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1 Introduction
Let q(t), r(t), f(t), qj(t), rj(t), αj(t), βj(t), j =
= 1, n, be real valued continuous functions on
[t0; +∞). In the sequel we will assume, that the func-
tions αj(t), βj(t), j = 1, n are bounded below. De-
note: T0 ≡ min{t0, min

1≤j≤n
{ inf
t≥t0

αj(t), inf
t≥t0

βj(t)}}.

Let p(t) be a positive function on [T0; +∞). Consider
the equation

(p(t)φ′(t))′+q(t)φ′(t)+r(t)φ(t)+f(t)+

+
n∑
j=1

[qj(t)φ′(αj(t)) + rj(t)φ(βj(t))] = 0, (1.1)

t ≥ t0. Study the question of oscillation and non
oscillation of solutions of the differential functional
equations, in particular of eq. (1.1), is an important
problem of qualitative theory of differential functional
equations, and many works are devoted to him (see [1]
and cited works in it, [2] - [11]).

In this work the Riccati equation method is used
to establish oscillatory and nonoscillatory criteria for
solutions of eq. (1,1) in terms of oscillation and
nonoscillation of eq.

(p(t)φ′(t))′ + q(t)φ′(t) + r(t)φ(t) = 0, (1.2)

t ≥ t0. and (or) the functions r(t), f(t), qj(t),
rj(t), αj(t), βj(t), j = 1, n.

2 Auxiliary propositions
Let a(t), b(t), c(t), a1(t), b1(t), c1(t) be real valued
continuous functions on [t0; +∞).

Consider the Riccati equations

y′(t) + a(t)y2(t) + b(t)y(t) + c(t) = 0; (2.1)

y′(t) + a1(t)y2(t) + b1(t)y(t) + c1(t) = 0, (2.2)

t ≥ t0. and the differential inequalities

η′(t) + a(t)η2(t) + b(t)η(t) + c(t) ≥ 0; (2.3)

η′(t) + a1(t)η2(t) + b1(t)η(t) +

+ c1(t) ≥ 0, (2.4)

t ≥ t0. Note, that every solution of eq. (2.1) ( (2.2) )
is a solution of ineq. (2.3) ( (2.4) ). Note also, that
for a(t) ≥ 0 (a1(t) ≥ 0), t ≥ t0, the real valued
solutions of the equation η′(t)+ b(t)η(t)+ c(t) = 0
(η′(t) + b1(t)η(t) + c1(t) = 0) are solutions of ineq.
(2.3) ( (2.4) ). Therefore for a(t) ≥ 0 (a1(t) ≥
≥ 0), t ≥ t0, ineq. (2.3) ( (2.4) ) has a solution,
satisfying any initial real value condition. In the se-
quel we will assume, that the solutions of considered
equations are real valued.

Theorem 2.1. Let y0(t) be a solution of eq. (2.1)
on [t1; t2), and η0(t), η1(t) be solutions of ineq. (2.3)
and (2.4) with η0(t1) ≥ y0(t1), η1(t1) ≥ y0(t1) re-
spectively, and let a1(t) ≥ 0, λ− y0(t1)+

+
t∫
t1

exp
{
τ∫
t1

[a1(ξ)(η0(ξ) + η1(ξ)) + b1(ξ)]dξ
}
×

×[(a(τ)− a1(τ))y2
0(τ) + (b(τ)− b1(τ))y0(τ)+

+c(τ)− c1(τ)]dτ ≥ 0, t ∈ [t1; t2),

for some λ ∈ [y0(t1); η1(t1)]. Then eq. (2.2) has a so-
lution y1(t) on [t1; t2) with y1(t1) ≥ y0(t1), moreover
y1(t) ≥ y0(t), t ∈ [t1; t2).
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Proof see in [12].
Let t0 ≤ t1 < t2 ≤ +∞. Denote: T (t1; t2) ≡
≡ min{t1, min

1≤j≤n
{ inf
t∈[t1;t2)

αj(t), inf
t∈[t1;t2)

βj(t)}},

U(t1; t2) ≡
≡ max{t2, max

1≤j≤n
{ sup
t∈[t1;t2)

αj(t), sup
t∈[t1;t2)

βj(t)}}.

We shall say, that φ(t) is a solution of eq. (1.1) on
[t1; t2), if: φ(t) is defined and continuously differen-
tiable on [T (t1; t2);U(t1; t2)); p(t)φ′(t) is continu-
ously differentiable on [t1; t2); φ(t) satisfies (1.1) on
[t1; t2). By a solution of eq. (1.1) we shall mean its
solution on [t0; +∞).

Consider the equation

y′(t) +
1
p(t)

y2(t) +
q(t)
p(t)

y(t) + r(t) +

+
f(t)
µ

exp
{
−

t∫
t1

y(τ)
p(τ)

dτ

}
+

+
n∑
j=1

[
qj(t)y(αj(t))
p(αj(t))

exp
{ ∫
Aj(t)

y(τ)
p(τ)

dτ

}
+

+rj(τ) exp
{ ∫
Bj(t)

y(τ)
p(τ)

dτ

}]
= 0, (2.5)

t ≥ t1 (≥ t0), µ = const 6= 0, the symbol∫
Aj(t)

(.)dτ (
∫

Bj(t)

(.)dτ ) denotes integration by di-

rection from t to αj(t) (βj(t)). We shall say, that
y(t) is a (nonnegative, nonpositive) solution of eq.
(2.5) on [t1; t2), if: y(t) is defined and continuous on
[T (t1; t2);U(t1; t2)); (is nonnegative, nonpositive on
[T (t1; t2);U(t1; t2))) and satisfies (2.5) on [t1; t2).

Let φ0(t) be a solution of eq. (1.1) on [t1; t2), and
let φ0(t) 6= 0, t ∈ [T (t1; t2);U(t1; t2)). It is easy to
show, that

y0(t) ≡
p(t)φ0(t)
φ0(t)

, (2.6)

t ∈ [T (t1; t2);U(t1; t2)), is a solution of eq. (2.5)
on [t1; t2), where µ = φ0(t1). Consider the Riccati
equation

y′(t) +
1
p(t)

y2(t) +
q(t)
p(t)

y(t) + r(t) = 0, (2.7)

t ≥ t0.
Lemma 2.1. Let eq. (2.5) has a (non-

negative, nonpositive) solution on [t1; t2), and let
qj(t) ≥ 0, (qj(t) ≤ 0) qj(t) ≡ 0, rj(t) ≥ 0, j =
= 1.n, f(t)

µ ≥ 0, t ∈ [t1; t2). Then eq. (2.7) has a
solution on [t1; t2).

Proof. Let y0(t) be a (nonnegative, nonpositive)
solution of eq. (2.5) on [t1; t2). Note, that y0(t) is a
solution of the Riccati equation

y′(t) +
1
p(t)

y2(t) +
q(t)
p(t)

y(t) + r̃(t) = 0, (2.8)

t ∈ [t1; t2), where r̃(t) ≡ r(t)+

+f(t)
µ exp

{
−

t∫
t1

y0(τ)
p(τ) dτ

}
+

+
n∑
j=1

[
qj(t)y0(αj(t))
p(αj(t))

exp
{ ∫
Aj(t)

y0(τ)
p(τ)

dτ

}

+rj(τ) exp
{ ∫
Bj(t)

y0(τ)
p(τ)

dτ

}]
, t ∈ [t1; t2).

It follows from conditions of the lemma, that

r̃(t) ≥ r(t), t ∈ [t1; t2), (2.9)

Let y1(t) be a solution of eq. (2.7) with y1(t1) ≥
≥ y0(t1). Then by virtue of (2.8) and Theorem 2.1
from (2.9) it follows, that y1(t) exists on [t1; t2). The
lemma is proved.

Lemma 2.2. Let y0(t) be a solution of eq. (2.7)
on [t1; t2), and let y1(t) be a (nonnegative) solution of
eq. (2.5) on [t1; t2) with y1(t1) ≥ y0(t1). Let (qj(t) ≤
≤ 0), qj(t) ≡ 0, rj(t) ≤ 0, j = 1.n, f(t)

µ ≤
≤ 0, t ∈ [T (t1; t2);U(t1; t2)). Then

y1(t) ≥ y0(t), t ∈ [t1; t2), (2.10),

moreover, if y1(t1) > y0(t1), then

y1(t) > y0(t), t ∈ [t1; t2), (2.11),

Proof. Note, that y1(t) is a solution of the Riccati
equation

y′(t) +
1
p(t)

y2(t) +
q(t)
p(t)

y(t) + ˜̃r(t) = 0, (2.12)

t ∈ [t1; t2), where ˜̃r(t) ≡ r(t) +

+ f(t)
µ exp

{
−

t∫
t1

y1(τ)
p(τ) dτ

}
+

+
n∑
j=1

[
qj(t)y1(αj(t))
p(αj(t))

exp
{ ∫
Aj(t)

y1(τ)
p(τ)

dτ

}
+

+rj(τ) exp
{ ∫
Bj(t)

y1(τ)
p(τ)

dτ

}]
, t ∈ [t1; t2).
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From conditions of the lemma it follows, that

˜̃r(t) ≤ r(t), t ∈ [t1; t2). (2.13)

By virtue of Theorem 2.1 and (2.12) from here fol-
lows (2.10). Let y1(t1) > y0(t1), and let ỹ0(t) be the
solution of eq. (2.7) with ỹ0(t1) = y1(t1) > y0(t1).
Then (see [13]) ỹ0(t) exists on [t1; t2) and

ỹ0(t) > y0(t), t ∈ [t1; t2). (2.14)

By virtue of Theorem 2.1 and (2.12) from (2.13) it
follows, that y1(t) ≥ ỹ0(t), t ∈ [t1; t2). From here
and from (2.14) follows (2.11). The lemma is proved.

3 Oscillatory and nonoscillatory cri-
teria

Definition 3.1. A solution of eq. (1.1) is said to be
oscillatory, if it has arbitrary large zeroes. Otherwise
it is said to be nonoscillatory.

Definition 3.2. A solution of eq. (1.1) is said to
be suboscillatory, if its derivative has arbitrary large
zeroes.

Definition 3.3. Eq. (1.1) is said to be oscillatory,
if its all solutions are oscillatory.

Theorem 3.1. Let eq. (1.2) is oscillatory, and let
rj(t) ≥ 0, t ≥ t0, lim

t→+∞
αj(t) = lim

t→+∞
βj(t) =

= +∞, j = 1, n. Then the following assertions are
valid:
I. if f(t) ≥ 0 (≤ 0), qj(t) ≥ 0 (≤ 0), j =
= 1, n, t ≥ t0, then every solution φ(t) of eq. (1.1) is
or else suboscillatory or else there exists tφ ≥ t0 such,
that sign φ(t) = −sign φ′(t) 6= 0 (sign φ(t) =
= sign φ′(t) 6= 0), t ≥ tφ;
II. if f(t) ≡ 0, qj(t) ≡ 0, j = 1, n, then eq. (1.1) is
oscillatory.

Proof. Let us prove I. Let the solution φ(t) of eq.
(1.1) is not suboscillatory. Then φ(t) 6= 0, φ′(t) 6=
6= 0, t ≥ t1, for some t1 ≥ t0. We must show, that

φ′(t)
φ(t)

< 0 (> 0), t ≥ t1. (3.1)

Suppose, that it is not so. Then

φ′(t)
φ(t)

> 0 (< 0), t ≥ t1. (3.2)

Since lim
t→+∞

αj(t) = lim
t→+∞

αj(t) = +∞, then

T (t2; +∞) ≥ t1 for some t2 ≥ t1. Then by virtue
of (2.6) y1(t) ≡ p(t)φ′(t)

φ(t) is a solution of eq. (2.5)
on [t2; +∞). By virtue of Lemma 2.1 from here,

from (3.2) and from conditions of the theorem it fol-
lows, that eq. (2.7) has a solution y0(t) on [t2; +∞).

Then φ0(t) ≡ exp
{
t∫
t2

y0(τ)
p(τ) dτ

}
is a solution of eq.

(1.2) on [t2; +∞), which is continuable (as a solu-
tion of eq. (1.2)) on [t0; +∞) and which does not
vanish on [t2; +∞). Therefore, (1.2) is not oscil-
latory, which contradicts condition of the theorem.
The obtained contradiction proves (3.1). The asser-
tion I is proved. Let us prove II. Suppose (1.1) is
not oscillatory. Then there exists a solution φ(t) of
eq. (1.1) such, that φ(t) 6= 0, t ≥ t1 for some
t1 ≥ t0. Since lim

t→+∞
αj(t) = lim

t→+∞
αj(t) = +∞,

then T (t2; +∞) ≥ t1 for some t2 ≥ t1. Therefore
by virtue of (2.6) y(t) ≡ p(t)φ′(t)

φ(t) is a solution of eq.
(2.5) on [t2; +∞). To complete the proof of II should
be repeat the arguments of the last part of the proof of
I. The theorem is proved.

Example 3.1. Consider the equation

φ′′(t) +
m∑
k=1

ak(t)φ(gk(t)) = 0, (3.3)

t ≥ t0, where ak(t) (k = 1,m) are continuous

functions on [0; +∞),
+∞∫
0
a1(τ)dτ = +∞ (a1(t) is

real valued), ak(t) ≥ 0, k = 2,m, g1(t) = t,
gk(t) = lnsk(1 + t) + cos(λkt) +
+ sin2(νkt)eµkt, λk, νk, µk are some real con-
stants, sk > 0, k = 2,m. For this equation the
conditions of the theorems 8 and 9 of work [1] (see
[1], pp. 733, 734), imposed on gk(t), k = 2,m,
are not fulfilled, and the condition of nonnegativity,
imposed on a1(t), may not be satisfied. Therefore
the last ones are not applicable to eq. (3.3). Apply-
ing Theorem 3.1 to (3.3) we see, that eq. (3.3) is
oscillatory.

Denote:

Ip,q,r(ξ; t) ≡
t∫
ξ

exp
{

t∫
τ

q(s)
p(s)ds

}
r(τ)dτ, ξ, t ≥ t0.

Let t0 < t1 < ... < tn < ... be a infinite large se-
quence, and let

Ik(t) ≡
t∫

tk

exp
{ τ∫
tk

[
q(ζ)
p(ζ)

− 1
p(ζ)

Ip,q,r(tk; ζ)
]
dζ

}
×

×r(τ)dτ, t ∈ [tk; tk+1), k = 0, 1, 2, ....

Theorem 3.2. Let the following conditions are
satisfied:
1) Ik(t) ≤ 0, t ∈ [tk; tk+1), k = 0, 1, 2, ...;
2) αj(t) ≤ t, βj(t) ≤ t, j = 1, n, t ≥ t0;
3) f(t) ≤ 0 (≥ 0), rj(t) ≤ 0, j = 1, n, t ≥ t0.
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Then the following assertions are valid:
I∗ if
31) qj(t) ≡ 0, j = 1, n,
then every solution φ(t) of eq. (1.1) with φ(t) >
> 0 (< 0), t ∈ [T0; t0], φ′(t0) ≥ 0 (≤ 0) is a
nondecreasing (nonincreasing) function on [t0; +∞),
moreover if φ′(t0) > 0 (< 0), then φ′(t) > 0 (<
< 0), t > t0;
II∗ if
32) qj(t) ≤ 0, j = 1, n, t ≥ t0,
then for every solution φ(t) of eq. (1.1) with φ(t) >
> 0 (< 0), φ′(t) ≥ 0 (≤ 0), t ∈
∈ [T0; t0], φ′(t0) > 0 (< 0) the inequality
φ′(t) > 0 (< 0), t ≥ t0, takes place.

Proof. From the conditions 1) it follows, that eq.
(2.7) has nonnegative solution y0(t) on [t0; +∞), sat-
isfying the initial condition y0(t0) = 0 (see [14], p.
26, Theorem 4.1). Let us prove I∗. Let φ(t) be a
solution of eq. (1.1) with φ(t) > 0 (< 0), t ∈
∈ [T0; t0], φ′(t0) ≥ 0 (≤ 0). Let us show, that

φ(t) > 0 (< 0), t ≥ t0. (3.4)

Suppose, that it is not so. Then there exists t1 > t0
such, that

φ(t) > 0(< 0), t ∈ [t0; t1), φ(t1) = 0. (3.5)

By virtue of (2.6) from the conditions 2) it follows,
that y1(t) ≡ p(t)φ′(t)

φ(t) ia a solution of eq. (2.5) on
[t0; t1) with µ = φ(t0), moreover y1(t0) ≥ y0(t0).
By virtue of Lemma 2.2 from here and from the con-
ditions 3), 31) it follows, that y1(t) ≥ y0(t), t ∈
∈ [t0; t1). Taking into account (3.5) from here we con-
clude: φ′(t) ≥ 0 (≤ 0), t ∈ [t0; t1). Therefore,
φ(t1) ≥ φ(t0) > 0 (φ(t1) ≤ φ(t0) < 0), which con-
tradicts (3.5). The obtained contradiction proves (3.4).
By virtue of (2.6) from (3.4) it follows, that y1(t) is a
solution of eq. (2.5) on [t0; +∞) with µ = φ(t0). By
virtue of Lemma 2.2 from here and from the condi-
tions 3), 31) it follows, that

y1(t) ≥ y0(t) ≥ 0, t ≥ t0, (3.6)

for y1(t0) ≥ y0(t0), and

y1(t) > y0(t) ≥ 0, t ≥ t0, (3.7)

for y1(t0) > y0(t0). From (3.4) and (3.6) it follows,
that φ(t) is a nondecreasing (nonincreasing) function
on [t0; +∞), and from (3.4) and (3.7) it follows in-
equality φ′(t) > 0 (< 0), t > t0. The assertion I∗ is
proved. Let us prove II∗. Let φ(t) be a solution of eq.
(1.1) with φ(t) > 0 (< 0), φ′(t) ≥ 0 (≤ 0), t ∈
∈ [T0; t0], φ′(t0) > 0 (< 0). Then by virtue of (2.6)
from the conditions 2) it follows, that y1(t) ≡ p(t)φ′(t)

φ(t)

is a solution of eq (2.5) on [t1; t2) with µ = φ(t0) for
some t1 ∈ (t0; +∞]. Let us show, that

y1(t) ≥ 0, t ∈ [T0; t1). (3.8)

Suppose, that it is not so. Then by virtue of initial
value conditions, imposed on φ(t), we have

y1(t) ≥ 0, t ∈ [T0; t2), (3.9)

for some t2 ∈ (t0; t1) and

y1(t) < 0, t ∈ [t2; t3), (3.10)

for some t3 ∈ (t2; t1). Let ỹ(t) be the solution
of eq. (2.1) with ỹ(t0) = y1(t0) > y0(t0) = 0.
Then (see above) ỹ(t) exists on [t0; +∞) and ỹ(t) >
> 0, t ≥ t0. By virtue of Lemma 2.2 from the con-
ditions 3), 32) and from (3.9) it follows, that y1(t) ≥
≥ ỹ(t) > 0, t ∈ [t0; t2]. Therefore, y1(t) > 0, t ∈
∈ [t0; t2 + ε), for some ε > 0, which contradicts
(3.10). The obtained contradiction proves (3.8). To
complete the proof of II∗ (repeating the arguments of
the proof of I∗) on the basis of Lemma 2.2 and con-
ditions 3) and 32) one should show, that y1(t) is a so-
lution of eq. (2.5) on [t0; +∞) and y1(t) ≥ ỹ0(t) >
> 0, t ≥ t0. The proof of the theorem is complete.

Example 3.2. Let in eq. (3.3) a1(t) =

=



− sin t, t ∈ [2nπ; (2n+ 1)π],
n = 0, 1, , 2, ...;

−λ sin t, t ∈ [(2n+ 1)π; (2n+ 2)π],
n = 0, 1, 2, ....,

I ≡
2π∫
0

exp
{
−

τ∫
0
I1,0,a1(0; ζ)dζ

}
a1(τ)dτ ≤ 0, λ > 0

(it is evident, that for λ = 0 we have: I < 0 and I con-
tinuously depends on λ, therefore there exists λ > 0
such, that I ≤ 0); g1(t) = t, ak(t) ≤ 0, gk(t) =
= t − ωk, k = 2.m, t ≥ 0, 0 < ω2 < ... < ωm.
It is not difficult to see, that for such ak(t) and gk(t)
the condition of Theorem 7 of the work [1] (see [1],
p. 732) is not fulfilled. Therefore, for such conditions
Theorem 7 is not applicable to eq. (3.3). Applying
Theorem 3.2 to (3.3) one can readily verify (putting
tk = 2πk, k = 0, 1, 2, ... and taking into account,
that Ik(t) ≤ Ik(2π) = I ≤ 0, t ∈ [tk; tk+1), k =
= 0, 1, 2, ...), that for mentioned restrictions every so-
lution φ(t) of eq. (3.3) with φ(t) > 0 (< 0), t ∈
∈ [−ωm; 0], φ′(0) ≥ 0 (≤ 0) is nondecreasing
(nonincreasing) function on [0; +∞) (therefore φ(t)
is nonoscillatory), moreover if φ′(0) > 0 (< 0), then
φ′(t) > 0 (< 0), t > 0.

Theorem 3.3. Let the conditions 2), 3), 31) of
Theorem 3.2 are satisfied, and let the solution φ(t) of
eq. (1.1) satisfies the initial conditions
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a) φ(t) > 0 (< 0), t ∈ [T0; t0], φ′(t0) > 0 (< 0),
and the condition

b) p(t)r(t)

[φ(t0) exp

{
t∫

t0

q(s)
p(s)

ds

}
2p(t0)φ(t0) +

+
t∫
t0

exp
{
t∫
τ

q(s)
p(s)ds

}
dτ
p(τ)

]2

≤ 1
4 , t ≥ t0.

Then

|φ(t)| ≥
{
φ2(t0) + 2φ(t0)φ′(t0)×

×
t∫

t0

exp
{
−

t∫
t0

q(s)
p(s)

ds

}
dτ

p(τ)


1/2

, (3.11)

t ≥ t0,

|φ′(t)| ≥ φ(t0)φ′(t0) exp
{
−

t∫
t0

q(s)
p(s)

ds

}/
/(

φ2(t0) + 2φ(t0)φ′(t0)×

×
t∫

t0

exp
{
−

t∫
t0

q(s)
p(s)

ds

}
dτ

p(τ)

)1/2

, t ≥ t0. (3.12)

Proof. In eq. (2.7) we make a change y(t) =

= exp
{
−

t∫
t0

q(s)
p(s)ds

}
z(α(t)), t ≥ t0, where α(t) ≡

≡
t∫
t0

exp
{
−

t∫
t0

q(s)
p(s)ds

}
dτ
p(τ) . We come to the equation

z′(α(t)) + z2(α(t))+

+p(t)r(t) exp
{

2
t∫

t0

q(s)
p(s)

ds

}
= 0, t ≥ t0.

It is evident, that this equation is equivalent to the fol-
lowing Riccati equation

z′(t) + z2(t)+

+p(β(t))r(β(t)) exp
{

2

β(t)∫
t0

q(s)
p(s)

ds

}
= 0, (3.13)

t ∈ [0;α(+∞)), where β(t) is the inverse function of
α(t) (since α′(t) > 0, t ≥ t0, then β(t) exists). De-
note: N ≡ φ(t0)

2p(t0)φ′(t0) . Consider the Riccati equation

z′(t) + z2(t) +
1

4(t+N)2
= 0, t ≥ 0.

One can readily check, that z0(t) ≡ 1
2(t+N) is a so-

lution of this equation on [0; +∞). Let z1(t) be the
solution of eq. (3.13) with z1(0) = z0(0) = 1

N . By
virtue of Theorem 2.1 it follows from here and from
conditions a), b), that z1(t) exists on [0;α(+∞)),
moreover

z1(t) ≥ z0(t), t ∈ [0;α(+∞)). (3.14)

Then y1(t) ≡ exp
{
−

t∫
t0

q(s)
p(s)ds

}
z1(α(t)), is a solu-

tion of eq. (2.7) on [t0; +∞). It follows from (3.14),
that

y1(t) ≥
p(t)α′(t)

2(α(t) +N)
, t ≥ t0. (3.15)

Let us show, that

φ(t) 6= 0, t ≥ t0. (3.16)

Suppose, that it is not so. Then from a) it follows, that

φ(t) 6= 0, t ∈ [t0; t1), φ(t1) = 0, (3.17)

for some t1 > t0. By virtue of (2.6) from here and
from 2) and a) it follows, that y2(t) ≡ p(t)φ′(t)

φ(t) is a so-
lution of eq. (2.5) on [t0; t1). Since y2(t0) = y1(t0),
then by virtue of Lemma 2.2 from (3.15) and con-
ditions 3), 31) it follows, that y2(t) ≥ y1(t) ≥
≥ p(t)α′(t)

2(α(t)+N) > 0, t ∈ [t0; t1]. So, sign φ(t) =
= sign φ′(t) 6= 0, t ∈ [t0; t1]. Therefore |φ(t1)| ≥
≥ |φ(t0)| 6= 0, which contradicts (3.17). The ob-
tained contradiction proves (3.16). By virtue of (2.6)
from a) and (3.16) it follows, that y2(t) is a solution of
eq. (2.5) on [t0; +∞). By virtue of Lemma 2.2 from
here, from conditions 2), 3) and from (3.12) it follows,
that

y2(t) ≥
p(t)α′(t)

2(α(t) +N)
> 0, t ≥ t0. (3.18)

Therefore, |φ(t)| ≥ |φ(t0)| exp
{

t∫
t0

y2(s)
p(s) ds

}
≥

≥ |φ(t0)| exp
{

1
2 ln(1+ 1

Nα(t))
}
, t ≥ t0. From here

follows (3.11), and by virtue of (2.6) from (3.11),
(3.16) and (3.18) follows (3.12). The theorem is
proved.

By analogy can be proved
Theorem 3.4. Let the conditions 2), 3), 32) of

Theorem 3.2 are satisfied, and let the solution φ(t) of
eq. (1.1) satisfies the initial value conditions

φ(t) > 0 (< 0), φ′(t) ≥ 0 (≤ 0), t ∈ [T0; t0],

φ′(t0) > 0 (< 0)

and the condition b) of Theorem 3.3. Then for φ(t) the
inequalities (3.11) and (3.12) hold.
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4 Conclusion
The use of comparison and global solvability criteria
for scalar Riccati equations ([12], [14]) allowed us to
obtain new oscillatory and non oscillatory criteria for
second order linear differential - functional equations.
The approach used in this work allowed us to much
weaken the restrictions on the deviations of the argu-
ment of solution of the equations, presented in for-
mulations of propositions of work [1]. A new result
of this work is estimations of nonoscillatory solutions
and their derivative of differential - functional equa-
tions.
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