

Modelling the Recovery of Pulse Peak Pileup for Implementation in an
FPGA for a Nuclear Spectroscopy System

ONYEMAECHI N. OFODILE

Manpower Training and Capacity Development Directorate
Nigeria Atomic Energy Commission

Abuja, NIGERIA
onofodile@nigatom.org.ng, http://www.nigatom.org.ng

MATTHEW N. AGU

Nuclear Power Plant Project
Nigeria Atomic Energy Commission

Abuja, NIGERIA
mnagu@nigatom.org.ng, http://www.nigatom.org.ng

Abstract: A major source of error in radiation measurement is the inaccurate instrument reading such as
inaccurate radiation count rate that leads to inaccurate determination of activity of a source and hence,
inaccurate values of exposure rate. Inaccurate count rate can be a direct consequence of pulse pileup. The
current algorithms for dealing with pulse pileup are to identify pulses that have piled up on top of each
other, reject that information, and then analyze only 'clean' pulses. This present work is based on the
implementation of a mathematical model of linear equations from a matrix in both hardware and software
formats. This implementation is in conjunction with Nelder-Mead direct search algorithm for peak search
implementation in an FPGA based signal processing system for pulse pileup recovery. In the design, the
FPGA subsystem can be implemented by either a hardware form using Matlab and Xilinx blocks or in a
software form using a Mcode block. From the simulations, out of the incident pulses and applying the
traditional approach, pileups occurred and only the “clean” pulses are recovered. In our approach, the
peaks were detected and recovered up to 100% irrespective of their arrival times even in severe pileup
situation as opposed to another work that recovered up to 65% of piled up pulses.

Keywords: Dead Time, Detection, FPGA, Peak, Pileup, Recovery, State Machine, Spectroscopy, Zynq-
7000

1 Introduction
Generally, the processing of nuclear radiations to
determine the type, energy and intensity of such
radiations is adversely affected by the responses of
the electronic components which culminate in 3
kinds of errors, namely, noise associated with a
detected radiation and its processing, dead time and
pile-up losses. Apart from the electronic noise, dead
time losses arise due to the time interval required to
process a radiation pulse during which another
detected radiation pulse cannot be processed. It is
assumed that each pulse occurring event is followed
by a fixed dead time interval t. Thus, an important
source of error comes from this finite time required
by the counting electronics to detect and process

radiation pulses. During this dead time, the system
cannot respond to other photons that hit the detector
and these events will not be counted and thus are lost.
Pileup losses arise due to the fact that two or more
radiation pulses may arrive close to themselves in
time with the result that their values overlap and are
summed up such that the new summed value does not
represent any of the constituent pulses. This
constitutes serious distortions to the accuracy of
measured pulse values.

The current algorithms for dealing with pulse pileup
are to identify pulses that have piled up on top of
each other, reject that information, and then analyze

Onyemaechi N. Ofodile, Matthew N. Agu
International Journal of Instrumentation and Measurement

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 1 Volume 4, 2019

mailto:onofodile@nigatom.org.ng
mailto:mnagu@nigatom.org.ng

only 'clean' pulses. In many applications as much as
80% of information can be lost to the effects of dead
time and pulse pileup [1]. A recent approach for the
detection of pulse peaks is the Direct Search
algorithm in which the interest is in resolving or
decomposing a set of overlapping peaks into their
separate components. Nelder-Mead modified simplex
technique can be used for this purpose [2]. As
opposed to more traditional optimization methods
that use information about the gradient or higher
derivatives to search for an optimal point, a direct
search algorithm searches a set of points around the
current point, looking for one where the value of the
objective function is lower than the value at the
current point. The Direct Search algorithm is a
preferred option than the other optimization methods
because of its simplicity, flexibility, and reliability.

2 Pileup Recovery
A method of recovery of piled up pulses relies on the
assumption that the complete signal pulse train can
be expressed as a linear combination of single pulses,
as shown in Figure. 1.

The complete pulse train can thus be described by the
timing of each pulse and the corresponding pulse
amplitude, as well as a single model pulse shape
common to all pulses that characterizes the dynamics
of a single signal. Based on this model, the
correlation of neighbouring signals can be resolved in
order to restore the correct energy information from
the measured amplitudes [3].

Hence, let us define p(t) to be the standard pulse
shape. Then the i-th pulse with an amplitude ai
occurring at a time ti can be modeled as:

 pi(t) = ai p(t − ti) (1)

The sample signal s(t) as a function of time t can then
be described over time as a sequence of pulses:

𝑠𝑠(𝑡𝑡) = ∑ 𝑎𝑎𝑖𝑖𝑝𝑝(−𝑡𝑡𝑖𝑖)𝑖𝑖 (2)

where both t and ti are expressed in terms of the
sampling period. However, the measured amplitudes
are usually estimated by a weighted average of the
original sampling sequence, in the vicinity of the
peak of the pulse. This pileup recovery summation is
constructed as a kind of finite response filter (FIR)
[3], mathematically represented as:

𝑞𝑞(𝑡𝑡) = ∑ 𝑓𝑓(𝑘𝑘)𝑠𝑠(𝑡𝑡 − 𝑘𝑘)𝑘𝑘 (3)

where q(t) is the response of such a filter, described
by the weights f(k). The presence of such a filter will
induce a constant time lag l in the timing of the
measured pulses with respect to their original time of
occurrence. Ignoring this time lag, the amplitude bi
can be defined by [3]:

𝑏𝑏𝑏𝑏 = ∑ �∑ 𝑓𝑓(𝑘𝑘)𝑝𝑝�𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗 − 𝑘𝑘�𝑘𝑘 �𝑎𝑎𝑗𝑗 𝑗𝑗 (4)

As seen from Equation 4, the measured amplitudes
are, in fact, just a linear combination of the real
amplitudes. An example of pileup is illustrated in
Figure 1. The amplitude of the pulse bi is affected by
the pulses bi−1 and bi+1. In general, this can be
expressed as [4]:

b = Ma (5)

where the elements of the pileup recovery matrix M
are defined as:

𝑀𝑀𝑖𝑖,𝑗𝑗 = �𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗 � (6)

𝑚𝑚(𝑡𝑡) = ∑ 𝑓𝑓(𝑘𝑘)𝑝𝑝(𝑡𝑡 − 𝑘𝑘)𝑘𝑘 (7)

The solution to Equation 5 is to invert the matrix M
with the weights Mi,j to arrive at the true amplitudes
ai ie a = M-1b. A good approximate solution for the
matrix is to assume small numbers of pulses and to
solve the system of linear equations arising from
them [4]. Assuming the simplest case in which the
current pulse is affected by one pulse before and one
pulse after, then in order to calculate the real
amplitude of the current pulse, one needs to invert a 3
× 3 matrix. The elements of the matrix are assumed

Figure 1: Pileup situation and response of a
digital filter

Onyemaechi N. Ofodile, Matthew N. Agu
International Journal of Instrumentation and Measurement

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 2 Volume 4, 2019

to be normalized. The matrix formed by the pulses i
− 1, i, i + 1 is described by [4]:

�
1 𝑝𝑝 0
𝑟𝑟 1 𝑞𝑞
0 𝑠𝑠 1

��
𝑎𝑎𝑖𝑖−1
𝑎𝑎𝑖𝑖
𝑎𝑎𝑖𝑖+1

� = �
𝑏𝑏𝑖𝑖−1
𝑏𝑏𝑖𝑖
𝑏𝑏𝑖𝑖+1

� (8)

where

𝑝𝑝 = 𝑚𝑚(𝑡𝑡𝑖𝑖−1 − 𝑡𝑡𝑖𝑖 + 1),

𝑟𝑟 = 𝑚𝑚(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 + 1),

𝑞𝑞 = 𝑚𝑚(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖+1 + 1),

𝑠𝑠 = 𝑚𝑚(𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖 + 1) (9)

From Equation 8, it follows that:

bi -1 = 1 x ai-1 + p x ai + 0 x ai+1 = ai-1 + p x ai

bi = r x ai-1 + 1 x ai + q x ai+1 = r x ai-1 + ai + q x ai

bi +1 = 0 x ai-1 + s x ai + 1 x ai+1 = s x ai + ai+1
 (10)

For a digital filter, the pulse rise time (peaking time)
is the same as the pulse fall time. Thus, due to the
symmetrical digital filter output signal, the factors p,
q, r and s of Equation 10 will be equal. Hence, if p =
q = r = s = 1, then it will be observed that the outputs
bi-1, bi and bi+1 have amplitudes greater than their
corresponding inputs of ai-1, ai and ai+1. To avoid any
overflow of the output amplitudes with undetermined
and undesirable consequences, the input needs to be
scaled down by about 50%. This would ensure that
the pulse shape and height are reasonably maintained
within limits of the analogue-to-digital conversion
(ADC) resolution subject to the time lag due to
filtering. If we are interested only in the pulse
heights, then we can equate the factors p = q = r = s =
0, in which case bi-1, bi and bi+1 will strictly
correspond to the pulse heights of ai-1, ai and ai+1
respectively without considering their pulse shapes.

We present in Figure 2a, Equation 10 implemented in
hardware form. If we apply the Nelder-Mead
algorithm for peak search, we can compare the three
values of bi -1, bi and bi +1 to finally obtain the
recovered piled up pulses as bi whenever the
comparison criteria are met.

 The analytical inverses for ai, ai-1 and ai+1 are
respectively equal to:

𝑎𝑎𝑖𝑖 =
𝑏𝑏𝑖𝑖 − 𝑟𝑟𝑟𝑟𝑖𝑖−1 − 𝑞𝑞𝑞𝑞𝑖𝑖+1

1 − 𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑞𝑞

𝑎𝑎𝑖𝑖−1 = 𝑏𝑏𝑖𝑖−1 −
𝑝𝑝(𝑏𝑏𝑖𝑖 − 𝑟𝑟𝑟𝑟𝑖𝑖−1 − 𝑞𝑞𝑞𝑞𝑖𝑖+1)

1 − 𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑞𝑞

𝑎𝑎𝑖𝑖+1 = 𝑏𝑏𝑖𝑖+1 − 𝑠𝑠(𝑏𝑏𝑖𝑖−𝑟𝑟𝑟𝑟𝑖𝑖−1−𝑞𝑞𝑞𝑞𝑖𝑖+1)
1−𝑝𝑝𝑝𝑝−𝑞𝑞𝑞𝑞

 (11)

The practical import of Equation 11 is that the
denominator (1 − 𝑝𝑝𝑝𝑝 − 𝑞𝑞𝑞𝑞) should not be allowed to
have a value of zero otherwise the matrix M becomes
singular and ai, ai-1 and ai+1 cannot be uniquely
determined. Thus, the factors p, q, r and s should
always have a value between zero and less than 1,
making ai to be an amplified form of its actual value.
If we make p = q = r = s = 0.5, then bi-1, bi and bi+1
will have amplitudes with a maximum of 2 x ai.

3 Design Methodology
We present below, the summary of the three major
steps we followed to design the peak pileup detection
and recovery units using Matlab and Xilinx blocks.

a. Step 1 – Design of random exponential pulse
generator subsystem. The output of this
subsystem simulates the input exponential
signals from a pre-amplifier with varying
arrival times and amplitudes.

b. Step 2 – Design of trapezoidal/triangular

digital filter subsystem. The subsystem shapes
the exponential input signals to
trapezoidal/triangular pulses in a series of four
stages.

c. Step 3 – Design of the pulse pileup detection,

rejection and recovery units of the subsystem.
This subsystem is made up of experimental
units for normal pileup detection and rejection,
hardware and software implementations of
pileup detection and recovery. The units of the
subsystem detect pulse peaks and pulse pileups
and carry out the necessary recovery of piled
up pulses either in a hardware or software
manner.

Onyemaechi N. Ofodile, Matthew N. Agu
International Journal of Instrumentation and Measurement

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 3 Volume 4, 2019

3.1. Simulation of Radiation Detector Output
Pulses – Random Pulse Generator Subsystem
The random pulse generator subsystem simulates the
detector output pulses. In a real system, such signals
are the outputs from the high pass filter and pole-zero
cancellation circuits. The pulses have exponential
shape with decay time equal to the noise corner time
constant of the detector-preamplifier (usually in order
of a few microseconds – 5uS). The random pulse
generator is first implemented in a Simulink library
and then added into the spectroscopy design. In this
situation and from a customized library listed in
Simulink library browser, we create a subsystem
from the Simulink Library which we can label as
Random_Pulse_Generator block. In addition, we
included the following lines to the parameter script
file to define the random exponential pulse
characteristics:

 % Clock Period
 Tclk = 0.02 e-6; % (50 MHz)
 % Pulse period

 Tpprd = 10e-6;
 % Clock period

 Tclk = 0.02*1e-6;
 Tclkn = 0.02*1e-6;

 % High pass filter constant
 Taud = 5e-6;

 % Sampling time
 TRSS = 5; %7.2; 8; 10; 12; 15
 T_st = TRSS*(1e-6);

 % Peaking time
 Taupk = T_st
 Taupk_top = 1.8*e-6

 % Random pulse generation sequences
 gg3=[0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0]';

 % Use TRSS = 5 - 7
 gg = gg3;

 % PHA group
 pha_x1 = 0.1;% Noise threshold

Other values stored in the parameter script file
include the filter peaking time and top values, ADC
resolution bits, pulse height analyser values and
baseline restoration value. The simulated random
exponential pulse outputs are as shown in Figure 1. It
is to be noted that Steps 1 and 2 of the Design

Methodology are not the subject of this writeup but
are only needed for Step 3 to be realised.

3.2. Simulation of Peak Pileup Detection and
Recovery Functions
The target of the peak pileup recovery algorithm is to
find the relevant peaks in the spectroscopic raw data
stream irrespective of pileup conditions as long as
there is an identifiable peak in the stream. In this
work, each three consecutive values are compared.
To the best of our knowledge, there is no known
open, custom-built or available commercial
spectroscopy system based on the Xilinx Zynq-7000
SoC Board that can perform this function. However,
we are aware of an effort such as in [5] in which the
peak detector subsystem is implemented in a
software mode through an Mcode block using a state
machine to accept only the “clean” pulses while
rejecting all other piled up pulses. The simple
procedure employed here can be written by a pseudo-
code as follows:

while (xn > dxn) do the following
{
If (xmax < xn) then xmax = xn
}.

In this case, the pulse peak detection and rejection
function is performed by a subsystem which
compares the current value with a temporary
maximum ’xmax’. If the temporary maximum
’xmax’ is lower than the current value ’xn’, then the
temporary value is replaced by the current value.
This happens when xn < dxn, where ’dxn’ is a one
clock interval delayed input signal ’xn’.

In this work in which the software design can be
implemented with two circuit delay elements and
simple codes in an Mcode block or in hardware form
with a few simple logical operations using Matlab
and Xilinx relational blocks, the peak is detected
when the value in the middle is greater than the
previous and the following. This approach can be
implemented in any Xilinx FPGA based SoC such as
the ZYNQ 7000 development board. The advantages
of this algorithm are simplicity, low time
consumption, easy to programme, and small number
of logical elements or components involved. The
subsystems in this design are implemented in both
hardware form and software mode in which Nelder-
Mead algorithm is also applied. Nelder-Mead

Onyemaechi N. Ofodile, Matthew N. Agu
International Journal of Instrumentation and Measurement

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 4 Volume 4, 2019

algorithm is essentially a way of organizing and
optimizing the changes in parameters to shorten the
time required to fit a function to the required degree
of accuracy. The most general way of fitting any
model to a set of data is the iterative method.
Consequently, iterative fit is performed as in the
following general way for the peak pileup recovery
based on [6]:

For three (3) consecutive peak samples Xn, Xn-1 and
Xn+1 where Xn is the peak sample taken at the present
time sampling instant, Xn-1 is the peak sample taken
one time sampling period before this instant and Xn+1
is the peak sample taken during the next sampling
instant, if Xn < Xn-1 and Xn > Xn+1 then Xn is a peak
value. This algorithm can be implemented through a
hardware form in an FPGA using the following steps:

a. The radiation signal is captured through
the detector (This is simulated through the
Matlab/Simulink workplace).

b. Implement appropriate stages of digital
trapezoidal/triangular filtering, pole-zero
cancellation and baseline restoration (also
implemented through the Matlab/Simulink
work place using Matlab and Xilinx blocks).

c. Implement the matrix linear equation
mathematical relationships as provided in
Equation 10 using appropriate Matlab and
Xilinx blocks to provide outputs for bi-1, bi and
bi+1.

d. Provide two relational blocks which
compare the three consecutive values of bi-1, bi
and bi+1 together such that when 1st value (bi-1)
< 2nd value (bi) >3rd value (bi+1), a peak is
detected in 2nd value (bi).

e. The outputs of the two relational blocks
of the previous step are connected to the inputs
of an AND logical gate.

f. The output of the AND gate is
considered as a selector of 2 to 1 multiplexer
(MUX). If this output is 1 then this position is
a peak and is selected by MUX otherwise the
output of the MUX is zero. Thus, if MUX
output is 1, then allow the corresponding Peak
Values for further processing.

The software implementation of the algorithm is
presented in Figure 2c.

4 Results and Discussion
With reference to the Design Methodology above,
Steps 1 and 2 involve subsystems created to test the
responses of the pulse peak pileup detection,
inspection and recovery functions. Typical pulse
shapes from the two subsystems are as shown in
Figure 1.

To appreciate the results and the discussion thereof, it
is important to compare the functioning of the Peak
Detector of [5] and our designed generic Peak
Detector and Recovery subsystems as shown in
Figure 2b while the Matlab and Xilinx block diagram
for the hardware pileup detection and recovery are as
shown in Figure 2a. The code snippet for the
software implementation is presented in Figure 2c.
Their responses to an input exponential pulse train
are shown in Figure 3a for a light pileup situation and
in Figure 3b for a severe pileup situation. A severe
pileup situation can be said to be a sampling situation
in which the pulse peaks in a sampled pulse train are
least identifiable after which they are no longer
distinguishable.

Fig. 2a: Matlab and Xilinx blocks for the hardware
implementation of pileup recovery

Onyemaechi N. Ofodile, Matthew N. Agu
International Journal of Instrumentation and Measurement

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 5 Volume 4, 2019

Fig. 2b: Simulation subsystems for pileup detection
and rejection, hardware and software implementation
of pileup detection and recovery

Considering the simulation waveforms showing a
light pileup situation (Figure 3a), the following
observations could be made:

a. In the case of pileup rejection with the pulse
width of a randomly generated exponential pulses
of 10uS, the random pulse spacing with a
minimum of 5uS and peaking time of the
trapezoidal filter set at 5uS and the top at 1.4uS:

i. The pulses that are not affected by any
other pulse within the duration of the
trapezoidal/triangular pulse width (11.4uS)
are allowed through as in (aa). Those pulses
arriving after twice the peaking time and top
(11.4uS) of an earlier trapezoidal/triangular
filter pulses are also allowed through.

Code snippet for software implementation of
pileup recovery

function [xmax, data_rdy, xmin] = pha_pkd(xn, dxn, start, xt1, en,
preset, blackout, pkd_counter_size, guarding, pha_noise)

if(state == s1) %check threshold
 xmax_rdy = false;
 xmax1 = 0;
 tc = 0;
 tc_en = false;
 if (xn > pha_noise && xn > xt1 && xn > dxn && en == true)
%above threshold
 state = s2;
 else
 state = s1; %below threshold: wait
 end
 elseif(state == s2) %check if amplitude falls to 90%
 if (xmax1 < xn) % not yet maximum: track for maximum
 xmax1 = xn;
 end
 if (xn < dxn && xn < xt1) % pulse falls to X% of its amplitude,
X depends on delay
 if(xmax1 > xmin1 + pha_noise)
 xmax_rdy = true;
 tc_en = true;
 end
 state = s3;
 end

Fig. 2c: Code snippet for the software implementation
of pileup recovery

Fig. 3b: Pileup detection algorithms and output signals –
Severe pileup situation

cc

Input Exponential Pulses

TRSS = 8.5
T_st = TRSS*1e-6
Taupk = T_st
Taupk_top = 0.2*e-6
gg=gg3
Pha x1 = 0.1

aa bb cc

dd

ee1

ee2

cc bb

dd1 dd2

bb

aa bb bb

dd

ee2

ee1

Input Exponential Pulses

bb cc cc

Fig. 3a: Pileup detection algorithms and output signals –
Light pileup situation

TRSS = 5
T_st = TRSS*1e-6
Taupk = T_st
Taupk_top = 1.4e-6
gg=gg3
Pha_x1 = 0.1

dd2
dd1

Onyemaechi N. Ofodile, Matthew N. Agu
International Journal of Instrumentation and Measurement

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 6 Volume 4, 2019

ii. Those pulses which have peaked before the
arrival of another pulse are also allowed
through even when another pulse has started
arriving as shown in (bb).

iii. Those pulses arriving before the elapsing of
the pulse width of 11.4uS are rejected as
shown in (cc). Thus, only fourteen (14) ‘clean’
pulses out of nineteen (19) incident pulses are
allowed through to be recorded in the multi-
channel analyser (MCA) as shown in (dd).The
“clean” pulses include one pulse with two
amplitude values as in dd1 and dd2 with the
first amplitude dd1 being the one that is
binned in the MCA. Thus, altogether, 5 out of
the 19 pulses are rejected giving a percentage
rejection of about 26%.

b. In the case of pileup recovery as shown in
Figure 3a, all the 19 peaks in the exponential
pulse train are shaped in the digital filter with
identifiable peaks. The whole 19 pulses are
detected and recovered irrespective of their
arrival times as shown in (ee1) for the hardware
and (ee2) for the software implementation. It is
observed that there is a constant time lag l in the
time stamping of the measured pulses of the
hardware implementation with respect to their
original time of occurrence.

In the case of severe pileup situation shown in Figure
3b, all the 19 exponential pulses are shaped in the
digital filter with identifiable peaks as shown in aa,
bb and cc. It is observed that cc are severely piled up
with barely identifiable peaks. For the pileup
rejection, pulses around bb and cc are rejected.
Altogether, 14 out of the 19 pulses are rejected
giving a percentage rejection of about 74%. For
both the hardware and software implementations, all
the piled up pulses around bb and cc are 100%
successfully recovered. The performances of both
the hardware and software implementations are far
better than in [3] where it was reported that more
than 65% of the piled up pulses were recovered.

Furthermore, one can observe from the simulation
that:

a. The dead time in this system is only limited to
the pulse processing time given by the pulse width

of the trapezoidal filter pulse. The pulse width
varied from 1uS to 20uS, providing for 100%
pileup recovery up to 17.2uS total trapezoidal
pulse width. At a trapezoidal pulse width of 18uS,
the hardware and software implementations had
89% and 84% pileup recovery respectively. At
20uS trapezoidal pulse width, they had about 79%
pileup recovery each.

b. It is also observed that if the sum of 2 times the
peaking time is not a multiple of the flat top time
ie remainder of ((2 x Taupk)/Taupk_top) ≠ 0 and
subject to a maximum of 17.2uS, then errors will
occur. For example, at a peaking time of 8.4uS
and a flat top value of 0.8uS, (trapezoidal pulse
width of 17.6uS), some spurious detections, which
could be attributed to noise jitters, may
occasionally slip into the detection blocks
especially for the hardware implementation as
shown in Figure 4. For the noise to be effectively
suppressed, the sum of 2 x peaking time and the
trapezoidal flat top should be as much as possible
a whole number such as 10uS, 11uS, 12uS etc.

 c. For more practical applications, it is expected

that the peaking time of the trapezoidal filter can
be set to 0.8uS with a top of 0.2uS, providing for
a maximum count rate without errors of over
500,000 counts per second, enough for most
spectroscopic applications.

5 Conclusion
A linear equation matrix based mathematical
algorithm for the detection and recovery of piled up
pulses has been designed for implementation in an
FPGA both in a hardware form using Matlab and
Xilinx blocks and in a software format using a Xilinx
Mcode block. This is achieved in conjunction with
the Nelder-Mead algorithm which is essentially a

Fig. 4: Spurious detections by the detection
blocks in the form of noise

Onyemaechi N. Ofodile, Matthew N. Agu
International Journal of Instrumentation and Measurement

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 7 Volume 4, 2019

way of organizing and optimizing the changes in
parameters to shorten the time required to fit a
function to a required degree of accuracy. The
algorithm compares three consecutive values and
detects a peak when the 1st value is less than the 2nd
and the 2nd value is greater than the 3rd value. The 2nd
value is the peak. Whereas in an earlier
implementation based on an Mcode block using a
state machine, out of a simulated pulse train of 19
pulses, only 5 pulse peaks were detected while the
remaining 14 or about 74% were rejected in a severe
pileup situation. In this present work, and for the
same severe pileup situation, hardware and software
implementations resulted in a 100% recovery of piled
up pulses. Also, it has been shown that all the pulse
peaks can be recovered from piled up pulses by using
the derived mathematical matrix linear equation
solutions and the Nelder-Mead algorithm to
implement the hardware detection and recovery using
Matlab and Xilinx blocks or by using two delay lines
and writing appropriate codes in an MCode block for
software implementation accordingly. Both
approaches have better performances than a similar
approach in an earlier work based on only the derived
mathematical matrix linear equation solutions as
reported in [3].

References:
[1] Mohamed S. El_Tokhy, et al, Comparative

Analysis between Different Linear Filtering
Algorithms of Gamma Ray Spectroscopy, Proc
of the Intl Conf on Circuits, Systems, Signals,
2010.

[2] I.I. Mahmoud, M.S. El Tokhy, and H.A.
Konber, Pileup Recovery Algorithms for
Digital Gamma Ray Spectroscopy, IOP
Publishing for Sissa Medialab, 2012.

[3] B. Loher, D. Savrana, E. Fioria, M. Miklavecd,
N. Pietrallae, M. Venceljd. High count rate γ-
ray spectroscopy with LaBr3:Ce scintillation
detectors, Elsevier, 2012.

[4] Victor I. Stoica, Digital Pulse-Shape Analysis
and Controls for Advanced Detector Systems,
Printed by GVO Drukkers & Vormgevers B.V.
Ponsen & Looijen, Groningen, 2012.

[5] M Bogovac, Digital Pulse Processor for
Nuclear Spectroscopy, Nuclear Science and
Instrumentation Laboratory, IAEA, 2015.

[6] Manar M Ouda, Mohamed S. El-Tokhy,
Hardware Implementation for Pileup

Correction Algorithms in Gamma Ray
Spectroscopy, International Journal of
Computer Applications, Vol 176, No 6,
October 2017.

Onyemaechi N. Ofodile, Matthew N. Agu
International Journal of Instrumentation and Measurement

http://www.iaras.org/iaras/journals/ijim

ISSN: 2534-8841 8 Volume 4, 2019

