
 

Abstract: - Land use and land cover change (LULCC) is a significant global issue, and projecting these changes 
is critical for informed policy decision-making. Understanding LULCC in semi-arid regions is essential for 
effective land management. This study aims to analyze past and future LULC in the semi-arid areas of Elkhuwei, 
West Kordofan, Sudan. We utilized Landsat images from 1980, 2000, 2010, and 2020 to assess historical LULC 
in the area. The results revealed that settlement and agricultural area in the study area increased, while bare 
ground decreased significantly between 1980 and 2020. The two periods exhibited different trends. Between 
1980 and 2000, vegetation, settlement, and agricultural areas expanded, while bare ground decreased. Between 
2000 and 2010 and 2010-2020, settlement and agricultural areas rose, while bare ground further declined. To 
predict land use and land cover changes (LULC) in 2030 and 2050, the Cellular Automata-Markov Chain model 
(CA-MC) was employed. The CA-MC model demonstrated improved results when assessing its application, 
indicating a trend toward increased population and deforestation. These findings contribute to developing 
effective land management policies and strategies to achieve or maintain sustainable development in the study 
area. 
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1 Introduction 
Land use refers to the way a specific piece of land is 
utilized, such as for agriculture, wildlife habitat, 
parks, industry, or recreation. When these terms are 
used together, they typically refer to the classification 
of human activities and natural features on the 
landscape over a specific period, based on recognized 
scientific and statistical methods that utilize relevant 
source materials. Land-use/land cover (LULC) 
change has been ongoing throughout human history. 
[2], [10], [51]. Changes in global land use and land 
cover (LULC) are an important concern for future 
trends. Additionally, changes in LULC are vital for 
sustainability and managing natural resources. [49], 
[70], [63].  
Land use and land cover change (LULC) present a 
significant challenge and a central focus of global 

change research. Land use, which refers to managing 
and modifying natural environments for various 
purposes, such as habitat and agriculture, differs from 
land cover, which encompasses the physical material 
at the earth's surface, including forests, wetlands, 
grasslands, and water bodies. These terms are often 
used interchangeably, despite their distinct meanings. 
[80], [28] estimates that around 420 million hectares 
of forest land globally are degraded, with 10 million 
hectares of forest cleared annually [33]. Since 1990, 
similar to the rest of the world, Africa has 
experienced significant changes in land properties 
due to the extent and intensity of natural resource 
extraction. [17], [35]. According to a report by FAO 
(2011), about 27.4% of Africa’s land area (nearly 500 
million hectares) is degraded. An extensive review of 
land use and land cover (LULC) in Africa found that 
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the expansion of agricultural land, driven by 
population growth, is the primary factor contributing 
to LULC changes, often at the expense of forested 
areas. [35].  
These changes significantly impact essential 
components of our natural capital, including 
vegetation, water resources, and biodiversity. ([19], 
[1].  The dynamics of land use and land cover 
(LULC) change vary across different regions due to 
distinct driving factors. Many developed countries, 
including the United States, experienced significant 
deforestation driven by agricultural expansion and 
industrialization until the early 19th century. In 
contrast, urbanization dynamics and urban growth 
are often associated with demographic factors, 
particularly in developing countries. [13], [8], [31], 
[89].  
Climate change, rising populations, the conversion of 
land use and land cover (LULC) into agricultural 
land, and the expansion of metropolitan regions have 
increasingly harmed various environmental 
processes, particularly ecological flow processes. 
These changes have resulted in the degradation of the 
overall functioning of the environment, diminishing 
the effectiveness of ecosystem services and hindering 
the full realization of the maximum benefits that can 
be derived from ecosystems [87], [20], [96]. Human 
activities have adverse effects on land use and land 
cover (LULC) in various regions worldwide. 
Changes in land use and land cover LULC induced 
by human actions are primarily driven by the needs 
of communities for food and economic development, 
which are exacerbated by the rapidly growing global 
population [6], [12], [16], [64].  Large-scale land use 
changes can fragment natural habitats, isolating 
species populations and disrupting ecological 
processes. Furthermore, land use and land cover 
(LULC) are often associated with either mitigating or 
the effects of natural hazards [28], [37]. In Sub-
Saharan Africa, a dynamic LULC offers an inclusive 
sympathy of the interactions and relations crucial for 
sustainable land resource management [91]. The land 
use and land cover (LULC) compositions are 
undergoing rapid changes, particularly the 
conversion of forests to developed or urban 
settlements. These transformations are driven by 
increasing population growth, agricultural 
production, and other economic activities, which are 
essential for fostering growth and reducing poverty. 
[22], [84], [91], [3], [12, [16], [9], [21], [17].  
In Africa, the expansion of agricultural land, driven 
by rapid population growth, has been identified as a 
primary factor influencing land use and land cover 
(LULC). The landscape has undergone significant 
changes due to the socio-economic and political 

transformations that took place in Europe during the 
first half of the 19th century. [76], [89], [16], [9], 
[12]. 
According to the United Nations (2019), 55% of the 
world’s population, which amounts to approximately 
7.8 billion individuals, currently resides in urban 
areas. This proportion is projected to increase to 68% 
by 2050. In Sub-Saharan Africa, 43% of the 
population lives in urban settlements. [85]. 
Land use and land cover in Sudan are influenced by 
a variety of factors, including the scale of the 
population, Land Tenure, and the nature of economic 
and social activities in the region, such as grazing, 
agriculture, the coal industry, and timber trade. 
Arable land in Sudan accounts for approximately 
one-third of the country's total area; however, only 
21% of this arable land is actively cultivated. 
Additionally, over 40% of Sudan's total area is 
comprised of pastures and forests. [27]. Several 
researchers have examined changes in land use and 
land cover in Sudan [1], [4], [5], [25]. 
The techniques of remote sensing (RS) and 
geographic information systems (GIS) have proven 
to be powerful methods for evaluating the effects of 
climate change, particularly those related to land use 
and land cover (LULC). GIS and RS provide 
valuable approaches for understanding, analyzing, 
and monitoring LULC changes over time in various 
landscapes [83], [92], [97], [99], [100], [73]. 
Numerous studies on LULC have been conducted 
utilizing these tools. [8], [69], [64], [88], [79], [40], 
[77], [86], [18], [15], [48]. These models provide 
effective methods for detecting spatial variability 
patterns in land use and land cover (LULC). [88], 
[79]. Moreover, model validation is essential for 
accurately assessing land use and land cover (LULC) 
predictions in a specific area by comparing predicted 
changes with observed LULC changes. [30], [1], 
[64]. 
A CA-Markov model is a combination of cellular 
automata and transition probability matrices, 
generated by mapping between two different images. 
Markov chain analysis is a valuable tool for 
modelling land use and land cover change (LULC) 
when the changes and processes in the land use layer 
are difficult to describe. Additionally, the use of the 
CA-Markov model in LULC change studies offers 
several advantages, including dynamic simulation 
capabilities, high data efficiency, straightforward 
calibration, and the ability to simulate multiple land 
cover types and complex patterns. [68], [64]. The 
combined Cellular Automata (CA) and Markov 
Chain model (CA-Markov Model) is one widespread 
model used with high accuracy for analysing LULU 
dynamics [43], [42],[64],[24], [66]. Furthermore, the 
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CA-Markov model’s robustness provides an 
opportune manner for modelling LULC change 
dynamics spatially and temporally in complex 
landscapes [38], [7], [94].  The flexibility of the CA-
Markov hybrid model to integrate spatial and remote 
sensing data, along with biophysical and socio-
economic information, facilitates a more 
comprehensive, detailed, and accurate projection of 
land use and land cover (LULC) change transitions. 
A critical aspect of the CA-Markov model is the 
transition rules, which are contingent upon the 
training data. [42], [13], [11]. The applied model is 
influenced by neighbourhood class and cell size, 
which are essential for achieving optimal simulation 
or prediction outcomes [34], [79]. CA-Markov 
hybrid model can effectively incorporate remotely 
sensed data and GIS. This model can convert the 
results into spatially explicit results necessary for 
LULC development [23], [34].  Some methods are 
based on the statistical matching approach for spatio-
temporal data, utilizing key predictive variables [95].  
Numerous studies have applied this model 
successfully in LULC prediction, e.g., [78], [43]. 
CA-Markov hybrid model used in this study is an 
effective and widely recognized method among 
researchers for detecting, predicting, monitoring, and 
simulating spatiotemporal changes in land use and 
land cover. (LULC). [15], [98], [54], [4], [29], [11], 
[80]. Recently, the detection and prediction of land 
use and land cover (LULC) changes have emerged as 
significant research topics in the field of remote 
sensing [98], [54]. Consequently, these issues have 
garnered the attention of numerous researchers and 
land use planners. [19]. Google Earth Engine (GEE) 
is an open-source, cloud-based geospatial processing 
platform that provides free access and open-source 
satellite datasets (Landsat, MODIS, Sentinel) with a 
high spatial resolution for extended periods. Google 
Earth Engine (GEE) is the most popular big geo data 
processing platform, which provides a set of state-of-
the-art classifiers for pixel-based classification used 
for LULC mapping. The main advantage of GEE is 
the close link between the data and the algorithms, 
both of which are accessible via an Application 
Programming Interface (API) [93], [46], [75]. 
Advances in remote sensing and Geospatial 
Information Systems (GIS) have led to the 
development of high-resolution products for land use 
and land cover (LULC) models for mapping, 
detecting, and predicting changes in LULC. [54], 
[78], [88], [92]. 
In Sudan, several researchers dealing with LULC 
[40] and [4] argued that this change is primarily 
characterized by a decrease in forest and shrublands, 
alongside an increase in rain-fed agriculture and 

rangelands. The study observed degradation 
processes, particularly in vegetation cover, as a 
consequence of agricultural land expansion. It 
recommends the implementation of appropriate 
conservation and rehabilitation measures in forests 
and rangelands to mitigate the adverse effects of land 
degradation and desertification. 
The changes were driven by human activity, 
underscoring the importance of effective land 
management practices and community involvement 
in mitigating Land Use Land Cover (LULC) changes. 
[5], [88], [41], [82].  Consequently, the impact of 
climate on land cover transformation has complicated 
the understanding of human-induced causes and can 
be observed and measured across various timescales. 
([2], [73]. 
Land Use Land Cover (LULC) maps of a region offer 
valuable insights that help users comprehend the 
current landscape. Annual Land Use Land Cover 
(LULC) data from national spatial databases will 
facilitate the monitoring of temporal dynamics in 
agricultural ecosystems, forest conversions, surface 
water bodies, and other changes every year. 
Monitoring and mitigating the adverse effects of land 
use and land cover (LULC) dynamics while ensuring 
the sustainable generation of essential resources has 
become a primary focus for researchers and 
policymakers worldwide. LULC encompasses the 
various physical land types, including forests, 
wetlands, impervious surfaces, agricultural areas, and 
water bodies, as well as how humans utilize these 
land types within a given region[19], [44], [76], [36]. 
Assessment of land use change at different spatial 
scales is necessary from many perspectives, 
including sustainable development. [46], 
conservation and management of resources, land use 
planning [46], humanitarian programs, climate 
change impact assessment, and modelling. 
 
2. Materials and Methods 
2.1. Study Area 
Elkhuwei is located within the west Kordofan State 
between latitudes 12°70′ and 13°84′ N and longitudes 
28°42′ to 29°53′ E. Elkhuwei covers an area of 
7956km2. It has borders with four localities (Sheikan, 
Bara, Abuzabad, and En Nuhud) as shown in Figure 
1.  Elkhuwei is located within the semi-arid zone, 
where the longitudinal dunes are striking geographic 
landmarks. Climatologically, Elkhuwei has a rainy 
season from June to September, with an average 
annual rainfall of 450 mm. The yearly average 
temperature is approximately 30.04ºC. [81], [39]. 
The. Cultivated land is the major LULC class and 
accounts for more than 85% of the study area; the 
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remaining area is covered with grassland, shrubland, 
forests, and settlements. In the study area, rapid 
transitions of grassland, shrubland, and forest to 
cropland have been observed in recent decades. The 
majority of the area is dominated by rural agro-
pastoral with scattered settlements and their 
livelihood is based on a mixed farming system by 
growing crops In addition, the potential for growth in 
different sectors, such as, livestock, and cultivation 
The study was selected because it is prone to soil 
erosion and environmental degradation as a result of 
intensive agricultural cultivation and overgrazing, as 
shown in previous studies. 
 
Fig1. Map of the study area 

 

2.2. Data Types and Sources:- 

The important spatial data required for the study were 
Digital Elevation Model (DEM), Landsat Images, 
and field data. The four Landsat images used were 
downloaded from the USGS, and DEM was obtained 
from the UNDP. The collected 10 m spatial 
resolution of DEM was used to develop the elevation 
and generate the slope of the study area. The analysis 
used the Landsat 1 MSS from 1980, Landsat 4 TM 
from 2000, Landsat 7 ETM+ from 2010, and Landsat 
8 OLI 2 from 2020. The images were acquired in 
September (Table 1). The global positioning system 
(GPS) measurements were taken during fieldwork to 
verify and confirm the information gathered through 
remote sensing at each ground control point (GCP). 
The LULC types were noted for reference purposes. 
Figure 2. False colour composites (NIR, red, and 
green bands) of (a)Landsat-1/MSS, (b)Landsat-
4/TM, (c)Landsat-7/ETM+, and (d)Landsat-8/OLI 2 
images used for LULC classification for the years (a) 
1980, (b) 2000, (c) 2010, and (d) 2020. The deep red 
areas represent areas covered with shrubland; the 
darker red areas represent dense grassland, and the 
green areas represent agricultural land. 
 

Table 1. Description of Landsat surface reflectance 
images used for LULC classification of the 

ELKhuwei Locality 

 
Accordingly, the years 1980, 2000, 2010, and 2020, 
respectively. A table showing the number of training 
and testing/validation points collected for each 
LULC class can be found in the study area. For 
classification, the shape files of the collected 
training/testing data were imported as assets into the 
GEE environment. Furthermore, other LULC change 
driving variables, such as elevation, slope, distance 
from roads, and distance from towns, were collected 
from different sources and processed using ArcGIS 
Pro 3.0. The distance from roads was derived from 
the shape file of road network data acquired from the 
Open Street Map database. The distance from streets 
and the distance from towns were derived from the 
shape files of the stream network and town location, 
respectively. The elevation and slope were derived 
from the 10 m resolution DEM  
 

2.3. Overview of the Methodology 

This study mainly concentrates on LULC 
classification change detection and LULC prediction. 
The first part of the paper focused on LULC 
classification for the years 1980, 2000, 2010, and 
2020 and change detection (1980–2000, 2000–2010, 
2010–2020, and 1980–2020). Hence, satellite image 
collection, filtering image collection, computation of 
the median composite of filtered image collection, 
preparation of input variables, collection, and 
merging of training points, sampling region by 
integrating the median composite and merged 
training points, classification using the RF algorithm, 
accuracy assessment, and exporting of classified 
images were performed in the GEE (Google Earth 
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Engine). LULC images and change detection were 
performed using ArcGIS Pro 3.0. (Figure 3). 
 

Figure 2 Landsat Images for Years 1980, 2000, 
2010, and 2020 

a  

b  

 

c  
 

d  
 

Figure 3. The methodological framework of LULC 
classification and change detection. 

 

 
For LULC predictions, as presented in Figure 3, for 
the years 2030 and 2050, the images classified from 
LULC change driver variables processed in ArcGIS 
Pro 3.0 were used as inputs for the LULC prediction 
model. The CA–Markov model was used for the 
prediction. The procedures of this section were as 
follows:  
● Preparation of input data (historical 

classified images and LULC change driver 
variables);  

● Computation of transition probability 
matrices using the Markov model; 

● Calculation of transition suitability maps;  
● Prediction of LULC maps using the CA–

Markov model for the reference year (2020); 
● Validation of the CA–Markov model using 

the predicted and reference map of the year 
(2020); and  

● Prediction of future LULC under the 
Elkhuwei and scenarios for 2030 and 2050. 
This study selected LULC prediction years 
(2030 and 2050) to examine the land use 
dynamics of the study area. 

 

2-3-1-Pre-processing and classification 

Pre-processing satellite images is essential to prevent 
data distortion or manipulation and to establish a 
direct connection between the data and biophysical 
phenomena. We employed atmospheric and 
topographic correction procedures in ERDAS 
Imagine to eliminate haze, atmospheric noise, and 
surface reflectance that may result from the Earth's 
rotation. A key function of pre-processing is to 
account for the movements of acquisition systems 
and platforms, particularly when using optical sensor 
data. Atmospheric correction specifically targets the 
removal of haze primarily caused by water vapour, 
fog, dust, smoke, or other particles in the atmosphere 
[56]. 

DATA CLLECTION
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2.3.2. Post-processing 

After pre-processing the satellite images, supervised 
classification was performed using the Maximum 
Likelihood Classification (MLC) technique to 
generate image classifications. The MLC method is a 
widely used algorithm for supervised satellite image 
classification. [21], [56]. The method has a strong 
theoretical foundation and can accommodate varying 
data, LULC types, and satellite systems [21]. After 
the preparation of the classification, one of the most 
widely used image classification techniques, i.e., 
maximum likelihood classification adapted for 
mapping all the land use and cover classes. Before 
selecting training samples, an empirical analysis of 
satellite imagery, Google Earth images, and a 
toposheet of the watershed was conducted carefully. 
 
2.3.3. Land use and Land-cover classification 

The number of LULC classes is preferred based on 
the requirements of a specific project for a particular 
application. Five major LULC classes were chosen 
for mapping the study area: agricultural land, bare 
land, built-up land, forest, and water bodies (Table 2).  

Table 2. Classification of LULC in the Elkhuwei  

 

2.3.4. Classification Accuracy Assessment 

Foody et.al (2020) argued that assessing the 
classification accuracy provides confidence in the 
results and the subsequent change detection. In this 
Study, for 1980, 2000, 2010, and 2020, the reference 
points were collected from Google Earth, original 
Landsat images, previous reports, and maps. The 
common and most effective method used to measure 
the accuracy of the classified image from remotely 
sensed imagery is an error/confusion matrix [93], 
[14]. The confusion matrix provides overall 
accuracy, user accuracy, producer accuracy, and 

kappa statistics. Kappa coefficient was determined 
by using Equation (1). A kappa coefficient value 
below 0.0 shows poor agreement, a value between 
0.41 and 0.60 depicts moderate agreement, and a 
value greater than 0.80 shows strong agreement. The 
Kappa coefficient is widely used in LULC 
assessments for accuracy to measure the true 
agreement between the observed agreement and 
chance agreement [93].  
The Kappa coefficient is calculated by  
 
Kappa 

𝒦 =
Ρ𝔬 −  Ρℯ

1 −  Ρℯ
 

(1) 

Where  
po is the proportion of observed agreements, and  
pe is the proportion of agreements expected by 
chance, Equation (2 and 3 respectively). 

𝒫𝔬 =
1

Ν
∑ 𝓃𝒾

Ν

𝒾=1

 

(2) 

Where 
N is the total number of observations or 
categories 
𝓃𝒾 is the value (often a count or score) for the 𝒾-
th observation. 

𝒫ℯ =
1

Ν²
 ∑  𝓃𝔦 + 𝓃+𝔦

𝔦

 

(3) 

Where  
N is the total number of observations (total in 
the table). 
𝓃𝔦 + is the row total for category i (sum across 
columns in row i). 
𝓃+𝔦 is the column total for category i (sum 
down rows in column i). 
In agreement statistics (e.g., kappa), 
this Pe represents the expected proportion of 
agreement by chance, computed from the row 
and column marginal totals. 
The contingency table is a matrix form that illustrates 
the frequency distribution of the variables and is used 
to show the interrelation between cells in this study. 
The interaction of every cell is tabulated into a matrix 
and calculated. The result explains the agreement of 
every criterion of each cell. Finally, the contingency 
table expresses the percent agreement as a Kappa 
coefficient. [93]. 
 

LULC Class Description 

Shrub land 

Areas of land covered with open and 
closed bushes and shrubs are mainly 
found along the wadis. 

Grassland 
Areas covered with grasslands are 
mainly used for grazing. 

Agriculture 

land 

Areas of agricultural land are mainly 
used for crop cultivation. 

Bare land 

Areas devoid of vegetation, e.g., 
sediments, exposed rocks, landslide 
zones, and degraded forest area 

Built-up 
Areas of urban and rural settlements 
and other developments like roads. 

Water Body 
Areas covered by wadi and 
reservoirs 
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𝐾𝑎𝑝𝑝𝑎 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

𝒦 =
Ρ𝔬 −  Ρℯ

1 −  Ρℯ
 

(4) 

2.3.4. Land Use Land Cover Change Drivers 

LULC change simulation studies have used 
topographic and distance driver variables. Elevation, 
slope, distance from roads, distance from streams, 
distance from urban areas, and evidence likelihood 
Rasters were considered potential driver variables. 
Distance from roads, distance from streams, and 
distance from urban areas were set as dynamic 
variables to express the varying distances as they 
change over time [90], [50], [58], [31]. 
 
2.4. LULC Change Prediction and Validation 

2.4.1. LULC Prediction 

The trend variations of LULC changes for the years 
1980, 2000, 2010, and 2020 were analyzed to predict 
future years of the study area. The future land use 
scenarios were based on recent trends, historical land 
use information, and anticipated future change 
 
2.4.1.1. Markov Model  

A Markov model is a mathematical framework used 
to describe a sequence of events in which the 
probability of each event depends solely on the state 
of the preceding event. This characteristic, known as 
Markov models, has extensive applications across 
various fields, including data analysis, forecasting, 
and environmental modelling ([23].  
 
Markov Model Formula 

To predict future states, we use the following 
formula: 

S(𝔱 + 1) = 𝒮(𝔱)𝑃 
(5) 

Where: 
● St: is the state vector at time t (i.e., the 

distribution of future states). 
● St−1: is the state vector at the previous time. 
● P is the transition matrix that represents the 

probabilities of transitioning between 
different states. 

● State Vector: 
S(t) = [s1(t), s2(t), …, sn(t)]  

(6) 

Where: 
 S(t)= configuration of the entire system at 

time t 
 n = total number of cells 
 si(t) = state of cell i at time t 
 si(t)∈S (finite set of states, e.g. {0,1}) 

Transition Probability Matrix: 
 

𝜌𝒾𝔧
=

Ν𝒾𝔧

∑ Ν𝒾𝔧𝒾

                    ∑ 𝜌𝒾𝔧=1𝔧  

(7) 

Where 
 𝜌𝒾𝔧  = probability that a cell transitions 

from state i → state j 
 Ν𝒾𝔧 = number of observed transitions 

from state i to state j 
 ∑ Ν𝒾𝔧𝒾 = total transitions out of state i 

This guarantees that probabilities are valid: 

0≤ 𝜌𝒾𝔧 ≤ 1and ∑ 𝜌𝒾𝔧=1𝔧  
 

Markov Chain Analysis is often employed to 
simulate complex systems. Processes such as 
land-use change are primarily used to examine 
the transition probabilities between different 
states. An initial state and a final state are used 
to determine the transition trends among 
different land uses. Markov chain analysis is a 
discrete random process that operates in both 
time and state. 
The CA-Markov model is a hybrid of Cellular 
Automata (CA) and Markov Chain analysis. It is 
widely utilized in predicting and modelling land use 
and land cover change (LUCC). This integrated 
approach combines the spatial dynamics of CA with 
the temporal transition probabilities of Markov 
Chains, making it a robust tool for simulating and 
forecasting land use changes over time. [72].  
 
2.4.1.2. The CA–Markov Model 

Cellular Automata (CA) is a powerful modelling 
approach for simulating spatial and temporal 
dynamics in complex systems, including land use and 
land cover changes. CA models consist of a grid of 
cells, each with its state, and evolve based on simple 
rules that govern how the state of each cell changes. 
These models are beneficial for simulating systems 
where local interactions between neighbouring cells 
lead to emergent global patterns. [72]. 
The weight factor is combined with the transition 
probabilities to predict the state of adjacent grid cells, 
ensuring that land-use change is not a completely 
random process. The commonly used 
neighbourhoods are Moore, extended Moore, and 
von Neumann. In this study, we used the von 
Neumann neighbourhood. 
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The rules are suitability maps that indicate the 
likelihood of a cell transitioning from one state to 
another.  
The model expression is: 
 

Sᵢ (t+1) = f (Set, Nᵢt, P)                                                                       
(8) 

Where: 
● S ti +1: The state of cell i at the next time step 

t+1. 
● St

i: The current state of cell i at time step t. 
● Ni

t: The states of the neighbouring cells of i 
at time step t. 

● F: The transition function that determines 
how the cell’s state evolves based on its 
current state and the states of its neighbours. 

● P: A set of parameters (such as transition 
probabilities, environmental constraints, or 
socio-economic factors) that influence the 
state change. 
Suitability maps 𝑆𝑗(𝑥)are derived from 
standardized driver variables (e.g., 
distance to roads, slope, settlement 
proximity), each normalized to [0, 1]. 

𝑆𝑗(𝑥) = ∑ 𝑤𝑘 

𝑘

𝑓𝑘,𝑗(𝑥) 

(9) 

 
Where: 

 𝑓𝑘,𝑗(𝑥) = standardized driver variable (k) 
 𝑤𝑘= = weight assigned to driver (k) 
 ∑ 𝑤𝑘= 𝑘 1 

 
2.4.2. Model Validation 

Validation is simply a procedure to assess the quality 
of the predicted LULC map against a reference map. 
The images of Landsat for 1980, 2000, 2010, and 
2020 were utilized to simulate the 2030 LULC 
image. The comparison of the simulated LULC 
image with the actual map was developed. The 
LULC of the years 1980, 2000, 2010, and 2020 were 
provided to calibrate Ac Markov, and the model was 
validated by simulating the recent LULC map of 
2020. The validation process in AC Markov involves 
a cross-tabulation in a three-way comparison 
between the later land cover map (1980, 2000, 2010 
the predicted land cover map (2030 and 2050), and 
the actual map (2020). The module validation in the 
ACM model was used to statistically evaluate the 
quality of the predicted 2030 and 2050 LULC images 
against the reference images [70]. The map shows 
areas where the model correctly predicted, called 

“hits”, areas where the model predicted a change but 
it did not occur, called “false alarms, and occasions 
where the model was unable to predict it, but areas 
were changed in reality, called “misses”. After the 
model prediction capacity was verified between the 
1980 and 2000 time periods for 2020, the simulation 
process was repeated to project the 2030 and 2050 
maps using the 2010 and 2020 classified maps. The 
other method is the kappa coefficient calculation 
between the predicted map and the actual land use 
map. However, the original kappa coefficient does 
not distinguish between the quantification and 
location error, delimiting its expressiveness. This can 
be resolved by calculating cause-dependent K-
indices, Kno (kappa for no information), Klocation 
(kappa for location), Kstandard (kappa for standard), 
and KlocationStrata (kappa for stratum-level 
location) [53]. The overall agreement of the projected 
and reference map indicates the Kappa for no 
information (Kno). The location kappa (Klocation) is 
used to compute the spatial accuracy in the overall 
landscape, because of the correct assignment values 
in each category between the simulated and reference 
map [59]. The ratio of inaccurate allocations by 
chance to the correct assignments is kappa for 
standard (Kstandard). The kappa for stratum level 
location (Klocation Strata) is a quantification of the 
spatial accuracy within pre-identified strata, and it 
indicates how well the grid cells are situated within 
the strata. The blend of Kstandard, Kno, Klocation, 
and Klocation strata scores are considered for a 
comprehensive evaluation of the overall accuracy in 
terms of location and quantity (Table3).  
Additionally, the statistics considered are agreement 
quantity, agreement chance, agreement grid cell, 
disagreement grid cell, and disagreement quantity, 
which are used to know exactly how strong the 
agreement is between the simulated map and the base 
map (Table 4) [94]. 
The Disagreement Quantity and Disagreement Grid 
Cell constituents are crucial to understanding the 
simulated model. This validation method gives an 
idea about the level of agreement or disagreement 
between projected and actual LULC maps (Mas et al. 
2012). The two most important differences between 
the two categorical maps are in terms of quantity 
(changes or persistence) and allocation. 
Disagreement by quantity is the variation between 
two images because of an imperfect combination in 
the overall proportions of LULC categories. The 
allocation disagreement is the distinction between 
two images caused by an imperfect combination 
among the spatial allocations of all land cover map 
categories [94]. 
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Classification agreement/disagreement 

 
Table 3: According to the ability to specify 

accurately quantity and allocation 

 

Table 4. Possible ranges of map comparison and 
level of agreement of kappa values 

N
o Values Strength of Agreement 

1 <0 Poor 
2 0.01–0.40 Slight 
3 0.41–0.60 Moderate 
4 0.61–0.80 Substantial 
5 0.81–1.00 Almost Perfect 

 

2.5. Land Use Land Cover Change Analysis  

The CA Markov determines how the factors 
influence future LULC change, how much land cover 
change took place between earlier and later LULC, 
and then calculates a relative amount of transitions 
[93]. The future land use scenarios were based on 
recent trends, historical land use information, and 
anticipated future changes. The CA Markov uses the 
“change analysis” tab, the “transition potentials” tab, 
and the “change prediction” tab. The change rates 
were determined through the “change analysis” tab, 
along with the “transition potential” maps to simulate 
the future scenario [55]. 
The LULC dynamics in each study period were 
assessed using numerical values extracted from the 
classified images. To acquire the change pattern, the 
classified images from consecutive periods were 
cross-tabulated and compared with each other. The 
probability matrix was created between 1980 and 
2000, 2010 and 2020, 2020 and 2030, and 2030 and 
2050 using CA Markov. The change percentage [55] 
and the rate of change were determined for LULC 
categories using Equations (7) and (8), respectively, 
to establish the number of changes experienced 

among the different LULC categories during these 
periods. 

Percent of change =  

%∇X =
𝑋𝑡2 − 𝑋𝑡1

𝑋𝑡1
× 100% 

Unit is percentage (%) and 𝑋𝑡1 ≠ 0. 
(10) 

Rate of change (km/year) =  
∇𝑋 =  𝑋_t2 − X_t1 

 
(11) 

Where  

 ∇X Amount of change in variable X 
 𝑋𝑡1Value (or state) of X at initial time t1 
 𝑋𝑡2  

Value (or state) of X at later time t2 

3. Results and Discussion 
3.1. Classification Accuracy Results 
3.1.1 Accuracy Assessment of the Classified 

Images 

 

The evaluation of accuracy for land use and land 
cover (LULC) change analysis was conducted by 
generating a confusion/error matrix for each 
LULC category across the classified maps of 
1980, 2000, 2010, and 2020. The assessment 
utilized overall accuracy, kappa statistics, as well 
as producers' and users' accuracy. The kappa 
statistics and overall accuracy for the classified 
images were recorded as 82.9%, 79.3%, 89%, 
and 86.1% for the years 1980, 2000, 2010, and 
2020, respectively (see Table 5).  
The accuracy results for the more recent LULC maps 
were notably higher, which may be attributed to the 
enhanced spatial resolution of the satellite imagery. 
An accurate assessment of LULC is essential in any 
study employing remote sensing Landsat data for 
historical LULC analysis. 

 
3.2. Analysis of Land Use and Land Cover 

Types 
The analysis of Land Use and Land Cover 
(LULC) was conducted through the assessment 
of gains, net changes, and losses experienced by 
various categories, utilizing change analysis 
within the CA Markov framework. Spatial and 
temporal changes among different classes were 
evaluated for the years 1980, 2000, 2010, and 
2020, as illustrated in Table 8. The 
transformations categorized are summarized in 

Information of 

Allocation 
No[n] 

Medium[

m] 
Perfect[p] 

Perfect[P(x)] 
P(n) = 
0.2146 

P(m) = 
0.9327 

P(p) = 
1.0000 

PerfectStratum[

K(x)] 

K(n) = 
0.1473 

K(m) = 
0.9327 

K(p) = 
0.9327 

MediumGrid[M(

x)] 

M(n) = 
0.1473 

M(m) = 
0.9327 

M(p) = 
0.9327 

MediumStratum[

H(x)] 

H(n) = 
0.1429 

H(m) = 
0.8620 

H(p) = 
0.8631 

No[N(x)] 
N(n) = 
0.1429 

N(m) = 
0.8620 

N(p) = 
0.8631 
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terms of loss, gain, and net change of LULC, as 
depicted in Figure 4. The area coverage of 
LULC classes, their percentage, and the rate of 
change in the study area between 1980, 2000, 
210, and 2020 were quantified and analysed in 
Table 6.   
 
Table 5. Accuracy assessment of classified LULC 

maps for 1980, 2000, 2010, and 2020. 

 

 

The gain in LULC for each class was determined 
based on the results of persistence and the total 
column value, while the loss was derived from 
the total row, with persistence also being 
calculated from the total row. 
 
 
 
 

 

 

LULC 1980 Accuracy Assessment 

Class Value C_1 C_2 C_3 C_4 C_5 C_6 Total U-Accuracy Kappa 
Agriculture 39.000 0.000 0.000 0.000 2.000 2.000 43.000 0.907 0.000 
Built up area 0.000 9.000 1.000 0.000 0.000 0.000 10.000 0.900 0.000 
Grassland 0.000 1.000 106.000 1.000 5.000 4.000 117.000 0.906 0.000 

Water bodies 0.000 0.000 0.000 10.000 0.000 0.000 10.000 1.000 0.000 
Shrub land 4.000 6.000 10.000 4.000 118.000 1.000 143.000 0.825 0.000 
Bare land 2.000 4.000 3.000 5.000 10.000 169.000 193.000 0.876 0.000 
Total 45.000 20.000 120.000 20.000 135.000 176.000 516.000 0.000 0.000 
Accuracy 0.867 0.450 0.883 0.500 0.874 0.960 0.000 0.874 0.000 
Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.829 

LULC 2000 Accuracy Assessment 

Class Value C_1 C_2 C_3 C_4 C_5 C_6 Total U_ Accuracy Kappa 
Agriculture 72.000 2.000 2.000 0.000 3.000 0.000 79.000 0.911 0.000 

Built up area 3.000 25.000 2.000 0.000 0.000 0.000 31.000 0.806 0.000 
Grassland 16.000 2.000 126.000 0.000 4.000 0.000 148.000 0.851 0.000 

Water bodies 2.000 0.000 0.000 8.000 0.000 0.000 10.000 0.800 0.000 
Shrub land 19.000 5.000 3.000 0.000 120.000 0.000 147.000 0.816 0.000 
Bare land 14.000 1.000 2.000 0.000 1.000 75.000 93.000 0.806 0.000 

Total 126.000 35.000 135.000 8.000 128.000 75.000 508.000 0.000 0.000 
P_ Accuracy 0.571 0.714 0.933 1.000 0.938 1.000 0.000 0.839 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.793 

LULC 2010 Accuracy Assessment 

Class Value C_1 C_2 C_3 C_4 C_5 C_6 Total U_ Accuracy Kappa 
Agriculture 36.000 1.000 2.000 0.000 0.000 0.000 40.000 0.900 0.000 

Built up area 2.000 37.000 1.000 0.000 1.000 0.000 41.000 0.902 0.000 
Grassland 6.000 3.000 100.000 0.000 0.000 0.000 109.000 0.917 0.000 

Water bodies 1.000 0.000 1.000 8.000 0.000 0.000 10.000 0.800 0.000 
Shrub land 8.000 1.000 1.000 0.000 134.000 0.000 144.000 0.931 0.000 
Bare land 7.000 5.000 2.000 0.000 0.000 151.000 165.000 0.915 0.000 

Total 60.000 47.000 107.000 8.000 135.000 151.000 509.000 0.000 0.000 
P_Accuracy 0.600 0.787 0.935 1.000 0.993 1.000 0.000 0.916 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.890 

LULC 2020 Accuracy Assessment 

Class Value C_1 C_2 C_3 C_4 C_5 C_6 Total U_ Accuracy Kappa 
Agriculture 138.000 8.000 7.000 6.000 7.000 6.000 172.000 0.802 0.000 

Built up area 0.000 53.000 1.000 1.000 1.000 0.000 56.000 0.946 0.000 
Grassland 3.000 3.000 91.000 1.000 1.000 2.000 101.000 0.901 0.000 

Water bodies 0.000 0.000 0.000 10.000 0.000 0.000 10.000 1.000 0.000 
Shrub land 1.000 1.000 1.000 0.000 64.000 0.000 67.000 0.955 0.000 
Bare land 6.000 0.000 0.000 0.000 0.000 99.000 105.000 0.943 0.000 

Total 148.000 65.000 100.000 18.000 73.000 107.000 511.000 0.000 0.000 
P_Accuracy 0.932 0.815 0.910 0.556 0.877 0.925 0.000 0.890 0.000 

Kappa 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.861 
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Table 6. The area coverage of LULC, percent, and 

rate of changes in the Study area between 1980, 

2000, 2010, and 2020. 

 

 

The agricultural land represents the predominant land 
use and land cover (LULC) type within the study 
area, accounting for 8.54% in 1980, 15.74% in 2000, 
8.01% in 2010, and 34.33% in 2020 (see Table 7). 
The alterations in LULC have had a notable impact 
on the distribution of woodlands in the region. The 
area designated as shrubland, which constitutes the 
largest segment of the land use classification, has 
experienced a significant reduction, decreasing from 
2,129.25 km² in 1980 to 996.59 km² in 2020. 
Conversely, the area allocated to agricultural use has 
increased markedly, rising from 636.23 km² in 1980 
to 2,557.49 km² in 2020. This analysis reveals a 
substantial expansion of both agricultural and urban 
land, alongside a considerable decline in shrubland 
within the study area. 

 

3-3 Analysis of change rate between different 

models 

Tables 6 and 7 present the statistical data on land 
use dynamic changes in the study area for the 
years 1980, 2000, 2010, and 2020. The most 
significant change during the period from 1980 
to 2000 occurred in bare land, which experienced 
a change rate of 2,362.15 km². Its transfer and 
loss rates were -41.2% and 2.06%, respectively. 
The second most rapid change rate was observed 
in shrubland.  

 

 

 

 

 

 

 

Figure 4 Gain and loss areas of 1980, 2000, 2010, 

and 2020 
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The transfer and gain rates for shrubland were not 
specified, and the dynamic rate was also omitted. 
Change rates for water and grassland were minimal, 
recorded at 0 km² and an unspecified value, 
respectively. However, their dynamic rates were the 
highest, although the specific values were not 
provided. The change rate and dynamic rate for land 
overall were the lowest, also lacking specific values. 

3.4. Land Use and Land Cover Change 

Transition Matrix from 1980–2020 

Transition potential modeling evaluates the 
likelihood of land use and land cover (LULC) 
changing from one class to another, depending on the 
suitability of the area and the presence of driving 
forces [98]. This modeling records the probability of 
each land use class transitioning into another. Future 
predictions of LULC changes are derived from the 
transition probability matrix [98].  The transition 
probability matrices generated by the model for 
LULC types during the periods 1980–2000, 2000–
2010, and 2010–2020 are presented in Table 8. A 
spatiotemporal assessment of LULC changes  

between earlier and later land cover maps was 
conducted through cross-tabulation. This cross-
tabulation helps determine the extent of change and 
conversions between different lands cover maps. In 
the cross-tabulation table shown in Table 8, the 
bolded frequencies along the diagonal of the 
transition probability matrix confirm the probability 
of the LULC class remaining unchanged 
(persistence) from the earlier to the later land cover 
map. In contrast, the off-diagonal frequencies 
indicate the likelihood of a given LULC class 
changing from one type to another. The change 
analysis is based on the differences in LULC between 
time 1 and time 2 [98]. The conversion of shrubland, 
and grassland significantly contributed to the 
expansion of agricultural land. The least loss of 
LULC categories was observed in the transition from 
shrubland to grassland and urban land. Between 2000 
and 2010, the most significant loss occurred with the 
conversion of grassland to agricultural land, 
quantified at 2218. Before 1980 and even before 
2000, the study areas were predominantly covered 
with shrublands and grasslands. The expansion of 
built-up areas has been consistently increasing at the 
highest rate. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Table 7 LULC of the Study area for 1980-2020 
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LULC2010 

%100 

LULC 
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/km2 

LULC2020%100 

Agriculture 636.23 8.54 1172.64 15.74 596.67 8.01 2557.49 34.33 
Built-up 

area 
514.13 6.90 461.35 6.19 614.10 8.24 829.21 11.13 

Grassland 1535.09 20.61 2211.77 29.69 1619.57 21.74 1502.11 20.16 
water 273.12 3.67 22.73 0.31 15.96 0.21 2.93 0.04 

Shrub land 2129.25 28.58 2193.49 29.44 2152.22 28.89 996.59 13.38 
bare land 2362.15 31.71 1387.99 18.63 2451.46 32.91 1561.63 20.96 

TOT 7449.97 100.00 7449.97 100 7449.97 100.00 7449.97 100.00 
P_Accuracy 0.837  0.85  0.8375  0.7621  
U_Accuracy 0.798  0.77  0.8033  0.742  
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Table (8) Land Use Land Cover Transition km2 

1980 -2020 

(a) 
 

 
(b) 

 

(c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land Use Land Cover Transition  km2 1980 -2000 

Land Use Land 

Cover 
agriculture bar land Built up Area grassland sharp land water Grand Total 

Agriculture 139 636  9 170 5 1156 
Bare land 72 346 9 408 528 4 1367 

Built up Area 47 208 8 88 93 0 445 
Grassland 181 1314 18 342 354 10 2218 
Shrub land 154 434 7 666 925 7 2194 
Water Body 0 1 0 16 5 0 22 

Total 593 2939 42 1529 2075 26 7402 

Land Use Land Cover Transition  km2 2000 -2010 

Land Use Land 

Cover 
Agriculture Bare land Built up Area Grassland Shrub land water Grand 

Total 
Agriculture 70.76 155.14 26.18 136.44 199.59 6.33 594.43 
Bare land 415.53 374.31 176.25 905.47 568.46 2.02 2442.04 

Built up Area 141.58 71.18 80.99 220.05 95.24 2.7 611.73 
Grassland 356.31 218.84 94.22 703.37 238.35 2.12 1613.21 
Shrub land 174.92 546.42 69.02 258.12 1094.84 0.76 2144.07 
Water Body 0.11 4.95 0.07 0.19 2.7 7.87 15.9 

Total 1159.21 1370.84 446.73 2223.64 2199.18 21.8 7421.38 

Land Use Land Cover Transition  km2 2010 -2020 

Land Use Land Cover agriculture bar land Built up Area grassland sharp land water Grand 
Total 

Agriculture 443.05 29.8 48.07 19.43 53.87 0.17 594.4 
Bare land 718.7 636.01 302.36 716.01 68.46 0.46 2442 

Built up Area 224.7 142.39 128.21 109.12 6.73 0.57 611.73 
Grassland 255.69 554.96 172.81 623.17 6.55 0.01 1613.18 

Shrub land 915.8 184.98 143.68 32.63 865.61 1.36 2144.06 

Water Body 15.66 0.09 0.13 0 0.01 0 15.89 

Total 2573.6 1548.23 795.26 1500.36 1001.23 2.57 7421.26 
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3-5 Land Use Land Cover Change Prediction 

Future land use and land cover (LULC) conditions in 
El Khuwei area were projected by analyzing 
historical change trends. Figure 6 and Table 9 
illustrate the anticipated LULC dynamics for the 
years 2030 and 2050, as simulated using the Cellular 
Automata-Markov (CA-Markov) model. The results 
indicate a consistent increase in both agricultural land 
and built up areas in El Khuwei area compared to the 
reference year of 2020. Specifically, the area 
designated for agriculture land, which comprised 
2557.49 km² (34.33%) in 2020, is expected to expand 
to 3314.46 km² (44.49%) in 2030 and 3845.38 km² 
(51.62%) in 2050 (Table 9). Moreover, the 
fragmented grassland areas within the study region 
are anticipated to experience an increase in 
settlement, rising from 829.21 km² (11.13%) in 2020 
to 832.22 km² (11.17%) in 2030 and 802.85 km² 
(10.78%) in 2050 (Table 9). As depicted in Figures 
6a and 6b, a significant expansion of settlements in 
and around El Khuwei area is predicted, with future 
shrubland and agricultural areas adjacent to the 
settlements serving as primary contributors to this 
growth. Conversely, the study area is expected to 
witness a consistent decline in shrubland, and 
grassland areas relative to the reference year of 2020. 
The projections suggest that shrubland will decrease 
to 686.12 km² (9.21%) and 476.04 km² (6.39%) in 
2030 and 2050, respectively; and grassland will 
diminish to 1242.77 km² (16.68%) and 1111.49 km² 
(14.92%) in the same years. Under this scenario, it is 
anticipated that the shrubland areas in the study area 
will be converted to settlement and cultivated land. 
(Figure 6a, b). 

 

Figure 5. Distribution of the LULC class that 

transitioned between 1980 –2020 

 

Figure 6. Potential distribution of LULC types of 

the study area in 2030, 2050. 
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(b)
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A significant change was identified in the land use 
and land cover (LULC) analysis results between 
1980 and 2050.  
 
Agricultural land is projected to become the 
predominant LULC type. The analysis indicates that 
the area designated as agricultural land is expected to 
increase from 34.33%% in 2020 to 44.49% in 2030, 
and subsequently to 51.62% in 2050. This increase is 
primarily attributed to the conversion of shrubland, 
and portions of grassland into agricultural use.  

 

Table (9) LULC Dynamic Degree, Dynamic Rate. 

 

 

 

 

 

Notably, agricultural land experienced substantial 
growth from 1980 to 2030, followed by a more 
gradual increase from 2030 to 2050 (as illustrated in 
the accompanying figure and table). Additionally, a 
continuous increase in urban areas was observed 
during the period from 2020 to 2030. The total area 
covered by settlements was recorded at 6.90% in 
1980, with projections indicating an increase to 
11.17% by 2030 and 10.78% by 2050. The graphical 
representation of the area covered by six LULC 
classes for the years 1980, 2000, 2010, and 2020, as 
well as the projected years 2030 and 2050, is 
presented in Figure 6. 

 

 

 

 

 

 

Class LULC LULC 2020 

area /km2 

Land Use Dynamic 

Degree 2010-2020 

(%) 

Land Use Rate 2010-

2020 (%) 

LULC Prediction  

2030 area /km2 

Land Use Dynamic 

Degree 2020-2030 

(%) 

 
LULC  Prediction 

2050 area /km2 

Land Use Dynamic 

Degree 2030 -

2050(%) 

Land Use Rate 

2030 -2050(%) 

Agriculture 2557.49 13.19749858 320.8448793 3314.46 1250.715233 
933.0412

65 
3845.38 10.37272394 312.1339692 

Built up 

area 
829.21 -5.692514745 -113.6339534 832.22 -735.9774653 

-

832.3691

338 

802.85 -10.45431102 -196.4536006 

Grass land 1502.11 -2.953023102 -57.97228236 1242.77 -2109.233454 

-

2243.731

365 

1111.49 -7.634819769 -149.5375702 

Water Body 2.93 -5.65376035 -102.4955535 27.75 -29.54118877 

-

127.0743

452 

89.24 -20.10433461 -170.2266062 

Shrub land 996.59 -4.93014312 -98.60099918 686.12 -700.8418684 

-

795.8550

174 

476.04 -8.396201208 -159.8149147 

Bare land 1561.63 -6.312444685 -125.8363335 1346.65 -1071.662812 

-

1170.159

916 

1124.97 -10.2487125 -196.1381419 

TOT 7449.97   7449.97   7449.97   
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4. Conclusions 
This study analyzed historical land use and land 
cover change (LULCC) from 1980 to 2020 as well as 
projected land use and land cover (LULC) for 2030 
and 2050 through the application of the AC-MC 
Chain model in the semi-arid region of Kordofan, 
Sudan. The main findings indicate that significant 
spatial and temporal changes have occurred. From 
1980 to 2020, there was a notable increase in 
agricultural areas and settlements, alongside a 
decrease in bare ground within the study area. 
Projections for LULC in 2030 and 2050 suggest that 
the expansion of agricultural areas and settlements 
will have environmental implications. The analysis 
of LULCC indicates an increase in settlements and 
agricultural areas, as well as a decrease in bare 
ground between 1980 and 2000. Between 2000 and 
2010, settlements continued to rise; however, there 
was a decline in shrubland, grass areas, and bare 
ground. By 2050, based on trends observed from 
2000 to 2010 and 2020, land use changes are 
expected to progress in a manner that is incompatible 
with maintaining a balanced environment. The 
analysis of surface state dynamics revealed that 
population growth and evolving anthropogenic 
(socioeconomic) activities were the primary drivers 
of LULC changes. These changes in LULC present 
both positive and negative outcomes. El Khuwei area 
has experienced a trend toward increased population 
and deforestation, accompanied by the adoption of 
sustainable land management practices, which can 
enhance water and land conservation efforts. 
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