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Abstract: In this paper, we introduce the space rq(�p
u), where

rq(�p
u) = {x = (xk) ∈ ω : (uk�xj) ∈ r

q(u, p) <∞} ;

where rq(u, p) has recently been studied by Neyaz and Hamid. We show its completeness property,
prove that the space rq(�p

u) and l(p) are linearly isomorphic and compute their α -, β- and γ-duals.
Furthermore construct the basis of rq(u, p). In our last section we characterize some matrix class.

Key—Words: Sequence space of non-absolute type; paranormed sequence space; α-, β- and γ-duals ;
matrix transformations.

1 Introduction

We denote the set of all sequences with complex
terms by ω. It is a routine verification that ω is a
linear space with respect to the co-ordinatewise
addition and scalar multiplication of sequencdes
which are defined, as usual, by

x+ y = (xk) + (yk) = (xk + yk)

and

αx = α(xk) = (αxk),

respectively; where x = (xk), y = (yk) ∈ ω
and α ∈ C. By sequence space we understand
a linear subspace of ω i.e. the sequence space
is the set of scalar sequences(real or complex)
which is closed under co-ordinate wise adition
and scalar multiplication. Throughout the paper
N , R and C denotes the set of non-negative
integers, the set of real numbers and the set
of complex numbers, respectively. Let l∞, c
and c0, respectively, denotes the space of all
bounded sequences , the space of convergent
sequences and the sequences converging to zero.
Also, by l1 , l(p), cs and bs we deonte the

spaces of all absolutely , p-absolutely conver-
gent, convergent and bounded series, respectively.

Let X,Y be two sequence spaces and let
A = (ank) be an infinite matrix of real or
complex numbers ank, where n, k ∈ N . Then,
the matrix A defines the A-transformation from
X into Y , if for every sequence x = (xk) ∈ X the
sequence Ax = {(Ax)n}, the A-transform of x
exists and is in Y ; where (Ax)n =

∑
k
ankxk. For

simplicity in notation, here and in what follows,
the summation without limits runs from 0 to ∞.
By A ∈ (X : Y ) we mean the characterizations
of matrices from X to Y i.e., A : X → Y . A
sequence x is said to be A-summable to l if Ax
converges to l which is called as the A-limit of x.

For a sequence space X, the matrix domain
XA of an infinite matrix A is defined as

XA = {x = (xk) : Ax ∈ X}. (1)

The theory of matrix transformations is
a wide field in summability; it deals with the
characterisations of classes of matrix mappings
between sequence spaces by giving necessary and
sufficient conditions on the entries of the infinite
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matrices.

The classical summability theory deals with
a generalization of convergence of sequences and
series. One original idea was to assign a limit
to divergent sequences or series. Toeplitz [26]
was the first to study summability methods as a
class of transformations of complex sequences by
complex infinite matrices.

Let A = (ank) be any matrix. Then a
sequence x is said to be summable to l, written
xk → l, if and only if Anx =

∑
k
ankxk exists for

each n and Anx → l (n → ∞). For example,
if I is the unit matrix, then xk → l(I) means
precisely that xk → l (k → ∞), in the ordinary
sense of convergence.

We denote by (A) the set of all sequences
which are summable A. The set (A) is called
summability field of the matrix A. Thus, if
Ax = (an(x)), then (A) = {x : Ax ∈ c}, where c
is the set of convergent sequences. For example,
(I) = c.

A infinite matrix A = (ank) is said to be
regular [15] if and only if the following conditions
(or Toplitz conditions) hold:

(i) lim
n→∞

∞∑

k=0

ank = 1,

(ii) lim
n→∞

ank = 0, (k = 0, 1, 2, ...),

(iii)
∞∑

k=0

|ank| < M, (M > 0, n = 0, 1, 2, ...).

Let (qk) be a sequence of positive numbers
and let us write,Qn =

∑n
k=0 qk for n∈ N . Then

the matrix Rq = (rqnk) of the Riesz mean (R, qn)
is given by

rnk =





qk
Qn
, if 0 ≤ k ≤ n,

0 if k > n

The Riesz mean (R, qn) is regular if and only
if Qn →∞ as n→∞ ( see, Petersen [22, p.10 ] ).

Kizmaz [11] defined the difference sequence
spaces Z(�) as follows

Z(�) = {x = (xk) ∈ ω : (�xk) ∈ Z}

where, Z ∈ {l∞, c, c0} and �xk = xk − xk+1.

Bas̀ar and Altay[2] has studied the sequence
space as

bvp =

{
x = (xk) ∈ ω :

∑

k

|xk − xk−1|
p <∞

}
,

where 1 ≤ p < ∞. With the notation of (1), the
space bvp can be redefined as

bvp = (lp)�, 1 ≤ p <∞

where, � denotes the matrix � = (�nk) defined
as

�nk =





(−1)n−k, if n− 1 ≤ k ≤ n,

0 if k < n− 1 or k > n.

The approach of constructing a new sequence
space by means of matrix domain of a particular
limitation mehtod has been studied by several
authors. They introduced the sequence spaces
(l∞)Nq and cNq(see, [27]), (lp)C1 = Xp and

(l∞)C1 = X∞(see, [21]), (l∞)Rt = r
t
∞, (c)Rt = r

t
c

and (co)Rt = r
t
0(see, [16]), (lp)Rt = r

t
p(see, [1]),

(c0)Er = e
r
0 and (c)Er = e

r
c(see, [2]), (lp)Er = e

r
p

and (l∞)Er = er∞(see, [3), (c0)Ar = ar0 and
cAr = arc(see, [4]), [c0(u, p)]Ar = ar0(u, p) and
[c(u, p)]Ar = arc(u, p)(see, [5], (lp)Ar = arp and
(l∞)Ar = ar∞(see, [6], (c0)C1 = ĉ0, cC1 = ĉ(see,

[23], cλ0 (�) =
(
cλ0

)
�

and cλ (�) =
(
cλ
)
�
(see,

[20], µG = Z(u, v, µ)(see, [17), Neyaz and Hamid
rq(u, p) = {l(p)}Rq(see, [24]); where Nq, C1, R

t

and Er denotes the Nörland, Cesäro, Riesz
and Eular means, respectively, Ar and C are
respectively defined in [17, 19], µ = {c0, c, lp} and
1 ≤ p <∞.

2. The Riesz Sequence space rq(�p
u) of non-

absolute type :
In this section, we define the Riesz sequence

space rq(�p
u) , and prove that the space rq(�p

u)
is a complete paranormed linear space and show
it is linearly isomorphic to the space l(p).

A linear Topological space X over the field of
real numbers R is said to be a paranormed space
if there is a subadditive function h : X → R such
that h(θ) = 0, h(−x) = h(x) and scalar multipli-
cation is continuous, that is, |αn − α| → 0 and
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h(xn−x)→ 0 imply h(αnxn−αx)→ 0 for all α′s
in R and x′s in X , where θ is a zero vector in the
linear space X. Assume here and after that (pk)
be a bounded sequence of strictly positive real
numbers with supk pk = Hand M = max{1,H}.
Then, the linear spaces l(p) and l∞(p) were de-
fined by Maddox [11] (see also, [25, 28-29]) as fol-
lows :

l(p) = {x = (xk) :
∑

k

|xk|
pk <∞}

and

l∞(p) = {x = (xk) : sup
k
|xk|

pk <∞}

which are complete spaces paranormed by

h1(x) = [
∑

k|xk|
pk ]1/M and h2(x) = supk|xk|

pk/M

iff inf pk > 0.

We shell assume throughout that p−1k +{p
′

k}
−1

provided 1 < infpk≤ H < ∞ and we denote the
collection of all finite subsets of N by F , where
N={0, 1, 2, . . . }.

Following Basar and Altay [2], Basar, Altay
and Mursaleen [3], Choudhary and Mishra [7],
Hamid [8], Hamid and Neyaz[9], Mursaleen
[18], Mursaleen, Basar and Altay [19], Neyaz
and Hamid[24], we define the Reisz sequence
space rq(�p

u) as the set of all sequences such
that Rq transform of it is in the space l(p), that is,

rq(�p
u)

=



x = (xk) ∈ ω :

∑

k

∣∣∣∣∣∣
1

Qk

k∑

j=0

ukqj�xj

∣∣∣∣∣∣

pk

<∞





where, 0 < pk ≤ H <∞.

Remark 2.0 : Incase �xk = xk (fixed) for all
k ∈ N , the sequence spaces rq(�p

u) reduces to
rq(u, p), introduced by Neyaz and Hamid [24].
Also, if (uk) = e = (1, 1, ...) and �xk = xk (fixed)
for all k ∈ N , the sequence spaces rq(�p

u) reduces
to rq(p), introduced by Altay and Basar [1].
Further, for (uk) = e = (1, 1, ...), �xk = xk for
all k ∈ N , and qn = 1 for all n ∈ N , the sequence
spaces rq(�p

u) reduces to space of Arithmetic
means Xp of nonabsolute type introduced and
studied by Ng and Lee [21].

With the notation of (1) that

rq(�p
u) = {l(p)}Rqu .

Define the sequence y = (yk), which will be
used, by the Rq-transform of a sequence x = (xk),
i.e.,

yk =
1

Qk

k∑

j=0

ukqj�xj. (2)

Now, we begin with the following theorem
which is essential in the text.

Theorem 2.1 : rq(�p
u) is a complete linear

metric space paranormed by h�, defined as

h�(x) =


∑

k

∣∣∣∣∣∣
1

Qk

k−1∑

j=0

uk(qj − qj+1)xj +
qkuk

Qk
xk

∣∣∣∣∣∣

pk



1

M

with 0 < pk ≤ H <∞.

Proof: The linearity of rq(�p
u) with respect

to the co-ordinatewise addition and scalar multi-
plication follows from from the inequalities which
are satisfied for z, x ∈ rq(�p

u)( see [12], p.30] )

[
∑
k

∣∣∣∣∣
1
Qk

k−1∑
j=0
uk(qj − qj+1)(xj + zj) +

qkuk
Qk

(xk + zk)

∣∣∣∣∣

pk
] 1

M

≤

[
∑
k

∣∣∣∣∣
1
Qk

k−1∑
j=0
uk(qj − qj+1)xj +

qkuk
Qk
xk

∣∣∣∣∣

pk
] 1

M

+



∑

k

∣∣∣∣∣∣
1

Qk

k−1∑

j=0

uk(qj − qj+1)zj +
qkuk

Qk
zk

∣∣∣∣∣∣

pk



1

M

(3)
and for any α ∈ R (see, [14])

|α|pk ≤ max(1, |α|M ). (4)

It is clear that, h�(θ)=0 and h�(x) = h�(−x)
for all x ∈ rq(�p

u). Again the inequality (3) and
(4), yield the subadditivity of h� and

h�(αx) ≤ max(1, |α|)h�(x).
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Let {xn} be any sequence of points of the
space rq(�p

u) such that h�(x
n−x)→ 0 and (αn)

is a sequence of scalars such that αn → α. Then,
since the inequality,

h�(x
n) ≤ h�(x) + h�(x

n − x)

holds by subadditivity of h� ,{h�(x
n)} is

bounded and we thus have

h�(αnx
n−αx) =



∑

k

∣∣∣∣∣∣
1

Qk

k∑

j=0

uk(qj − qj+1)(αnx
n
j − αxj)

∣∣∣∣∣∣

pk



1

M

≤ |αn − α|
1

M h�(x
n) + |α|

1

M h�(x
n − x)

which tends to zero as n → ∞ . That is to
say that the scalar multiplication is continuous.
Hence, h� is paranorm on the space rq(�p

u).

It remains to prove the completeness of the
space rq(�p

u). Let {x
j} be any Cauchy sequence

in the space rq(�p
u) , where xi = {xi0, x

i
1, ...}.

Then , for a given ε > 0 there exists a positive
integer n0(ε) such that

h�(x
i − xj) < ε (5)

for all i, j ≥ n0(ε). Using definition of h� and for
each fixed k ∈ N that
∣∣∣(Rq�xi)k − (Rq�xj)k

∣∣∣

≤

[
∑

k

∣∣∣(Rq�xi)k − (Rq�xj)k
∣∣∣
pk

] 1

M

< ε

for i, j ≥ n0(ε), which leads us to the fact
that {(Rq�x0)k, (R

q�x1)k, . . .} is a Cauchy
sequence of real numbers for every fixed
k ∈ N . Since R is complete, it converges,say,
(Rq�xi)k → ((Rq�x)k as i → ∞. Using these
infinitely many limits (Rq�x)0, (R

q�x)1, . . . ,
we define the sequence {(Rq�x)0, (R

q�x)1, . . .}.

From (5) for each m ∈ N and i, j ≥ n0(ε),

m∑

k=0

∣∣∣(Rq�xi)k − (Rq�xj)k
∣∣∣
pk
≤ h�(x

i − xj)M

< εM . (6)

Take any i, j ≥ n0(ε). First, let j →∞ in (6)
and then m→∞ , we obtain

h�(x
i − x) ≤ ε.

Finally, taking ε = 1 in (6) and letting i ≥ n0(1).
we have by Minkowski’s inequality for each
m ∈ N that

[
∑m

k=0 |(R
qx)k|

pk ]
1

M

≤ h�(x
i − x) + h�(x

i) ≤ 1 + h�(x
i)

which implies that x ∈ rq(�p
u). Since

h�(x − x
i) ≤ ε for all i ≥ n0(ε), it follows

that xi → x as i→∞, hence we have shown that
rq(�p

u) is complete, hence the proof .

Note that one can easily see the absolute
property does not hold on the spaces rq(�p

u) ,
that is h�(x) �= h�(|x|) for atleast one sequence
in the space rq(�p

u) and this says that rq(�p
u) is

a sequence space of non-absolute type.

Theorem 2.2 : The Riesz sequence space
rq(�p

u) of non-absolute type is linearly isomor-
phic to the space l(p), where 0 < pk ≤ H <∞.

Proof : To prove the theorem, we should show
the existence of a linear bijection between the
spaces rq(�p

u) and l(p) , where 0 < pk ≤ H <∞.
With the notation of (3), define the transforma-
tion T from rq(�p

u) to l(p) by x → y = Tx. The
linearity of T is trivial. Further, it is obvious that
x = θ whenever Tx = θ and hence T is injective.

Let y ∈ l(p) and define the sequence x = (xk
by

xk =
k−1∑

n=0

(
1

qn
−

1

qn+1

)
u−1k Qkyk + u

−1
k

Qk

qk
yk,

for k ∈ N. Then,
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h�(x) =


∑

k

∣∣∣∣∣∣
1

Qk

k−1∑

j=0

uk(qj − qj+1)xj +
qkuk

Qk
xk

∣∣∣∣∣∣

pk



1

M

=


∑

k

∣∣∣∣∣∣

k∑

j=0

δkjyj

∣∣∣∣∣∣

pk



1

M

=

[
∑

k

|yk|
pk

] 1

M

‘

= h1(y) <∞,

where,

δkj =





1, if k = j,

0, if k �= j

Thus, we have x ∈ rq(�p
u). Consequently, T

is surjective and is paranorm preserving. Hence,
T is a linear bijection and this says us that the
spaces rq(�p

u) and l(p) are linearly isomorphic,
hence the proof.

3. Basis and α-, β- and γ-duals of the space
rq(�p

u) :
In this section, we compute α , β- and γ- duals
of the space rq(�p

u) and finally we give the basis
for the space rq(�p

u).

For the sequence space X and Y , define the
set

S(X : Y ) = {z = (zk) : xz = (xkzk)∈ Y }. (7)

With the notation of (7), the α-, β- and γ-
duals of a sequence space X, which are respec-
tively denoted by Xα and Xβ and are defined by

Xα = S(X : l1) , X
β = S(X : cs) and

Xγ = S(X : bs).

If a sequence space X paranormed by h
contains a sequence (bn) with the property that
for every x ∈ X there is a unique sequence of
scalars (αn) such that

lim
n
h(x−

n∑

k=0

αkbk) = 0

then (bn) is called a Schauder basis (or briefly
basis ) for X. The series

∑
αkbk which has the

sum x is then called the expansion of x with
respect to (bn) and written as x =

∑
αkbk.

First we first state some lemmas which are
needed in proving our theorems .

Lemma 3.1 [10, Theorem 5.10] :
(i) Let 1 < pk ≤ H < ∞. Then A∈ (l(p) : l1)
if and only if there exists an integer B > 1 such
that

sup
K∈F

∑

k

∣∣∣∣∣
∑

n∈K

ankB
−1

∣∣∣∣∣

p
′

k

<∞.

(ii) Let 0 < pk ≤ 1.Then A∈ (l(p) : l1) if and only
if

sup
K∈F

sup
k

∣∣∣∣∣
∑

n∈K

ankB
−1

∣∣∣∣∣

pk

<∞.

Lemma 3.2 [12, Theorem 1] :
(i) Let 1 < pk ≤ H < ∞.Then A∈ (l(p) : l∞) if
and only if there exists an integer B > 1 such that

sup
n

∑

k

|ankB
−1|p

′

k <∞. (8)

(ii) Let 0 < pk ≤ 1 for every k ∈ N . Then
A ∈ (l(p) : l∞) if and only if

sup
n,k
|ank|

pk <∞. (9)

Lemma 3.3 [12, Theorem 1 ] : Let
0 < pk ≤ H < ∞ for every k ∈ N . Then
A ∈ (l(p) : c) if and only if (8) and (9) hold along
with

lim
n
ank = βk for k ∈ N (10)

also holds.
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Theorem 3.4 : Let Let 1 < pk ≤ H < ∞
for every k ∈ N . Define the sets D1(u, p) and
D2(u, p) as follows

D1(u, p) =
⋃

B>1

{a = (ak) ∈ ω :

sup
K∈F

∑

k

|
∑

n∈K

(
1

qk
−

1

qk+1

)
u−1k anQk

+
an

qn
u−1k QnB

−1|p
′

k <∞}

and

D2(u, p) =
⋃

B>1

{a = (ak) ∈ ω :

∑

k

∣∣∣∣∣∣
[


ak
qk

+

(
1

qk
−

1

qk+1

) n∑

i=k+1

ai


u−1k Qk]B

−1

∣∣∣∣∣∣

p
′

k

<∞}.

Then,

[rq(�p
u)]

α = D1(u, p)

and

[rq(�p
u)]

β = D2(u, p) ∩ cs.

Proof : Let us take any a = (ak) ∈ ω .We
can easily derive with (2) that

anxn =
n−1∑

k=0

(
1

qk
−

1

qk+1

)
u−1k anQkyk+

an

qn
u−1k Qnyn

= (Cy)n (11)

where, C = (cnk) is defined as

cnk =





( 1qk −
1

qk+1
)u−1k anQk, if 0 ≤ k ≤ n− 1

an
qn
u−1k Qn, if k = n

0, if k > n

for all n, k ∈ N . Thus we observe by combining
(11) with (i) of Lemma 3.1 that ax = (anxn) ∈ l1

whenever x = (xn) ∈ rq(�p
u) if and only if

Cy ∈ l1 whenever y ∈ l(p). This gives the result
that [rq(�p

u)]
α = D1(u, p).

Further, consider the equation,

n∑

k=0

akxk

=
∑n

k=0

[(
ak
qk
+
(
1
qk
− 1

qk+1

)∑n
i=k+1 ai

)
u−1k Qk

]
yk

= (Dy)n
(12)

where, D = (dnk) is defined as

dnk =





(
ak
qk
+ ( 1qk −

1
qk+1

)
n∑

i=k+1
ai

)
u−1k Qk, if 0 ≤ k ≤ n

0, if k > n

Thus we deduce from Lemma 3.3 with
(12) that ax = (anxn) ∈ cs whenever
x = (xn) ∈ rq(�p

u) if and only if Dy ∈ c
whenever y ∈ l(p). Therefore,

we derive fom (8) that

∑

k

∣∣∣∣∣∣




ak
qk

+

(
1

qk
−

1

qk+1

) n∑

i=k+1

ai


u−1k Qk


B−1

∣∣∣∣∣∣

p
′

k

<∞ (13)

and lim
n
dnk exists and hence shows that that

[rq(�p
u)]

β = D2(u, p) ∩ cs.

As this, from Lemma 3.2 together with (12) that
ax = (akxk) ∈ bs whenever x = (xn) ∈ r

q(�p
u) if

and only if Dy ∈ l∞ whenever y = (yk) ∈ l(p).
Therefore, we again obtain the condition (13)
which means that [rq(�p

u)]
γ = D2(u, p) ∩ cs and

the proof of the theorem is complete.

Theorem 3.5 : Let Let 0 < pk ≤ 1 for every
k ∈ N . Define the sets D3(u, p) and D4(u, p) as
follows

D3(u, p) = {a = (ak) ∈ ω :
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sup
K∈F

sup
k
|
∑

n∈K

[(
1

qk
−

1

qk+1
)u−1k anQk

+
an

qn
u−1k Qn]B

−1|pk <∞}

and

D4(u, p) = {a = (ak) ∈ ω :

sup
k

∣∣∣∣∣∣




ak
qk

+

(
1

qk
−

1

qk+1

) n∑

i=k+1

ai


u−1k Qk


B−1

∣∣∣∣∣∣

pk

<∞}.

Then, [rq(�p
u)]

α = D3(u, p) and

[rq(�p
u)]

β = [rq(�p
u)]

γ = D4(u, p) ∩ cs.

Proof. This is obtained by proceeding as in
the proof of Theorem 2.7, above by using second
parts of Lemmas 3.1, 3.2 and 3.3 instead of the
first parts. So, we omit the details

Theorem 3.6 : Define the sequence

b(k)(q) = {b
(k)
n (q)} of the elements of the

space rq(�p
u) for every fixed k ∈ N by

b
(k)
n (q)

=





( 1qn −
1

qn+1
)u−1k Qn + u

−1
k

Qk
qk
, if 0 ≤ n ≤ k − 1

0, if n > k − 1.

Then, the sequence {b(k)(q)} is a basis for
the space rq(�p

u) and any x ∈ rq(�p
u) has a

unique representation of

x =
∑

k

λk(q)b
(k)(q) (14)

where, λk(q) = (Rq�x)k for all k ∈ N and
0 < pk ≤ H <∞.

Proof :It is clear that b(k)(q) ⊂ rq(�p
u), since

Rqb(k)(q) = e(k) ∈ l(p) for k ∈ N (15)

and 0 < pk ≤ H <∞, where e
(k) is the sequence

whose only non-zero term is 1 in kth place for
each k ∈ N .

Let x ∈ rq(�p
u) be given. For every non-

negative integer m, we put

x[m] =
m∑

k=0

λk(q)b
(k)(q). (16)

Then, we obtain by applying Rq� to (16) with
(15) that

Rq�x[m] =
m∑

k=0

λk(q)R
q�b(k)(q) =

m∑

k=0

(Rqx)ke
(k)

and

(
Rq
(
x− x[m]

))
i
=





0, if 0 ≤ i ≤ m

(Rq�x)i, if i > m

where i,m ∈ N . Given ε > 0 , there exists
an integer m0 such that

(
∞∑

i=m

|(Rq�x)i|
pk

) 1

M

<
ε

2

for all m ≥ m0. Hence,

h�

(
x− x[m]

)
=

(
∞∑

i=m

|(Rq�x)i|
pk

) 1

M

≤




∞∑

i=m0

|(Rq�x)i|
pk




1

M

<
ε

2
< ε

for all m ≥ m0, which proves that x ∈ rq(�p
u) is

represented as (14).

Let us show the uniqueness of the represen-
tation for x ∈ rq(�p

u) given by (13). Suppose, on
the contrary; that there exists a representation
x =

∑
k µk(q)b

k(q). Since the linear transforma-
tion T from rq(�p

u) to l(p) used in the Theorem
2.2 is continuous we have
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(Rq�x)n =
∑

k

µk(q)
(
Rq�bk(q)

)
n

=
∑

k

µk(q)e
(k)
n = µn(q)

for n ∈ N , which contradicts the fact that
(Rqx)n = λn(q) for all n ∈ N . Hence, the
representation (14) is unique. This completes the
proof.

4. Matrix Mappings on the Space rq(�p
u) :

In this section, we characterize the matrix
mappings from the space rq(�p

u) to the space l∞.

Theorem 4.1:(i) Let 1 < pk ≤ H < ∞ for
every k ∈ N . Then A ∈ (rq(�p

u) : l∞) if and only
if there exists an integer B > 1 such that

C(B) =

sup
n

∑

k

∣∣∣∣∣∣


ank
qk

+

(
1

qk
−

1

qk+1

) n∑

i=k+1

ani


 u−1k B

−1Qk

∣∣∣∣∣∣

p
′

k

(17)

and {ank}k∈N ∈ cs for each n ∈ N .

(ii) Let 0 < pk ≤ 1 for every k ∈ N . Then
A ∈ (rq(�p

u) : l∞) if and only if

sup
n,k

∣∣∣∣∣∣


ank
qk

+

(
1

qk
−

1

qk+1

) n∑

i=k+1

ani


 u−1k Qk

∣∣∣∣∣∣

pk

(18)

and {ank}k∈N ∈ cs for each n ∈ N .

Proof : We only prove the part (i) and (ii)
may be proved in a similar fashion. So, let
A ∈ (rq (�p

u) : l∞) and 1 < pk ≤ H < ∞ for
every k ∈ N . Then Ax exists for x ∈ rq(�p

u)
and implies that {ank}k∈N ∈ {rq(�p

u)}
β for each

n ∈ N . Hence necessity of (17) holds.

Conversely, suppose that the necessities (17)
hold and x ∈ rq(�p

u),
since {ank}k∈N ∈ {rq(�p

u)}
β for every fixed

n ∈ N , so the A-transform of x exists. Consider
the following equality obtained by using the
relation (11) that∑m

k=0 ankxk

=
m∑

k=0


ank
qk

+

(
1

qk
−

1

qk+1

) m∑

i=k+1

ani


u−1k Qkyk

(19)
Taking into account the assumptions we derive
from (19) as m→∞ that

∑

k

ankxk

=
∑

k


ank
qk

+

(
1

qk
−

1

qk+1

) ∞∑

i=k+1

ani


 u−1k Qkyk

(20)
Now, by combining (20) and the inequality which
holds for any B > 0 and any complex numbers a, b

|ab| ≤ B

(∣∣∣aB−1
∣∣∣
p′

+ |b|p
)

with p−1+p′−1 = 1( see [10]), one can easily see
that

sup
n∈N

∣∣∣∣∣
∑

k

ankxk

∣∣∣∣∣

≤ sup
n∈N

∑

k

∣∣∣∣∣∣


ank
qk

+

(
1

qk
−

1

qk+1

) ∞∑

i=k+1

ani


u−1k Qk

∣∣∣∣∣∣
|yk|

≤ B
[
C(B) + hB1 (y)

]
<∞.

This shows that Ax ∈ l∞ whenever x ∈ rq(�p
u).

This completes the proof.
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