) = &£3(G),
where £3(G) is the minimum number of edges between a connected subgraph A with three vertices and G — A.
A graph G is A3-connected, if G contains a 3-restricted edge cut. A As-connected graph G is said to be super-
A3, if every minimum 3-restricted edge cut isolates a component with exactly three vertices. It is analogous to
define k3(G) and k3-connected graph G for the case of vertex. A k3-connected graph G is said to be super-
k3, if k3(G) = &3(G) and the deletion of a minimum 3-restricted cut isolates a component with exactly three
vertices. Let G be a connected graph with girth ¢ > 4 and minimum degree 6 > 3. We show that: (1) If diameter
D(G) < g — 4, then G is super-A3. (2) If diameter D(G) < g — 5, then G is super-x3. Similar results are also
obtained relating the diameter, the girth and the super connectivity of a line graph.

Key—Words: 3-Restricted edge connectivity; Super-As; Super-+3

1 Introduction with one end in U and the other in V — U. And &, (G)
=min{|[U,V = U]| : U C V,|U| = k and G[U] is
It is well known that graph theory plays a key role connected}.

in the analysis and design of reliable or invulnerable Recall that for every graph G we have A < ¢,
networks. A network is often modeled by a graph where ¢ is the minimum degree of G. If A = 4, then
G = (V, E) with the vertices representing nodes such G is said to be maximally edge connected or \-
as processors or stations, and the edges representing optimal. In the definitions of A(G), no restrictions
links between the nodes. One fundamental consid- are imposed on the components of G — .S, where S
eration in the design of networks is reliability. Con- is an edge cut. To compensate for this shortcoming,
nectivity is a parameter to measure the reliability of it would seem natural to generalize the notion of the
networks. classical connectivity by imposing some conditions or
In this paper, we only consider simple graphs. restrictions on the components of G — S. Follow-
Let G = (V,E) be a connected graph. For a ver- ing this idea, k-restricted edge connectivity were pro-
tex v € V, N(v) is the set of all vertices adjacent posed in [3,4]. An edge set I’ C FE is said to be a
to v. The degree of a vertex v, denoted by d(v), is k-restricted edge cut, if G — F is disconnected and
the size of N(v). If u,v € V, then d(u,v) denotes every component of G — F' has at least k vertices.
the length of a shortest (u,v)-path. For X,Y C V, The k-restricted edge connectivity of GG, denoted
d(X,Y) denotes the distance between X and Y'; more by Ax(G), is the cardinality of a minimum k-restricted
formally, d(X,Y) = min{d(z,y) : for any z € edge cut of G. If |F| = A, then F is called a \g-
Xandanyy € Y} . Ifv € V,r > 0 is an integer, cut. Not all connected graphs have \;-cuts (k > 2),
then let N,(v) = {w € V : d(w,v) = r}, in partic- for example K1 ,_1. A graph G is A\j-connected, if
ular, Ni(v) = N(v). For X € V, N,(X) = {w € G contains a k-restricted edge cut. A Aj-connected

V i d(w,X) = r} where d(w, X) = d({w}, X), graph G is called \g-optimal, if \p(G) = & (G).
and N1(X) = N(X). We denote the diameter and An vertex set X is a k-restricted cut of G, if G—
girth by D and g, respectively, and write G — v for X is not connected and every component of G— X has
G — {v}. A path is called k-path, if its length is k. at least k vertices. The k-restricted connectivity
For U C V, G[U] is the subgraph of G induced by kk(G) (in short k) of G, is the cardinality of a min-
the vertex subset U, and [U, V — U] is the set of edges imum k-restricted cut of G. And X is called a xj-
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cut, if | X| = kg. Not all connected graphs have k-
cuts (k > 2), for example K ,—1. A graph G is k-
connected, if a kj-cut exists. For £ = 1, 2 we can see
[1, 2, 8]. We will study the case of k = 3.

For X ¢ V,v € V\ X and u € N(v). Let
us introduce the sets X,/ (v) = {z € N(v) —
d(z,X) =d(v, X) + 1}; X7 (v) = {2 € N(v) —

d(z,X) = d(v,X)}; X, (v) = {z € N(v) —u :
d(z,X) = d(v,X) — 1}. Clearly, X, (v), X (v)
and X, (v) form a partition of N(v) — w. And
X))+ X (0)] + |X, (0)] = d) — 1. 1
d(v) > 2, u,w eN()thenX+():_{ ()
{U,U)} d( 7X) - d(’U X) } Jw ) = {2 €
N(v) —{u,w} = d(z,X) = d(v, X)}; X (v) =
[z € N >—{uw} Az, X) = d(w, X) - 1},
Then X, (v), X, (v) and X w(v) form a parti-
tion ofN( ) — {u w} and | X (v)\ | X (V)| +
X, (0)] = d(v)

Wang et al.[7] obtain the following result for
A3(G).

Theorem 1.1. Let G be a simple connected graph of
order n > 6. If G is not a subgraph of any of the
graphs shown in Fig.1, then both \3(G) is well de-
fined and \3(G) < &(G).

(a)

(b)
Fig. 1

(c)

From this theorem we can see that if G is a con-
nected graph with girth g > 4 and 6 > 3, then G has
3-restricted edge cuts.

We also have the following results for A3(G) and
Iig(G).

Theorem 1.2. (1) [5] Let G be a A3-connected graph
with girth g > 4, minimum degree § > 3 and diameter
D. If D < g — 3, then G is As-optimal.

(2) [6] Let G be a connected graph with
girth g > 6, and minimum degree § > 3. Then G
is k3-connected and k3(G) < &3(G), if g > Tor § >
4.

(3) [6] Let G be a k3-connected graph with girth
g > 4, minimum degree 6 > 3 and diameter D. If
D < g —4, then r3(G) = &3(G).

In this paper, we investigate super- A3 connectivity
and super-x3 connectivity of graphs with girth g > 4
and minimum degree § > 3. Some sufficient condi-
tions for the graphs to be super- A3 (resp. super-x3) are
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given in Theorem 3.1, which depends on diameters of
the graphs and their line graphs.

In Section 2 we shall give some properties of 3-
restricted edge cuts and 3-restricted cuts of graphs, in
Section 3 we prove the sufficient conditions in Theo-
rem 3.1 for graphs to be super-\s (resp. super-x3).

2 Properties of 3-restricted edge cuts
and 3-restricted cuts of graphs

If G is a graph with girth g > 4, then every con-
nected subgraph of G with three vertices is a path xyz
of length two. Thus, &3(G) = min{d(z) + d(y) +
d(z) — 4 : zyz is a path of length two in G}.

Lemma 2.1. Let G be a connected graph with
girth g > 4, minimum degree 6 > 3 and {3(G). Let
X C V be a vertex cut with | X| < &(G) and C be
any connected component of G — X with |V (C)| > 3.
Then the following assertions hold:

(1) There exists an edge wv in C such that
d({u,v}.X) > (g — 4)/2).

(2) If g is odd and |V (C)| > 4, then there is a ver-
tex u € C with d(u,X) > (g — 5)/2 such that
|N(g—5)/2(u) N X| < 1.

Proof. For g = 4, 5,6, both assertions of the lemma
hold, since d(u, X) > 1 for all w in C and |V (C)| >
3. So suppose that g > 7 and let 4 = maz{d(u, X) :
u € V(C)}. Note that p > 1. If p > | (g9 — 2)/2],
then both assertions clearly hold. Thus, we assume
that 1 < [(g9 —4)/2].

(1) If 4 = 1, then the result holds. Thus assume
that p > 2.

Claim 1. There is an edge wv in C' such that
d({u,v}, X) =

We argue by contradiction. Suppose that each
vertex u in C at d(u, X) = p satisfies d(v, X) = p—1
forall v € N(u). As 0 > 3, take w,v € N(u), then
vuw is a 2-path in C. Thus d(v, X) = d(w, X) =
u — 1. Each vertex in N(X;(w)) and N (X (v))
is at distance p — 1 from X. Moreover, we have
|IN,—1(Xy (w)) N X| > | X, (w)|. Otherwise, there
are two vertices x1,z2 € X, (w) both at distance
p—1fromavertex z € N,_1(X, (w))NX. There is
a cycle going through {x1, w, x2, x} of length at most
2u < 2|(g —4)/2] < g — 4, contrary to the fact
that the length of a shortest cycle in G is equal to g.
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Similarly, we have

[Np—1(N(u) —v —w) N X[ > [N(u) — v —wl,
(N1 (X (0)) 0 X > [ X (v)],
N1 (X (w)) N X[ > [ X (w)],
[Ny—1(w) N X| = | X, (w)],
[Ny—1(v) N X[ = X, ()],

INu—1(N(X,] (w) —w) N X| > X, (w)],
[Nu-1(N(X] (v)) —v) N X| = [ X (v)].

Likewise, the sets N,,_1 (X, (w))NX, N1 (N (u)—
v — w) N X,N,1(X;(v)) N X,Ny—1(w) N
X, Np—1(v) N X, Ny (N (X (w)) —

N w) N X, and
N1 (N(X;f(v)) = v) N X are pairwise disjoint.
Hence we have

&(G) = [X|
> INu—1(Xy (w) N X+ [Ny—1(w) N X
+INy—1(Xy (v) N X[ +
[Ny—1(N(u) —v —w) N X[+

|Ny—1(v) N X|+
[N (N (X (w) — w) N X+
N1 (N (X, (v)) —v) N X]

> Xy ()] + [ Xy (w)] + X, (0)] +
[N (u) = v —w| + X, (v)| + | X, (w)]
+HX, (v)]

= d(u)+ d(w) + d(v) — 4 > &(G).

Thus, the above inequalities become equalities, yield-
ing

X = (Ny1(Xy (w)NX)U
(Ny—1(N(u) —v—w)NX)U
(N1 (X (0)) N X)
U(Npy—1(w) N X) U (Ny—1(v) N X)
(Va1 (N(X 7 (w) = w) N X) U
(N1 (N(X (v)) —v) N X). (1)
And

INy—1(N(u) —v—w)NX|=|N(u) —v—w;
[Nt (N (X (w) —w) N X[ =

IN(Xy (w)) = w| = | Xy (w)];
N1 (N (X (v) =) N X| = [N(X] (v)) =0

= | Xy (v)]. (2)
From (2) it follows that if | X, (w)| > 0, then every

vertex y € X, (w) has degree 2, which contradicts to
the fact that 6 > 3. Then X' (w) = @. Similarly,
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X,I(v) = @. Furthermore, (2) also implies that each
vertex © € N(u) — v — w has one unique neighbor in
X at distance p — 1, that is, | X, (z)| = 1. Similarly,
for the edge ux we obtain that X, (x) = &, which
implies that X[ (z) # @ because 6 > 3. Take a vertex
2’ € X (x), from (1) we conclude that there is a
cycle passing through {2/, x,u} and the vertex y €
N,—1(z")N X of length at most 2(p—1)+4 < g—1,
then there would be a cycle of length less than g, a
contradiction.

Claim 2. > [(g — 4)/2].

By contradiction, suppose that 4 < |[(g—4)/2| —
1. From Claim 1 we know there is an edge uv in C
such that d({u,v}, X) = p. In this case, X,/ (v) =
X, (u) = @. Then C has a 2-path uvw such that
dw,X)=pordw,X)=pn—1.

Firstly, assume that d(w,X) = p. Thus
we have X, (w) = @. Arguing as in Claim
1 we have |N,(X,,(v)) N X| > |X;,(v)| and
IN,(v) N X| > |Xg,(v)]. Furthermore, the
sets N, (X5, (v) N X, Ny(v) N X, N, (X7 (u) N
X, Ny(u)NX,N,(X; (w))NX and N, (w) N X are
pairwise disjoint. Therefore we have

&(G) = X |Nu (X (0)) N X[+ [Nu(v) N X|
[N (X5 (w) N X+ [Ny (u) N X|
[Nu(Xy (w)) N X+ [Ny (w) N X
| X (V)] + [ X (V)| + [ X5 (w)] +
X, (w)] + [ X5 (w)] + X, (w)]

d(u) + d(w) + d(v) — 4 > &(G).

Thus, the above inequalities become equalities, yield-
ing

v
v

v + + IV

X = (Nu(Xiw(U))mX) (NM(U)QX)U
(Nu(X5 (w)) N X) U (Ny(u) N X)) U
(Nu(Xy (w)) N X) U (Ny(w) N X) (3)
and
[Nu( X (v) N X[ = X, (V)]
|NW(Xy (w) N X| = [ X5 (u)],
[Nu(Xy (w)) N X] = | X5 (w)]. (4)

From (4) we know that every vertex z € X, (v) U
X (u) U X (w) has a unique neighbor at distance p
in X. As ¢ > 3, there exists a vertex 2z’ € N(z) N
N, (X) and 2’ € {u,v,w}, for every z € X, (v) U
X, (u) U X (w). From (3) it follows that there is a
cycle of length at most 2u1+5 < g — 1, contrary to the
fact that the length of a shortest cycle in G is equal to
g.

Secondly if d(w, X)) = p— 1, then it is analogous
to the case of d(w, X) = u

Volume 1, 2016



L. Guo, X. Guo

As a consequence of both Claim 1 and Claim 2
we conclude that there exists an edge uv in C' such
that d({u, v}, X) > [(g — 4)/2].

(2) Suppose now that u = (g — 5)/2 otherwise
by item (1) we are done. And we denote C'xy = {u €
V(C) : d(u,X) = (g — 5)/2}. By item (1) we can
take an edge uv in G[Cx]|.

Firstly, assume (N (u) —v)NCx # @ or (N (v)—
u) N Cx # &, say, (N(v) —u) N Cx # &. Notice
that X,/ (u) = X;F(w) = X, (v) = @ and that the
sets X (u), X, (u), X5 (w), X, (w), X,,,(v) and
X,,.,(v) are pairwise disjoint. We will prove it by con-
tradiction.

By contradiction, suppose that any vertex
u in Cx satisfies (g— 5)/2( nx > 2
Then we have |N(_s (X, (u) N X| >
X (W], INiy—sy/2(X i) 1 X| > 2\X, (o)
and [Ny s2(X, () T X| > 2/X; (w)].

)

Since
the sets Ng_5)/2(X, (1)) N X, Ng_7)/2(X, (u)) N
X, Nig—s5)2(Xe v

w() N X, Nig_z)2(Xpw() N

International Journal of Mathematical and Computational Methods

X, Nig—s5),2(X5 (w))NX and N(g_7)o(X, (w))NX
are pairwise disjoint, it follows that
&(G) = X
> |N(g—s5)/2(X, (u)) N X[+
[N(g-7)72(X, (u)) N X| +
IN(g—5)/2( X (v)) N X[ +
IN(g-7)/2(Xup (v)) N X[ +
|N(g—5)/2(Xy (w)) N X[ +
[Nig-7)/2(X, (w)) N X]|
> 21X, (w)| + 1X, (u)] + 2 X5, (v)] +
| X (0)] + 21X (w)] + | X, (w)]
> &(G) + X, (W) + | X (v)] + X (w)].
Then X (u) = X, (v) = X, (w) = @ and
X = (Nyg-5)2(u) NX) U(Ng-5)2(v) N X) U

(Ng—5)/2(w) N X). (5)

Furthermore, we can obtain |N(,_s5)/o(u) N X| =
[ Xy ()], [Nig—5)2(v) N X| = [Xg,(v)] and
|N(g—5)/2(w) N X| = |X, (w)|. This means that
w=(g—5)/2 >2 Asd > 3, we have [N(z) N
(Cx —w)| > d(z) —2 > 1foral z € X, (u)
(Otherwise a cycle of length at most g — 2 would ap-
pear). Take a vertex z € X, (u) and consider a vertex
z' € N(z)N(Cx —u). Then from (5) a cycle of length
at most g — 1 would appear, a contradiction.
Secondly, if (N (u) —v) NCx = @ and (N (v) —

u) N Cx = @, then take a vertex w in N(v) with
d(w, X) = (g — 7)/2. Hence uvw is a 2-path in C, it
is analogous to the above case. O
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Let G = (V,E) be a Asz-connected graph. An
arbitrary Az-cut F' can be denoted by [V (C), V(C)],
where C and C are the only two components of G—F'.
There are X C V(C)andY C V(C) such that X UY
is the set of the end vertices of [V (C), V(C)], and so
[V(C),V(O)] = [X,Y].

A A3-connected graph G is said to be super-As, if
(G is Az-optimal and every minimum 3-restricted edge
cut isolates a component with exactly three vertices.
A rk3-connected graph G is said to be super-rs, if
k3(G) = &3(G) and the deletion of each minimum 3-
restricted cut isolates a component with exactly three
vertices.

Lemma 2.2. Let G be a connected graph with girth
g > 6, and minimum degree § > 3. Let [V (C), V(C)]
= [X,Y] be a As-cut. Then the following assertions
hold:

(1) If V(C) = X, then G is super-s.

(2) If G is not super-As, then C'— X has a component
with at least three vertices.

Proof. Since g > 6 and § > 3, by Theorem 1.1 G is
A3-connected.

(1) Suppose that V(C) = X, then each vertex of
C'is incident with some edges of [ X, Y]. If |[V(C)| =
3, then we are done. So assume that |V (C)| > 4. Let
uvw be a 2-path of C'. Because § > 3, we assume
that | X (u)| > 1. Since girth g > 6, thus arguing as
before, we have

&(G) = M(G) = |[X, Y]]
> w, Y[ + [, Y]] + |[w, Y|
+ Xy (w), Y]] + [ X (v), Y|
+ X, (w), Y]]
> |, Y[+ [0, Y]] + |[w, Y]] +
| X5 (W) + [ X (0)] + | X5 (w)]
> 34du)—1+dv) —2+dw)—
> §3(G),

which is a contradiction.

(2) By item (1) we have C' — X # &. Suppose
that any component of C'— X has at most two vertices.
Let C1, Cy, - - -, Ck be the components of C' — X.

Case 1. Each component C; satisfies |C;| = 1.

Take Cy from Cy,Cy, -+ ,Cg. Let C1 = {v}.
Then N(v) € X. And 6 > 3, we pick u,w € N(v),
and thus uvw is a 2-path in C'. Arguing as item (1),
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we have
&(G) = M(G) =|[X,Y]|
> [[N(u) = v, Y]+ [[N(w) —v,Y]| +
[N (v) —u—w, Y]]
> |N(u) —v|+ |N(w) —v|+
|IN(v) —u — w]
= d(u) +d(v)+dw) —4 > &(G).
It follows that | [N (u) —v, Y]| = [N (u) —v|, |[N (v) —
w—w,Y]| = [N(v) —u~ |, [[N(w) -~ v,Y]] =
IN(w) —v|and X = (N(u) —v) U (N(v) —u —
w) U (N(w) — v). Hence [{u,w},Y] = @, which is

a contradiction.
Case 2. There is a component C; with |C| = 2.
Assume that V(C) = {u,v}. Then C; = Ko,
and N(u) —v € X,N(v) —u C X. Take w €
X N (N(v) —u). Then wvw is a 2-path in C. As
g > 6, arguing as in (1), we have

International Journal of Mathematical and Computational Methods

&(G) = A(G) =|[[X.Y]|
> [[N(uw) =0, Y]+ [[N(v) —u —w,Y]| +
[[(N(w) =v) N X, Y]] + [[w, Y]]
= d(u) +d(v) +d(w) — 4 > &(G).
It follows that | [N (u) —v, Y]| = |N(u) —v|, |[N (v) —
u—w,Y]| = |N(v)—u—wl|,|[[(N(w)—v)NX, Y] =
|(N(w)—v)NX|and X = (N(u)—v)U(N(v)—u—
w)U((N(w) —v)NX)U{w}. Therefore, for any = €

(N(u)—v)U(N(w)—u—w)U((N(w)—v)NX), we
have |[z,Y]| = 1. Since g > 6 and 0 > 3, it follows
that N(xz) N (X —z) = @. So x is adjacent to some
Ci’s (2 <i<k). Ifthereisa C; = {y} such thaty €
N(z),then N(y) € X. Asg > 6and 6 > 3, we have
IN(y) N (N () = v)] < 1,IN(y) N (N(0) — )] < 1
and |[N(y) N (N(w) N X)| < 1.

Without loss of generality, we assume that
[N ()N (N (w) )] = 1, then N (y) (N (v) —u) =
&, {u,v} ¢ N(y), and we have |N(y) N (N(u) —
v)| > 2. There is a cycle with length smaller than g,
a contradiction. If |[N(y) N (N(w) N X)| = 0, then
N ()N (N () —v)] = 2or [N(y) (N (0)—w)] > 2
There is also a cycle of length smaller than g, which
is impossible.

If there is a |C;| = 2 which z is adjacent to, then

it is analogous to the case of |C;| = 1. We discuss
the neighbors of each vertex in Cj, we can obtain the
required result. O

Recall that in the line graph L(G) of a graph G,
each vertex represents an edge of (7, and two vertices
in a line graph are adjacent if and only if the corre-
sponding edges of GG are adjacent. Let us consider the
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edges z1y1, x2y2 € F(G). The distance between the
corresponding vertices of L(G) satisfies

=dc({z1, 11}, {22, 92})+1,  (6)

1 < D(L(G)) <

dr@)(T191, T292)

which is useful to prove that D(G) —
D(G) + 1.

3 Some sufficient conditions for
graphs to be super-\; (resp. super-

K3)
Now, we will show Theorem 3.1 by contradiction.

Theorem 3.1. Let G be a connected graph with girth
g > 4 and minimum degree 5 > 3. The following
assertions hold:

(1) If D(G) < g — 4, then G is super-As.

(2) If D(G) < g — 5, then G is super-ks.

(3) If the diameter of the line graph D(L(G)) <
g — 4, then G is super-As.

(4) If the diameter of the line graph D(L(G)) <
g — b, then G is super-Ks.

Proof. Since g > 4, clearly G is different from the
graphs in Fig.1. Thus, by Theorem 1.1, G is As-
connected. Moreover, if g € {4,5,6}, then theorem
clearly holds. So we assume that g > 7. By part (2)
of Theorem 1.2, GG is k3-connected.

(1) From Theorem 1.2 it follows that A3 = &s.
Assume that G is not super-\3. Let [V(C),V(C)] =
[X,Y] be a Ag-cut with [V (C)| > 4,|V(C)| > 4. By
Lemma 2.2 we know that both C — X and C — Y
contain a connected component say H and K, respec-
tively, of cardinality at least three vertices. Hence both
X and Y are cutsets with | X, |Y| < &(G). From
Lemma 2.1 there exist two vertices v € V(H) and
uw € V(K) such that g — 4 > D(G) > d(u,u) >
dlu, X)+1+d(w,Y) >2|(g —4)/2] + 1, which is
a contradiction if g is even.

And for g odd all the inequalities become equal-
ities. This means that max{d(u, X) : v € V(H)} =
(9 —5)/2 and max{d(u,Y) : w € V(K)} = (g —
5)/2. Thus by Lemma 2.1, we can find u € V(H)
with d(u, X) = (g — 5)/2 such that N(,_z)/5(u) N
X = {x} for some x € X; and we can find
) with d(ﬂ Y) = (g — 5)/2 such that
Ng—5)2(@) NY = {7} for some T € Y. As
d(u,u) = g — 4, it follows that 2z € [X,Y]. Clearly
we can find a vertex v € N(u) with d(v,X) =
(g — 5)/2, because otherwise |N(4_s)/2(u) N X[ >
|N(u)] > 2. Since d(v,u) = g — 4 we must have
T € Nig_s)/2(v) or T € Ny_3)/5(v). As a conse-
quence, the path from u to ¥ together with the path
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from v to T and the edge uv form a cycle of length at
most g — 2, which is a contradiction.

(2) From Theorem 1.2 it follows that k3 = &s.
Assume that (G is not super-x3. Let X be an any x3-
cut and consider two connected components C, C' of

G — X with |V(C)| > 4,|V(C)| > 4. From Lemma
2.1 there exist two vertices u € V(C') and w € V(C)
such that g — 5 > D(G) > d(u,u) > d(u,X) +
d(u,X) > 2[(g—4)/2|, which is a contradiction if ¢
is even.

And for g odd all the inequalities become equal-
ities. This means that max{d(u, X) : v € V(C)} =
(9—5)/2and max{d(w,Y) : u € V(C)} = (g—5)/2.
Thus by Lemma 2.1, we can find v € V(C) with
d(u, X) = (g — 5)/2 such that N(g,5)/2(u) NX =
{x} for some z € X; and we can find w € V(C) with
d(w,Y) = (g—5)/2 such that N(,_z) o (u)NY = {7}
forsome T € Y. As d(u,u) = g — 5, it follows that
x = Z. Clearly we can find a vertex v € N (u) with
d(v,X) = (g—>5)/2. Since d(v,u) = g — 5 we must
have z € N,_5)/2(v). As a consequence, the path
from u to x together with the path from v to x and the
edge uv form a cycle of length at most g — 4, which is
a contradiction.

(3) Since D(L(G)) < g — 4, then the diame-
ter D(G) < g — 3, which means that \3 = &3 by
Theorem 1.2. Assume that G is not super-A3. Let
[V(C),V(C)] = [X,Y] be a A\3-cut with |V (C)| >
4,|V(C)| > 4. By Lemma 2.2 we know that both
C — X and C — Y contain a connected compo-
nent say H and K, respectively, of cardinality at
least three. Hence both X and Y are cutsets with
| X, Y| < &(G). From Lemma 2.1 there exists an
edge uv in C' — X and there exist an edge & v in
C - Y satisfying d({u,v}, X) > [(g — 4)/2] and
d({uw,v},Y) > |(g — 4)/2]. Then by using (6) we
have

9-42D(L@) > dyglw.uv)
da({u,v},{w,7})+1
dG({uvv}vX) +1+
dG<Y7 {ﬂa ﬁ}) +1
20(g - 4)/2] +2,

v

v

which is impossible.

(4) Now D(L(G)) < g — 5. Thus the diameter
D(G) < g—4, which means that k3 = &3 by Theorem
1.2. Assume that G is not super-x3. Let X be an
any rs3-cut and consider two connected components
C,C of G — X with |[V(C)| > 4,|V(C)| > 4. From
Lemma 2.1 there exists an edge uv in C'— X and there
exists an edge u v in C' — X satisfying d({u, v}, X) >
(g — 4)/2] and d({@, 5}, X) > [(g — 4)/2]. Then
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by using (6) we have

g—>52> D(L(G)) > dL(G)(U’U,ﬂU)
= de({u,v},{u,v})+1
> da({u,v}, X) + da(X,{u,v})
+1
> 2l(g—-4)/2]+1,
which is impossible. O
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