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Abstract: The conformable fractional derivative and adequate fractional complex transform are 

implemented to discuss the fractional higher-dimensional Ito equation analytically. The Jacobi 

elliptic function method and Riccati equation mapping method are successfully used for this 

purpose. New exact solutions in terms of linear, rational, periodic and hyperbolic functions for the 

wave amplitude are derived. The obtained solutions are entirely new and can be considered as a 

generalization of the existing results in the ordinary derivative case. Numerical simulations of 

some obtained solutions with special choices of free constants and various fractional orders are 

displayed. 

 KeyWords: Conformable fractional derivative; Jacobi elliptic function method; Riccati equation 
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1. Introduction 

Fractional differential equations (FDEs) were 

introduced to generalize the differential equations 

with integer orders. Over the last two decades, and 

due to the significant role played in mathematical 

modeling with applications in science, engineering, 

finance and information technology [1-3], FDEs 

have attracted the mathematicians’ interests. The 

development of software symbolic computations 

helps researchers accomplish these tasks. As there is 

no one method can treat the various kinds of 

nonlinear FDEs, wide range of efficient schemes 

have been proposed, modified, and expanded for 

seeking numeric, semi-analytic and exact closed-

form solutions for such problems to understand 

qualitative and measurable features of complex 

phenomena. Among these methods, we mention the 

bifurcation method [4], Hirota bilinear method [5], 

 /G G  method and its modification [6], Adomian 

decomposition method and its extensions [7-10], 

auxiliary equation method[11], exponential-rational 

function method [12], F-expansion method [13], 
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He’s variational iteration method [14], inverse 

scattering method [15], differential transform 

method and its reduction [16-18], homogeneous 

balance method [19], Lie symmetry method [20], 

first integral method [21], residual power series 

method [22-24], generalized Riccati equation 

mapping method [25],   exp    method [26], 

Jacobi elliptic function expansion method [27], 

functional variable method and generalized 

Kudryashov method [28-29], simplest equation 

method and its modification [30-31], and the sub-

equation method [32]. 

In 1980, Ito constructed the (2+1)-dimensional 

integro-differential equation of the form 

 

   3 2 3 0tt xxxt x t xt xx t yt xtu u u u u u u u dx u u       
, (1) 

as a general form of the bilinear KdV equation [33]. 

In Eq.(1), the unknown function  , ,u x y t  

represents the relevant wave amplitude.   and   

are known real parameters. 

Recently, many authors have interested in 

studying the (2+1)-dimensional Ito equation Eq.(1); 

Wazwaz [34] applied the tanh–coth method to 

derive single soliton and periodic solutions.  Also, 

N-solitons were derived by combining Hereman’s 

method and Hirota’s method. The extended 

homoclinic test technique and the bilinear method 

was performed to obtain single, two-solitons, 

periodic and doubly-periodic wave solutions [35]. 

Hyperbolic and periodic solutions were obtained 

using the extended F-expansion method [36]. The 

 /G G  method were used to carry out one-soliton 

solutions [37]. Adem [38] deduced multiple wave 

solutions by using the multiple exp-function 

algorithm. The Wronskian determinant technique 

was employed by Yildirim and Yasa [39]. Lump 

and stripe solutions, and  the diversity of 

interactions basing on the Hirota bilinear form were 

investigated by Ma et. al [40-42]. 

In this work, the focus is to construct new 

analytic solutions for the fractional version of 

Eq.(1) 

 

2 4 2 2 2

2 3 2
6 3 3 0x

u u u u u u u u u
u I

t x t x t x t x t y t x t

        


            
 

         
       

             

, (2) 

where n   is the thn  order   fractional 

derivative operator, I    is the   fractional anti-

derivative operator,  , , 0,t x y   , and0 1  . 

Parallel to the increasing of interest in fractional 

calculus, various definitions for fractional derivative 

and corresponding anti-derivative were suggested 

[2-3]. Among these efforts, the Caputo and 

Riemann-Liouville derivatives with physical 

meanings. These definitions found the acceptance 

by researchers and were extensively used in the 

field of FDEs, despite they do not meet some basic 

formulas like the constants’ derivative, product, 

quotient or chain rules, in addition to the disability 

of achieve the exact solutions for many problems. 

In general, it is an open problem in fractional 

calculus. Recently, Khalil et al. [43] have proposed 

a new definition of fractional derivative, known as 

conformable fractional derivative (CFD). The CFD 
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overcomes the shortage of others. It satisfies the 

most basic properties of derivative with integer 

order. The ability of converting the conformable 

fractional partial differential equations  into integer-

order differential equations gives the CFD the 

advantage to process the nonlinear fractional partial 

differential equations analytically. Abdeljawad [44] 

and Atangana [45] have discussed the CFD and 

concluded some useful properties. To overcome the 

setback of getting physical interpretation, a 

generalization of the conformable derivative is 

investigated by Zhao and Luo [46]. Because of the 

efficiency and applicability of the CFD, many 

researchers employed it to tackle the partial 

fractional differential equations (PFDEs). See [6, 

10, 27-28, 32, 47-51] and bibliography included 

therein. 

The rest of the paper is organized as follows: the 

needed basics of the conformable fractional calculus 

theory are presented in the next section. 

Mathematical analysis of the Jacobi elliptic function 

method and the Riccati equation mapping method 

with application to Eq.(1) are included in Section 3. 

Some obtained solutions are illustrated for various 

fractional orders in the conclusion and discussion 

section; Section 4. 

2. Conformable Fractional 

Derivative and Integration 

In this part, the fundamental concepts and 

facts of the conformable factional calculus, 

which will be used here, are listed. 

Definition 1. [43] Let  u t  be a function 

defined for 0t  . The conformable fractional 

derivative for  u t  of order  , 0 1  , is 

defined as 

 
   1

0
limt
h

u t h t u t
D u

h









 
 .

 (3) 

Theorem 1. [43, 44] Suppose that  u t  and 

 v t  are two  -differentiable functions on 

some interval  0,J   ,  0,1  , a , b  and 

k  are real numbers. Then  

1. The conformable differential operator is 

linear, 

2. 0tD k  , 

3. k k

tD t k t  , 

4.  t t tD uv v D u u D v    , 

5. 
2

t t
t

v D u u D vu
D

v v

 
  

 
 

, 

6.        1

tD u v t t v t u v t    , 

7. 1

tD u t u   , 

are satisfied for all t J . 

Definition 2. [43] Let  u t  be a function 

defined on  0 ,t t , 
0 0t t  , and 0 1  . The 

conformable   fractional integral of  u t  on 

the given interval is defined by 

  
0

1

t

t

t

I u t u t dt    .

 (4) 

Theorem 2. [42] Suppose that  u t  is a 

continuous function on some interval 

 0,J    and  0,1  . Then 
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   t tD I u u t   , for all t J .

 (5) 

3. Analytic treatment of conformable 

fractional Ito equation 

To investigate Eq.(2), and by putting 

v
u

x









, Eq.(2) will be  

 

3 5 2 2 3 3 3 3

2 4 2 2 3 2
6 3 3 0

v v v v v v v v v v

x t x t x x t x x t x t x y t x t

         

                
 

         
      

                

 (6) 

Assume that the exact solution of Eq.(6) has 

the form 

    , ,v x y t v  , 

 (7) 

where  
1

x y t    


    is the wave 

variable,  , , and the wave frequency   are 

constants to be determined. Under this 

consideration, Eq.(6) will be carried into the 

following nonlinear ordinary differential 

equation 

         23 53 23 0v v v     


     .

 (8) 

Integrating Eq.( 8) twice with respect to   

and setting the integration constants to be zeros 

gives the missing- v  equation 

      
233 23v v v          .

 (9) 

Reducing the order of Eq.(9) by assuming 

   w v   implies 

   3 2 23 0w w w         .

 (10) 

Making Balance between w   and 2w  in 

Eq.(10) results 2m  . In what follow, the 

Jacobi-elliptic function method [27-28] and the 

Riccati equation mapping method [23-26] will 

be employed to construct new abundant exact 

travelling wave solutions for conformable 

fractional Ito equation Eq.(2) by treating 

Eq.(10). In both, the solution of Eq.(10) is 

expresses as  

     
2

2 1 0w A A A       , 2 0A  ,

 (11) 

where     is a function that satisfies some 

solvable nonlinear ordinary differential 

equation, and iA ’s ( 0,1,2i  ) are parameters to 

be determined 

3.1. Using the Jacobi elliptic function 

method 

Continuing the process started before, where 

    is the Jacobi elliptic function which 

satisfies  

      4 2P Q R         ,

 (12) 

where P , Q and R
 
are constants within certain 

values to be given. Substituting Eq.(11) into 
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Eq.(10) by making use of Eq.(12), and setting 

the coefficients of i , 0,1, ,4i  , to be zeros, 

result the following set of simultaneous 

algebraic equations in terms of 0A , 1A , 2A ,  , 

 and  : 

    0

2 2

2 03 2 0RA AA         ,

 (13) 

   2

0 16 0AQ A         ,

 (14) 

   2

2 22

1 03 6 4 0A A A Q          ,

 (15) 

  2

2

12 03A A P   ,

 (16) 

  2 2

23 2 0A A P   .

 (17) 

Excluding the trivial solution, the solvable 

system Eqs.(13)-(17) results: 2 2A P  , 

1 0A  ,  3

0 2

1
4

6
A Q   


    , and 

2 24 3Q PR        . Accordingly, 

and to avoid the duplicate obtained solutions, 

Eq. (6) will get the traveling-wave solutions as 

follows: 

Case 1. For 1P R  , 2Q   , and for  

1P R   , 2Q  , the solutions of Eq.(12) are 

cd   and dn   respectively. Hence 

  01

4
, ,

3
v x y t   .

 (18) 

Case 2. For 1P R  , 2Q   , and for  

1P Q   , 0R  , the solutions of Eq.(12) are 

sn   and cn   respectively. Hence 

    02 , , 2 tanhv x y t   ,

 (19) 

    03

4
, , 2 tanh

3
v x y t      .

 (20) 

Case 3. For 1P Q   , 0R  , the solution 

of Eq.(12) is dc  . Hence 

    04 , , 2 tanv x y t    ,

 (21) 

    05

4
, , 2 tan

3
v x y t     .

 (22) 

Case 4. For 
1

4
P  , 1Q   , 0R  , and for  

1P Q   , 0R  , the solutions of Eq.(12) are 

ns   and ns ds   respectively. Hence 

    06 , , 2 cotv x y t   ,

 (23) 

    07

4
, , 2 cot

3
v x y t     .

 (24) 

Case 5. For 1P R  , 2Q   , the solution 

of Eq.(12) is ns  . Hence 
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    08 , , 2 cothv x y t   ,

 (25) 

    09

4
, , 2 coth

3
v x y t      .

 (26) 

Case 6. For 
1

4
P R  , 

1

2
Q  , the solutions 

of Eq.(12) are ns cs    and nc sc   . 

Hence 

  10

1
, , tan

2
v x y t  

 
   

 
,

 (27) 

  11

1 1
, , tan

3 2
v x y t   

 
   

 
.

 (28) 

  12

1
, , cot

2
v x y t  

 
  

 
,

 (29) 

  13

1 1
, , cot

3 2
v x y t   

 
   

 
.

 (30) 

  14

1
sin

2
, , 2

1 1
cos sin

2 2

v x y t





 

 
 
  

   
   

   

,

 (31) 

  15

1
sin

1 2
, , 2

1 13
cos sin

2 2

v x y t



 

 

 
 
  

   
   

   

.

 (32) 

Case 7. For 
1

4
P R  , 

1

2
Q    , the 

solutions of Eq.(12) are ns cs   , 
1

sn

cn
 


 

and sn i cn   . Hence 

  16

1
, , tanh

2
v x y t  

 
  

 
.

 (33) 

  17

1 1
, , tanh

3 2
v x y t   

 
    

 
.

 (34) 

  18

1
, , coth

2
v x y t  

 
  

 
.

 (35) 

  19

1 1
, , coth

3 2
v x y t   

 
    

 
.

 (36) 

  20

1
sinh

2
, , 2

1 1
cosh sinh

2 2

v x y t

i





 

 
 
 

   
   

   

.

 (37) 

 

 21

1
sinh

1 2
, , 2

1 13
cosh sinh

2 2

v x y t

i



 

 

 
 
   

   
   

   

. (38) 

      22 , , tanh sechv x y t i     ,

 (39) 

      23

1
, , tanh sech

3
v x y t i        .

 (40) 
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Where  
1

x y t    


   . 0  ,  are 

arbitrary constants, and  0,1  . 

3.2.Using the Riccati equation mapping 

method 

As in the previous subsection, and by using 

the Riccati equation mapping scheme [25-28], 

    in Eq.(11) is assumed to satisfy the 

Riccati equation  

      2p q r         .

 (41) 

As before, and with arbitrary constants p , 

q  and r  subject to some restrictions, 

substituting Eq.(11) with Eq.(41) into the 

relevant equation Eq.(10), and vanishing the 

coefficients of i , 0,1, ,4i  , we get 

    2 0

3 2 2

1 02 3 0r qA pA AA         

, (42) 

 

      1

2 2 2

0 1 26 2 0A A p q A p Aq r            

, (43) 

 

     2

1 0 2

2 2

1 6 4 8 03 A p q A q p r AA            

, (44) 

   1 1

2

2 22 03 5A A p pA qA    ,

 (45) 

  2

2 2

23 2 0A A p   .

 (46) 

Solving the system in Eqs.(42)-(46), with 

eliminating the trivial solution, the following 

two sets of solutions are obtained: 

Set 1:  

2

2 2A p   , 1 2A pq  , 0 2A p r   , 

3       , and 2 4q p r   . 

Set 2: 

 
2

2 2A p   , 1 2A pq  , 

 2

0

1
2

3
A q p r    , 3       , and 

2 4q p r   . 

For Set 1, the soliton and soliton-like 

solutions of Eq. (6) are classified as follows: 

Case 1. When 0  , and 0p q   (or 

0p r  ), we get 

  01

1
, , tanh

2
v x y t   

 
  

 
,

 (47) 

  02

1
, , coth

2
v x y t   

 
  

 
,

 (48) 

  03

1
2 sinh

2
, ,

1 1
cosh sinh

2 2

v x y t

i

  

 

 
 
 

   
   

   

,

 (49) 
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2 2

04

cosh
, ,

sinh

A A B
v x y t

A B


 



 



,

 (50) 

  
 
  

05

2 sinh
, ,

2 1 cosh

p r q
v x y t

p r

  


 




 
,

 (51) 

  
 
  

06

2 sinh
, ,

2 1 cosh

p r q
v x y t

p r

  


 


 

 
.

 (52) 

Case 2. When 0  , and 0p q   (or 

0p r  ), we get 

  07

1
, , tan

2
v x y t   

 
    

 
,

 (53) 

  08

1
, , cot

2
v x y t   

 
   

 
,

 (54) 

  09

1
2 sin

2
, ,

1 1
cos sin

2 2

v x y t

  

 

 
   

 
   

     
   

,

 (55) 

  
 

 

2 2

10

cos
, ,

sin

A A B
v x y t

A B


 



  
 

 
,

 (56) 

  
 
  

11

2 sin
, ,

2 1 cos

p r q
v x y t

p r

  


 

  
 

  
,

 (57) 

  
 
  

12

2 sin
, ,

2 1 cos

p r q
v x y t

p r

  


 

  


  
.

 (58) 

Case 3. When 0r 
 
and 0p q  , we get 

  
   

0
13

0

2
, ,

cosh sinh

q
v x y t

q q

 

  


 
,

 (59) 

  
   

0
14

0

2
, ,

cosh sinh

q
v x y t

q q

 

  




 
,

 (60) 

Case 4. When 0q r 
 
and 0p  , we get 

  15

0

2
, ,

p
v x y t

p



 



.

 (61) 

Where  
1

x y t    


   . 0  , ,  

0  are arbitrary constants , and  0,1  . 

For Set 2, the solutions of Eq. (6) are listed 

as follows: 

Case 1. When 0  , and 0p q   (or 

0p r  ), we get 

  16

1 1
, , tanh

3 2
v x y t    

  
     

  
,

 (62) 

  17

1 1
, , coth

3 2
v x y t     

  
     

  
,

 (63) 

Emad A. Az-Zobi, Basem S. Masaedeh
International Journal of Environmental Science 

http://www.iaras.org/iaras/journals/ijes

ISSN: 2367-8941 123 Volume 6, 2021



 

 18

1
2 sinh

1 2
, ,

1 13
cosh sinh

2 2

v x y t

i

 

 

 

  
  
    

        
    

, (64) 

 

 
 

 

2 2

19

cosh1
, ,

3 sinh

A A B
v x y t

A B


   



  
   
 
 

, (65) 

 

 
 
  

20

2 sinh1
, ,

3 2 1 cosh

p r q
v x y t

p r

  
 

 

 
   
 

  
 

, (66) 

 

 
 
  

21

2 sinh1
, ,

3 2 1 cosh

p r q
v x y t

p r

  
 

 

 
   
 

  
 

. (67) 

Case 2. For 0  , and 0p q   (or 0p r  ), 

we get 

  22

1 1
, , tan

3 2
v x y t    

  
      

  
,

 (68) 

  23

1 1
, , cot

3 2
v x y t    

  
      

  
,

 (69) 

 

 24

1
2 sin

1 2
, ,

1 13
cos sin

2 2

v x y t

  

 

 

  
   

    
          
    

, (70) 

 

 
 

 

2 2

25

cos1
, ,

3 sin

A A B
v x y t

A B


  



   
    
  
 

, (71) 

 

 
 
  

26

2 sin1
, ,

3 2 1 cos

p r q
v x y t

p r

  
 

 

   
   
 

   
 

, (72) 

 

 
 
  

27

2 sin1
, ,

3 2 1 cos

p r q
v x y t

p r

  
 

 

   
   
 

   
 

. (73) 

Case 3. For 0r 
 
and 0p q  , we get 

 

 
     

0

28

0 0 0

1
4 sinh

1 2
, ,

3 1 1
1 1 cosh 1 sinh

2 2

q

v x y t q q

q q

 

 

    

  
  

    
     

        
     

. (74) 

Where  
1

x y t    


   . 0  , ,  

0 1   are arbitrary constants , and  0,1  . 
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4. Discussion and Conclusion 

A variety of closed-form travelling-wave 

solutions for the conformable fractional  (2+1)-

dimensional non-local Ito equation are 

investigated by means of the Jacobi elliptic 

function method and the Riccati equation 

mapping method. The two methods reduce the 

size of computational work, and cover many 

other methods like the functional variable 

method, the generalized Kudryashov method, 

the simple equation method and its extensions, 

the sub-equation method, and many others 

mentioned in the literature. Several types of 

complex and real travelling-wave solutions are 

formally extracted. The obtained solutions 

include regular as well as singular periodic, 

kink, and solitary wave solutions. Some of these 

solutions are displayed in Figures 1-2 for 

distinct values of the fraction  . Depending on 

the choice of free parameters in the obtained 

results, different physical structures could be 

obtained. Such solutions will be helpful to 

understand the physical behavior of models in 

applied sciences.  

As no researchers make consideration to 

solve Eq.(6) (or equivalently Eq.(2)), the 

solutions achieved throughout this paper are 

firstly presented and not published before to the 

best of our knowledge. The solutions are all 

verified by putting them back into the original 

equations with the aid of the Mathematica 

symbolic computation package 11. To 

completely determine the solutions of Eq.(2), 

one can easily apply the formula in Eq.(5) with 

respect to space variable x . In general, the two 

methods are somewhat similar, simple, 

applicable and inclusive to tackle several types 

of nonlinear evolution equations with integer 

and fraction derivatives.  
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Figure 1. 3D singular kink profile of Eq.(50) in the xt  plane with (a) 1  , (b) 0.6  , and (c) 0.2  , for 

0.5p q r A            , and 1B  . 
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Figure 2. 3D singular periodic profile of Eq.(72) in the xt  plane with (a) 1  , (b) 0.6  , and (c) 0.2  , for 

0.5p q r           , and 1A B  . 
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