Super- λ_3 and super- κ_3 graphs on girth and diameter

Litao Guo School of Applied Mathematics Xiamen University of Technology Xiamen Fujian 361024 P.R.China Itguo2012@126.com Xiaofeng Guo School of Mathematical Sciences Xiamen University Xiamen Fujian 361005 P.R.China xfguo@xmu.edu.cn

Abstract: Let G = (V, E) be a connected graph. An edge set $F \subset E$ is a 3-restricted edge cut, if G - F is disconnected and every component of G - F has at least three vertices. The 3-restricted edge connectivity $\lambda_3(G)$ of G is the cardinality of a minimum 3-restricted edge cut of G. A graph G is called λ_3 -optimal, if $\lambda_3(G) = \xi_3(G)$, where $\xi_3(G)$ is the minimum number of edges between a connected subgraph A with three vertices and G - A. A graph G is λ_3 -connected, if G contains a 3-restricted edge cut. A λ_3 -connected graph G is said to be super- λ_3 , if every minimum 3-restricted edge cut isolates a component with exactly three vertices. It is analogous to define $\kappa_3(G)$ and κ_3 -connected graph G for the case of vertex. A κ_3 -connected graph G is said to be super- κ_3 , if $\kappa_3(G) = \xi_3(G)$ and the deletion of a minimum 3-restricted cut isolates a component with exactly three vertices. Let G be a connected graph with girth $g \ge 4$ and minimum degree $\delta \ge 3$. We show that: (1) If diameter $D(G) \le g - 4$, then G is super- λ_3 . (2) If diameter $D(G) \le g - 5$, then G is super- κ_3 . Similar results are also obtained relating the diameter, the girth and the super connectivity of a line graph.

Key–Words: 3-Restricted edge connectivity; Super- λ_3 ; Super- κ_3

1 Introduction

It is well known that graph theory plays a key role in the analysis and design of reliable or invulnerable networks. A network is often modeled by a graph G = (V, E) with the vertices representing nodes such as processors or stations, and the edges representing links between the nodes. One fundamental consideration in the design of networks is reliability. Connectivity is a parameter to measure the reliability of networks.

In this paper, we only consider simple graphs. Let G = (V, E) be a connected graph. For a vertex $v \in V$, N(v) is the set of all vertices adjacent to v. The degree of a vertex v, denoted by d(v), is the size of N(v). If $u, v \in V$, then d(u, v) denotes the length of a shortest (u, v)-path. For $X, Y \subset V$, d(X, Y) denotes the distance between X and Y; more formally, $d(X,Y) = \min\{d(x,y) : \text{ for any } x \in$ X and any $y \in Y$. If $v \in V, r \ge 0$ is an integer, then let $N_r(v) = \{w \in V : d(w, v) = r\}$, in particular, $N_1(v) = N(v)$. For $X \subset V$, $N_r(X) = \{w \in$ V : d(w, X) = r where $d(w, X) = d(\{w\}, X)$, and $N_1(X) = N(X)$. We denote the diameter and girth by D and g, respectively, and write G - v for $G - \{v\}$. A path is called k-path, if its length is k. For $U \subseteq V$, G[U] is the subgraph of G induced by the vertex subset U, and [U, V - U] is the set of edges

with one end in U and the other in V - U. And $\xi_k(G) = \min\{|[U, V - U]| : U \subset V, |U| = k \text{ and } G[U] \text{ is connected}\}.$

Recall that for every graph G we have $\lambda < \delta$, where δ is the minimum degree of G. If $\lambda = \delta$, then G is said to be maximally edge connected or λ *optimal.* In the definitions of $\lambda(G)$, no restrictions are imposed on the components of G - S, where S is an edge cut. To compensate for this shortcoming, it would seem natural to generalize the notion of the classical connectivity by imposing some conditions or restrictions on the components of G - S. Following this idea, k-restricted edge connectivity were proposed in [3,4]. An edge set $F \subset E$ is said to be a k-restricted edge cut, if G - F is disconnected and every component of G - F has at least k vertices. The k-restricted edge connectivity of G, denoted by $\lambda_k(G)$, is the cardinality of a minimum k-restricted edge cut of G. If $|F| = \lambda_k$, then F is called a λ_k *cut*. Not all connected graphs have λ_k -cuts ($k \geq 2$), for example $K_{1,n-1}$. A graph G is λ_k -connected, if G contains a k-restricted edge cut. A λ_k -connected graph G is called λ_k -optimal, if $\lambda_k(G) = \xi_k(G)$.

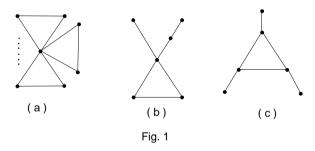
An vertex set X is a k-restricted cut of G, if G-X is not connected and every component of G-X has at least k vertices. The k-restricted connectivity $\kappa_k(G)$ (in short κ_k) of G, is the cardinality of a minimum k-restricted cut of G. And X is called a κ_k -

cut, if $|X| = \kappa_k$. Not all connected graphs have κ_k cuts $(k \ge 2)$, for example $K_{1,n-1}$. A graph G is κ_k connected, if a κ_k -cut exists. For k = 1, 2 we can see [1, 2, 8]. We will study the case of k = 3.

For X
ightarrow V, v
ightarrow V
ightarrow X and u
ightarrow N(v). Let us introduce the sets $X_u^+(v) = \{z
ightarrow N(v) - u :$ $d(z, X) = d(v, X) + 1\}; X_u^-(v) = \{z
ightarrow N(v) - u :$ $d(z, X) = d(v, X) + 1\}; X_u^-(v) = \{z
ightarrow N(v) - u :$ $d(z, X) = d(v, X) - 1\}$. Clearly, $X_u^+(v), X_u^-(v)$ and $X_u^-(v)$ form a partition of N(v) - u. And $|X_u^+(v)| + |X_u^-(v)| = d(v) - 1$. If $d(v) \ge 2, u, w
ightarrow N(v)$, then $X_{uw}^+(v) = \{z
ightarrow N(v) - \{u, w\} : d(z, X) = d(v, X) + 1\}; X_{uw}^-(v) = \{z
ightarrow N(v) - \{u, w\} : d(z, X) = d(v, X)\}; X_{uw}^-(v) =$ $\{z
ightarrow N(v) - \{u, w\} : d(z, X) = d(v, X) + 1\}$. Then $X_{uw}^+(v), X_{uw}^-(v)$ and $X_{uw}^-(v)$ form a partition of $N(v) - \{u, w\}$, and $|X_{uw}^+(v)| + |X_{uw}^-(v)| + |X_{uw}^-(v)| = d(v) - 2$.

Wang et al.[7] obtain the following result for $\lambda_3(G)$.

Theorem 1.1. Let G be a simple connected graph of order $n \ge 6$. If G is not a subgraph of any of the graphs shown in Fig.1, then both $\lambda_3(G)$ is well defined and $\lambda_3(G) \le \xi_3(G)$.



From this theorem we can see that if G is a connected graph with girth $g \ge 4$ and $\delta \ge 3$, then G has 3-restricted edge cuts.

We also have the following results for $\lambda_3(G)$ and $\kappa_3(G)$.

Theorem 1.2. (1) [5] Let G be a λ_3 -connected graph with girth $g \ge 4$, minimum degree $\delta \ge 3$ and diameter D. If $D \le g - 3$, then G is λ_3 -optimal.

(2) [6] Let G be a connected graph with girth $g \ge 6$, and minimum degree $\delta \ge 3$. Then G is κ_3 -connected and $\kappa_3(G) \le \xi_3(G)$, if $g \ge 7$ or $\delta \ge 4$.

(3) [6] Let G be a κ_3 -connected graph with girth $g \ge 4$, minimum degree $\delta \ge 3$ and diameter D. If $D \le g - 4$, then $\kappa_3(G) = \xi_3(G)$.

In this paper, we investigate super- λ_3 connectivity and super- κ_3 connectivity of graphs with girth $g \ge 4$ and minimum degree $\delta \ge 3$. Some sufficient conditions for the graphs to be super- λ_3 (resp. super- κ_3) are given in Theorem 3.1, which depends on diameters of the graphs and their line graphs.

In Section 2 we shall give some properties of 3restricted edge cuts and 3-restricted cuts of graphs, in Section 3 we prove the sufficient conditions in Theorem 3.1 for graphs to be super- λ_3 (resp. super- κ_3).

2 Properties of 3-restricted edge cuts and 3-restricted cuts of graphs

If G is a graph with girth $g \ge 4$, then every connected subgraph of G with three vertices is a path xyz of length two. Thus, $\xi_3(G) = \min\{d(x) + d(y) + d(z) - 4 : xyz$ is a path of length two in $G\}$.

Lemma 2.1. Let G be a connected graph with girth $g \ge 4$, minimum degree $\delta \ge 3$ and $\xi_3(G)$. Let $X \subseteq V$ be a vertex cut with $|X| \le \xi_3(G)$ and C be any connected component of G - X with $|V(C)| \ge 3$. Then the following assertions hold:

(1) There exists an edge uv in C such that $d(\{u, v\}, X) \ge |(q-4)/2|.$

(2) If g is odd and $|V(C)| \ge 4$, then there is a vertex $u \in C$ with $d(u, X) \ge (g - 5)/2$ such that $|N_{(g-5)/2}(u) \cap X| \le 1$.

Proof. For g = 4, 5, 6, both assertions of the lemma hold, since $d(u, X) \ge 1$ for all u in C and $|V(C)| \ge$ 3. So suppose that $g \ge 7$ and let $\mu = max\{d(u, X) :$ $u \in V(C)\}$. Note that $\mu \ge 1$. If $\mu \ge \lfloor (g-2)/2 \rfloor$, then both assertions clearly hold. Thus, we assume that $\mu \le \lfloor (g-4)/2 \rfloor$.

(1) If $\mu = 1$, then the result holds. Thus assume that $\mu \ge 2$.

Claim 1. There is an edge uv in C such that $d(\{u, v\}, X) = \mu$.

We argue by contradiction. Suppose that each vertex u in C at $d(u, X) = \mu$ satisfies $d(v, X) = \mu - 1$ for all $v \in N(u)$. As $\delta \geq 3$, take $w, v \in N(u)$, then vuw is a 2-path in C. Thus $d(v, X) = d(w, X) = \mu - 1$. Each vertex in $N(X_u^+(w))$ and $N(X_u^+(v))$ is at distance $\mu - 1$ from X. Moreover, we have $|N_{\mu-1}(X_u^=(w)) \cap X| \geq |X_u^=(w)|$. Otherwise, there are two vertices $x_1, x_2 \in X_u^=(w)$ both at distance $\mu - 1$ from a vertex $x \in N_{\mu-1}(X_u^=(w)) \cap X$. There is a cycle going through $\{x_1, w, x_2, x\}$ of length at most $2\mu \leq 2\lfloor (g-4)/2 \rfloor \leq g-4$, contrary to the fact that the length of a shortest cycle in G is equal to g.

Similarly, we have

$$\begin{split} |N_{\mu-1}(N(u) - v - w) \cap X| &\geq |N(u) - v - w|, \\ |N_{\mu-1}(X_u^{=}(v)) \cap X| &\geq |X_u^{=}(v)|, \\ |N_{\mu-1}(X_u^{=}(w)) \cap X| &\geq |X_u^{-}(w)|, \\ |N_{\mu-1}(w) \cap X| &\geq |X_u^{-}(w)|, \\ |N_{\mu-1}(v) \cap X| &\geq |X_u^{-}(v)|, \\ |N_{\mu-1}(N(X_u^{+}(w)) - w) \cap X| &\geq |X_u^{+}(w)|, \\ |N_{\mu-1}(N(X_u^{+}(v)) - v) \cap X| &\geq |X_u^{+}(v)|. \end{split}$$

Likewise, the sets $N_{\mu-1}(X_u^{=}(w)) \cap X$, $N_{\mu-1}(N(u) - v - w) \cap X$, $N_{\mu-1}(X_u^{=}(v)) \cap X$, $N_{\mu-1}(w) \cap X$, $N_{\mu-1}(v) \cap X$, $N_{\mu-1}(N(X_u^+(w)) - w) \cap X$, and $N_{\mu-1}(N(X_u^+(v)) - v) \cap X$ are pairwise disjoint. Hence we have

$$\begin{aligned} \xi_{3}(G) &\geq |X| \\ &\geq |N_{\mu-1}(X_{u}^{=}(w)) \cap X| + |N_{\mu-1}(w) \cap X| \\ &+ |N_{\mu-1}(X_{u}^{=}(v)) \cap X| + \\ &|N_{\mu-1}(N(u) - v - w) \cap X| + \\ &|N_{\mu-1}(v) \cap X| + \\ &|N_{\mu-1}(N(X_{u}^{+}(w)) - w) \cap X| + \\ &|N_{\mu-1}(N(X_{u}^{+}(v)) - v) \cap X| \\ &\geq |X_{u}^{=}(w)| + |X_{u}^{-}(w)| + |X_{u}^{=}(v)| + \\ &|N(u) - v - w| + |X_{u}^{-}(v)| + |X_{u}^{+}(w)| \\ &+ |X_{u}^{+}(v)| \\ &= d(u) + d(w) + d(v) - 4 \geq \xi_{3}(G). \end{aligned}$$

Thus, the above inequalities become equalities, yield-ing

$$X = (N_{\mu-1}(X_{u}^{=}(w)) \cap X) \cup (N_{\mu-1}(N(u) - v - w) \cap X) \cup (N_{\mu-1}(X_{u}^{=}(v)) \cap X) \cup (N_{\mu-1}(w) \cap X) \cup (N_{\mu-1}(v) \cap X) \cup (N_{\mu-1}(v) \cap X) \cup (N_{\mu-1}(N(X_{u}^{+}(w)) - w) \cap X) \cup (N_{\mu-1}(N(X_{u}^{+}(v)) - v) \cap X).$$
(1)

And

$$|N_{\mu-1}(N(u) - v - w) \cap X| = |N(u) - v - w|;$$

$$|N_{\mu-1}(N(X_u^+(w)) - w) \cap X| =$$

$$|N(X_u^+(w)) - w| = |X_u^+(w)|;$$

$$|N_{\mu-1}(N(X_u^+(v)) - v) \cap X| = |N(X_u^+(v)) - v|$$

$$= |X_u^+(v)|.$$
(2)

From (2) it follows that if $|X_u^+(w)| > 0$, then every vertex $y \in X_u^+(w)$ has degree 2, which contradicts to the fact that $\delta \ge 3$. Then $X_u^+(w) = \emptyset$. Similarly, $X_u^+(v) = \emptyset$. Furthermore, (2) also implies that each vertex $x \in N(u) - v - w$ has one unique neighbor in X at distance $\mu - 1$, that is, $|X_u^-(x)| = 1$. Similarly, for the edge ux we obtain that $X_u^+(x) = \emptyset$, which implies that $X_u^=(x) \neq \emptyset$ because $\delta \ge 3$. Take a vertex $x' \in X_u^=(x)$, from (1) we conclude that there is a cycle passing through $\{x', x, u\}$ and the vertex $y \in N_{\mu-1}(x') \cap X$ of length at most $2(\mu-1)+4 \le g-1$, then there would be a cycle of length less than g, a contradiction.

Claim 2. $\mu \ge |(g-4)/2|$.

By contradiction, suppose that $\mu \leq \lfloor (g-4)/2 \rfloor - 1$. 1. From Claim 1 we know there is an edge uv in Csuch that $d(\{u, v\}, X) = \mu$. In this case, $X_u^+(v) = X_v^+(u) = \emptyset$. Then C has a 2-path uvw such that $d(w, X) = \mu$ or $d(w, X) = \mu - 1$.

Firstly, assume that $d(w, X) = \mu$. Thus we have $X_v^+(w) = \varnothing$. Arguing as in Claim 1 we have $|N_\mu(X_{uw}^=(v)) \cap X| \ge |X_{uw}^=(v)|$ and $|N_\mu(v) \cap X| \ge |X_{uw}^-(v)|$. Furthermore, the sets $N_\mu(X_{uw}^=(v)) \cap X, N_\mu(v) \cap X, N_\mu(X_v^=(u)) \cap$ $X, N_\mu(u) \cap X, N_\mu(X_v^=(w)) \cap X$ and $N_\mu(w) \cap X$ are pairwise disjoint. Therefore we have

$$\begin{split} \xi_{3}(G) \geq |X| &\geq |N_{\mu}(X_{uw}^{=}(v)) \cap X| + |N_{\mu}(v) \cap X| \\ &+ |N_{\mu}(X_{v}^{=}(u)) \cap X| + |N_{\mu}(u) \cap X| \\ &+ |N_{\mu}(X_{v}^{=}(w)) \cap X| + |N_{\mu}(w) \cap X| \\ &\geq |X_{uw}^{=}(v)| + |X_{uw}^{-}(v)| + |X_{v}^{=}(u)| + \\ &|X_{v}^{-}(u)| + |X_{v}^{-}(w)| + |X_{v}^{-}(w)| \\ &= d(u) + d(w) + d(v) - 4 \geq \xi_{3}(G). \end{split}$$

Thus, the above inequalities become equalities, yield-ing

$$X = (N_{\mu}(X_{uw}^{=}(v)) \cap X) \cup (N_{\mu}(v) \cap X) \cup (N_{\mu}(X_{v}^{=}(u)) \cap X) \cup (N_{\mu}(u) \cap X) \cup (N_{\mu}(X_{v}^{=}(w)) \cap X) \cup (N_{\mu}(w) \cap X)$$
(3)

and

$$|N_{\mu}(X_{uw}^{=}(v)) \cap X| = |X_{uw}^{=}(v)|,$$

$$|N_{\mu}(X_{v}^{=}(u)) \cap X| = |X_{v}^{=}(u)|,$$

$$|N_{\mu}(X_{v}^{=}(w)) \cap X| = |X_{v}^{=}(w)|.$$
(4)

From (4) we know that every vertex $z \in X_{uw}^{=}(v) \cup X_v^{=}(u) \cup X_v^{=}(w)$ has a unique neighbor at distance μ in X. As $\delta \geq 3$, there exists a vertex $z' \in N(z) \cap N_{\mu}(X)$ and $z' \in \{u, v, w\}$, for every $z \in X_{uw}^{=}(v) \cup X_v^{=}(u) \cup X_v^{=}(w)$. From (3) it follows that there is a cycle of length at most $2\mu + 5 \leq g - 1$, contrary to the fact that the length of a shortest cycle in G is equal to g.

Secondly if $d(w, X) = \mu - 1$, then it is analogous to the case of $d(w, X) = \mu$.

As a consequence of both Claim 1 and Claim 2 we conclude that there exists an edge uv in C such that $d(\{u, v\}, X) \ge \lfloor (g-4)/2 \rfloor$.

(2) Suppose now that $\mu = (g-5)/2$ otherwise by item (1) we are done. And we denote $C_X = \{u \in V(C) : d(u, X) = (g-5)/2\}$. By item (1) we can take an edge uv in $G[C_X]$.

Firstly, assume $(N(u)-v)\cap C_X \neq \emptyset$ or $(N(v)-u)\cap C_X \neq \emptyset$, say, $(N(v)-u)\cap C_X \neq \emptyset$. Notice that $X_v^+(u) = X_v^+(w) = X_{uw}^+(v) = \emptyset$ and that the sets $X_v^-(u), X_v^-(u), X_v^-(w), X_v^-(w), X_{uw}^-(v)$ and $X_{uw}^-(v)$ are pairwise disjoint. We will prove it by contradiction.

By contradiction, suppose that any vertex u in C_X satisfies $|N_{(g-5)/2}(u) \cap X| \ge 2$. Then we have $|N_{(g-5)/2}(X_v^{=}(u)) \cap X| \ge 2|X_v^{=}(u)|, |N_{(g-5)/2}(X_{uw}^{=}(v)) \cap X| \ge 2|X_{uw}^{=}(v)|,$ and $|N_{(g-5)/2}(X_v^{=}(w)) \cap X| \ge 2|X_v^{=}(w)|$. Since the sets $N_{(g-5)/2}(X_v^{=}(u)) \cap X, N_{(g-7)/2}(X_v^{-}(u)) \cap X, N_{(g-5)/2}(X_{uw}^{=}(v)) \cap X, N_{(g-7)/2}(X_{uw}^{-}(v)) \cap X, N_{(g-5)/2}(X_v^{=}(w)) \cap X$ and $N_{(g-7)/2}(X_v^{-}(w)) \cap X$ are pairwise disjoint, it follows that

$$\begin{aligned} \xi_{3}(G) &\geq |X| \\ &\geq |N_{(g-5)/2}(X_{v}^{=}(u)) \cap X| + \\ &|N_{(g-7)/2}(X_{v}^{-}(u)) \cap X| + \\ &|N_{(g-5)/2}(X_{uw}^{=}(v)) \cap X| + \\ &|N_{(g-7)/2}(X_{w}^{-}(v)) \cap X| + \\ &|N_{(g-7)/2}(X_{v}^{-}(w)) \cap X| + \\ &|N_{(g-7)/2}(X_{v}^{-}(w)) \cap X| \\ &\geq 2|X_{v}^{=}(u)| + |X_{v}^{-}(u)| + 2|X_{uw}^{=}(v)| + \\ &|X_{uw}^{-}(v)| + 2|X_{v}^{=}(w)| + |X_{v}^{-}(w)| \\ &\geq \xi_{3}(G) + |X_{v}^{=}(u)| + |X_{uw}^{=}(v)| + |X_{v}^{=}(w)| \end{aligned}$$

Then $X_v^{=}(u) = X_{uw}^{=}(v) = X_v^{=}(w) = \varnothing$ and

$$X = (N_{(g-5)/2}(u) \cap X) \cup (N_{(g-5)/2}(v) \cap X) \cup (N_{(g-5)/2}(w) \cap X).$$
(5)

Furthermore, we can obtain $|N_{(g-5)/2}(u) \cap X| = |X_v^-(u)|, |N_{(g-5)/2}(v) \cap X| = |X_{uw}^-(v)|$ and $|N_{(g-5)/2}(w) \cap X| = |X_v^-(w)|$. This means that $\mu = (g-5)/2 \ge 2$. As $\delta \ge 3$, we have $|N(z) \cap (C_X - u)| \ge d(z) - 2 \ge 1$ for all $z \in X_v^-(u)$ (Otherwise a cycle of length at most g - 2 would appear). Take a vertex $z \in X_v^-(u)$ and consider a vertex $z' \in N(z) \cap (C_X - u)$. Then from (5) a cycle of length at most g - 1 would appear, a contradiction.

Secondly, if $(N(u) - v) \cap C_X = \emptyset$ and $(N(v) - u) \cap C_X = \emptyset$, then take a vertex w in N(v) with d(w, X) = (g - 7)/2. Hence uvw is a 2-path in C, it is analogous to the above case.

Let G = (V, E) be a λ_3 -connected graph. An arbitrary λ_3 -cut F can be denoted by $[V(C), V(\overline{C})]$, where C and \overline{C} are the only two components of G-F. There are $X \subseteq V(C)$ and $Y \subseteq V(\overline{C})$ such that $X \cup Y$ is the set of the end vertices of $[V(C), V(\overline{C})]$, and so $[V(C), V(\overline{C})] = [X, Y]$.

A λ_3 -connected graph G is said to be $super-\lambda_3$, if G is λ_3 -optimal and every minimum 3-restricted edge cut isolates a component with exactly three vertices. A κ_3 -connected graph G is said to be $super-\kappa_3$, if $\kappa_3(G) = \xi_3(G)$ and the deletion of each minimum 3restricted cut isolates a component with exactly three vertices.

Lemma 2.2. Let G be a connected graph with girth $g \ge 6$, and minimum degree $\delta \ge 3$. Let $[V(C), V(\overline{C})] = [X, Y]$ be a λ_3 -cut. Then the following assertions hold:

(1) If V(C) = X, then G is super- λ_3 .

(2) If G is not super- λ_3 , then C - X has a component with at least three vertices.

Proof. Since $g \ge 6$ and $\delta \ge 3$, by Theorem 1.1 G is λ_3 -connected.

(1) Suppose that V(C) = X, then each vertex of C is incident with some edges of [X, Y]. If |V(C)| = 3, then we are done. So assume that $|V(C)| \ge 4$. Let uvw be a 2-path of C. Because $\delta \ge 3$, we assume that $|X_v^{=}(u)| \ge 1$. Since girth $g \ge 6$, thus arguing as before, we have

$$\begin{split} \xi_{3}(G) &\geq \lambda_{3}(G) = |[X,Y]| \\ &\geq |[u,Y]| + |[v,Y]| + |[w,Y]| \\ &+ |[X_{v}^{=}(u),Y]| + |[X_{uw}^{=}(v),Y]| \\ &+ |[X_{v}^{=}(w),Y]| \\ &\geq |[u,Y]| + |[v,Y]| + |[w,Y]| + \\ &|X_{v}^{=}(u)| + |X_{uw}^{=}(v)| + |X_{v}^{=}(w)| \\ &\geq 3 + d(u) - 1 + d(v) - 2 + d(w) - 1 \\ &> \xi_{3}(G), \end{split}$$

which is a contradiction.

(2) By item (1) we have $C - X \neq \emptyset$. Suppose that any component of C-X has at most two vertices. Let C_1, C_2, \dots, C_k be the components of C - X.

Case 1. Each component C_i satisfies $|C_i| = 1$.

Take C_1 from C_1, C_2, \dots, C_k . Let $C_1 = \{v\}$. Then $N(v) \subseteq X$. And $\delta \ge 3$, we pick $u, w \in N(v)$, and thus uvw is a 2-path in C. Arguing as item (1), we have

$$\begin{split} \xi_3(G) &\geq \lambda_3(G) = |[X,Y]| \\ &\geq |[N(u) - v,Y]| + |[N(w) - v,Y]| + \\ &\quad |[N(v) - u - w,Y]| \\ &\geq |N(u) - v| + |N(w) - v| + \\ &\quad |N(v) - u - w| \\ &= d(u) + d(v) + d(w) - 4 \geq \xi_3(G). \end{split}$$

It follows that |[N(u) - v, Y]| = |N(u) - v|, |[N(v) - u - w, Y]| = |N(v) - u - w|, |[N(w) - v, Y]| = |N(w) - v| and $X = (N(u) - v) \cup (N(v) - u - w) \cup (N(w) - v)$. Hence $[\{u, w\}, Y] = \emptyset$, which is a contradiction.

Case 2. There is a component C_1 with $|C_1| = 2$. Assume that $V(C_1) = \{u, v\}$. Then $C_1 = K_2$, and $N(u) - v \subseteq X$, $N(v) - u \subseteq X$. Take $w \in X \cap (N(v) - u)$. Then uvw is a 2-path in C. As $g \ge 6$, arguing as in (1), we have

$$\begin{aligned} \xi_3(G) &\geq \lambda_3(G) = |[X,Y]| \\ &\geq |[N(u) - v,Y]| + |[N(v) - u - w,Y]| + \\ &|[(N(w) - v) \cap X,Y]| + |[w,Y]| \\ &= d(u) + d(v) + d(w) - 4 \geq \xi_3(G). \end{aligned}$$

It follows that $|[N(u)-v,Y]| = |N(u)-v|, |[N(v)-u-w,Y]| = |N(v)-u-w|, |[(N(w)-v)\cap X,Y]| = |(N(w)-v)\cap X| \text{ and } X = (N(u)-v)\cap (N(v)-u-w)\cup((N(w)-v)\cap X)\cup \{w\}.$ Therefore, for any $x \in (N(u)-v)\cup(N(v)-u-w)\cup((N(w)-v)\cap X)$, we have |[x,Y]| = 1. Since $g \ge 6$ and $\delta \ge 3$, it follows that $N(x)\cap (X-x) = \emptyset$. So x is adjacent to some C_i 's $(2 \le i \le k)$. If there is a $C_i = \{y\}$ such that $y \in N(x)$, then $N(y) \subseteq X$. As $g \ge 6$ and $\delta \ge 3$, we have $|N(y) \cap (N(u)-v)| \le 1, |N(y) \cap (N(v)-u)| \le 1$ and $|N(y) \cap (N(w)\cap X)| \le 1$.

Without loss of generality, we assume that $|N(y) \cap (N(w) \cap X)| = 1$, then $N(y) \cap (N(v) - u) = \emptyset$, $\{u, v\} \notin N(y)$, and we have $|N(y) \cap (N(u) - v)| \ge 2$. There is a cycle with length smaller than g, a contradiction. If $|N(y) \cap (N(w) \cap X)| = 0$, then $|N(y) \cap (N(u) - v)| \ge 2$ or $|N(y) \cap (N(v) - u)| \ge 2$. There is also a cycle of length smaller than g, which is impossible.

If there is a $|C_j| = 2$ which x is adjacent to, then it is analogous to the case of $|C_i| = 1$. We discuss the neighbors of each vertex in C_j , we can obtain the required result.

Recall that in the line graph L(G) of a graph G, each vertex represents an edge of G, and two vertices in a line graph are adjacent if and only if the corresponding edges of G are adjacent. Let us consider the edges $x_1y_1, x_2y_2 \in E(G)$. The distance between the corresponding vertices of L(G) satisfies

$$d_{L(G)}(x_1y_1, x_2y_2) = d_G(\{x_1, y_1\}, \{x_2, y_2\}) + 1, \quad (6)$$

which is useful to prove that $D(G) - 1 \le D(L(G)) \le D(G) + 1$.

3 Some sufficient conditions for graphs to be super- λ_3 (resp. super- κ_3)

Now, we will show Theorem 3.1 by contradiction.

Theorem 3.1. Let G be a connected graph with girth $g \ge 4$ and minimum degree $\delta \ge 3$. The following assertions hold:

(1) If $D(G) \leq g - 4$, then G is super- λ_3 .

(2) If $D(G) \leq g - 5$, then G is super- κ_3 .

(3) If the diameter of the line graph $D(L(G)) \leq g - 4$, then G is super- λ_3 .

(4) If the diameter of the line graph $D(L(G)) \leq g - 5$, then G is super- κ_3 .

Proof. Since $g \ge 4$, clearly G is different from the graphs in Fig.1. Thus, by Theorem 1.1, G is λ_3 -connected. Moreover, if $g \in \{4, 5, 6\}$, then theorem clearly holds. So we assume that $g \ge 7$. By part (2) of Theorem 1.2, G is κ_3 -connected.

(1) From Theorem 1.2 it follows that $\lambda_3 = \xi_3$. Assume that G is not super- λ_3 . Let $[V(C), V(\overline{C})] = [X, Y]$ be a λ_3 -cut with $|V(C)| \ge 4$, $|V(\overline{C})| \ge 4$. By Lemma 2.2 we know that both C - X and $\overline{C} - Y$ contain a connected component say H and K, respectively, of cardinality at least three vertices. Hence both X and Y are cutsets with $|X|, |Y| \le \xi_3(G)$. From Lemma 2.1 there exist two vertices $u \in V(H)$ and $\overline{u} \in V(K)$ such that $g - 4 \ge D(G) \ge d(u, \overline{u}) \ge$ $d(u, X) + 1 + d(\overline{u}, Y) \ge 2\lfloor (g - 4)/2 \rfloor + 1$, which is a contradiction if g is even.

And for g odd all the inequalities become equalities. This means that $\max\{d(u, X) : u \in V(H)\} = (g - 5)/2$ and $\max\{d(\overline{u}, Y) : \overline{u} \in V(K)\} = (g - 5)/2$. Thus by Lemma 2.1, we can find $u \in V(H)$ with d(u, X) = (g - 5)/2 such that $N_{(g-5)/2}(u) \cap X = \{x\}$ for some $x \in X$; and we can find $\overline{u} \in V(K)$ with $d(\overline{u}, Y) = (g - 5)/2$ such that $N_{(g-5)/2}(\overline{u}) \cap Y = \{\overline{x}\}$ for some $\overline{x} \in Y$. As $d(u, \overline{u}) = g - 4$, it follows that $x\overline{x} \in [X, Y]$. Clearly we can find a vertex $v \in N(u)$ with d(v, X) = (g - 5)/2, because otherwise $|N_{(g-5)/2}(u) \cap X| \ge |N(u)| \ge 2$. Since $d(v, \overline{u}) = g - 4$ we must have $x \in N_{(g-5)/2}(v)$ or $\overline{x} \in N_{(g-3)/2}(v)$. As a consequence, the path from u to \overline{x} together with the path

from v to \overline{x} and the edge uv form a cycle of length at most g - 2, which is a contradiction.

(2) From Theorem 1.2 it follows that $\kappa_3 = \xi_3$. Assume that G is not super- κ_3 . Let X be an any κ_3 cut and consider two connected components C, \overline{C} of G - X with $|V(C)| \ge 4$, $|V(\overline{C})| \ge 4$. From Lemma 2.1 there exist two vertices $u \in V(C)$ and $\overline{u} \in V(\overline{C})$ such that $g - 5 \ge D(G) \ge d(u, \overline{u}) \ge d(u, X) + d(\overline{u}, X) \ge 2\lfloor (g - 4)/2 \rfloor$, which is a contradiction if gis even.

And for g odd all the inequalities become equalities. This means that $\max\{d(u, X) : u \in V(C)\} = (g-5)/2$ and $\max\{d(\overline{u}, Y) : \overline{u} \in V(\overline{C})\} = (g-5)/2$. Thus by Lemma 2.1, we can find $u \in V(C)$ with d(u, X) = (g-5)/2 such that $N_{(g-5)/2}(u) \cap X = \{x\}$ for some $x \in X$; and we can find $\overline{u} \in V(\overline{C})$ with $d(\overline{u}, Y) = (g-5)/2$ such that $N_{(g-5)/2}(\overline{u}) \cap Y = \{\overline{x}\}$ for some $\overline{x} \in Y$. As $d(u, \overline{u}) = g - 5$, it follows that $x = \overline{x}$. Clearly we can find a vertex $v \in N(u)$ with d(v, X) = (g-5)/2. Since $d(v, \overline{u}) = g - 5$ we must have $x \in N_{(g-5)/2}(v)$. As a consequence, the path from u to x together with the path from v to x and the edge uv form a cycle of length at most g - 4, which is a contradiction.

(3) Since $D(L(G)) \leq g - 4$, then the diameter $D(G) \leq g - 3$, which means that $\lambda_3 = \xi_3$ by Theorem 1.2. Assume that G is not super- λ_3 . Let $[V(C), V(\overline{C})] = [X, Y]$ be a λ_3 -cut with $|V(C)| \geq 4$, $|V(\overline{C})| \geq 4$. By Lemma 2.2 we know that both C - X and $\overline{C} - Y$ contain a connected component say H and K, respectively, of cardinality at least three. Hence both X and Y are cutsets with $|X|, |Y| \leq \xi_3(G)$. From Lemma 2.1 there exists an edge uv in C - X and there exist an edge $\overline{u} \, \overline{v}$ in $\overline{C} - Y$ satisfying $d(\{u, v\}, X) \geq \lfloor (g - 4)/2 \rfloor$ and $d(\{\overline{u}, \overline{v}\}, Y) \geq \lfloor (g - 4)/2 \rfloor$. Then by using (6) we have

$$g-4 \ge D(L(G)) \ge d_{L(G)}(uv, \overline{u} \, \overline{v})$$

$$= d_G(\{u, v\}, \{\overline{u}, \overline{v}\}) + 1$$

$$\ge d_G(\{u, v\}, X) + 1 + d_G(Y, \{\overline{u}, \overline{v}\}) + 1$$

$$\ge 2|(g-4)/2| + 2,$$

which is impossible.

(4) Now $D(L(G)) \leq g - 5$. Thus the diameter $D(G) \leq g-4$, which means that $\kappa_3 = \xi_3$ by Theorem 1.2. Assume that G is not super- κ_3 . Let X be an any κ_3 -cut and consider two connected components C, \overline{C} of G - X with $|V(C)| \geq 4, |V(\overline{C})| \geq 4$. From Lemma 2.1 there exists an edge uv in C-X and there exists an edge $\overline{u} \, \overline{v}$ in $\overline{C} - X$ satisfying $d(\{u, v\}, X) \geq \lfloor (g-4)/2 \rfloor$ and $d(\{\overline{u}, \overline{v}\}, X) \geq \lfloor (g-4)/2 \rfloor$. Then

by using (6) we have

$$g-5 \ge D(L(G)) \ge d_{L(G)}(uv, \overline{u} \,\overline{v})$$

$$= d_G(\{u, v\}, \{\overline{u}, \overline{v}\}) + 1$$

$$\ge d_G(\{u, v\}, X) + d_G(X, \{\overline{u}, \overline{v}\})$$

$$+1$$

$$\ge 2\lfloor (g-4)/2 \rfloor + 1,$$

which is impossible.

Acknowledgements: The project is supported by NSFC (No.11301440,11301217). We would like to thank the referees for kind help and valuable suggestions.

References:

- [1] C. Balbuena, P. Garcia-Vázquez, X. Marcote, Sufficient conditions for λ' -optimality in graphs with girth *g*, *J. Graph Theroy* 52, 2006, pp. 73-86.
- [2] C. Balbuena, Y. Lin, M. Miller, Diametersufficient conditions for a graph to be superrestricted connected, *Discrete Appl. Math.* 156, 2008, pp. 2827-2834.
- [3] A. Esfahanian, S. Hakimi, On computing a conditional edge connectivity of a graph, *Inform. Process. Lett.* 27, 1988, pp. 195-199.
- [4] J. Fábrega, M.A. Foil, Extraconnectivity of graphs with large girth, *Discrete Math.* 127, 1994, pp. 163-170.
- [5] L. Guo, W.Yang, X. Guo, On a kind of reliability analysis of networks, *Applied Mathematics and Computation* 218, 2011, pp. 2711-2715.
- [6] L. Guo, J.X. Meng, 3-restricted connectivity of graphs with given girth, *Appl. Math. J. Chinese Univ. Series B* 23(3), 2008, pp. 351-358.
- [7] Y. Wang, Q. Li, Upper bound of the third edgeconnectivity of graphs, *Science in China Ser. A Mathematics* 48(3), 2005, pp. 360ł371.
- [8] Z. Zhang, J.J. Yuan, Degree conditions for retricted edge connectivity and isoperimetric-edgeconnectivity to be optimal, *Discrete Math.* 307, 2007, pp. 293-298.