On Buffon needle problem for an irregular lattice

D. Barilla - G. Caristi and A. Puglisi
University of Messina
Department of Economics
Via dei Verdi, 75, 98122- Messina - Italy
dbarilla@unime.it, gcaristi@unime.it, puglisia@unime.it

Abstract: In the previous papers [1] and [6] the authors introduced in the Buffon-Laplace type problems so-called obstacles. They considered two lattices and considering a classic Buffon type problem introducing in the first moment the maximum value of probability, i.e. reducing the probability interval and in the second considering an irregular lattice. In [5] Caristi and Ferrara considered also a Buffon type problem considering the possibles deformations of the lattice and in [2] Caristi, Puglisi and Stoka considered another particular regular lattices with eight sides. Fengfan and Deyi [4] study similar problem using two concepts, the generalized support function and restricted chord function, both referring to the convex set, which were introduced by Delin in [3]. In this paper, we consider another particular irregular lattice (see fig. 1) and considering the formula of the kinematic measure of Poincaré [7] and the result of Stoka [9] we study a Buffon problem for this irregular lattice. We determine the probability of intersection of a body test needle of length $l, l<\frac{a}{3}$.

Key-Words: Geometric probability, integral geometry, Buffon problem, lattice of regions, kinematic measure 2000 MRS Classification: 53C65; 52A22.

1 Preliminaires

In this section we present some results and considerations that will be needed in the rest of the paper.

Consider the irreguar lattice \Re with a fundamental region C_{0} composed of the union by four trinagles and an exagon (fig. 1) with $a \leq b$:

We know that, any congruent polygon can be inlaid in a plane. In this way we obtain a lattice that covers the plane. A set of points in the plane is called a domain if it is open and connected. A set of points is called a region if it is the union of a domain with some, or all of its boundary points. From the lattice of fundamental regions in the plane, we understand a sequence of congruent regions that represent the Santalò conditions [8]:

With the notations of this figure we have

$$
b=\frac{2 a}{3} \operatorname{ctg} \alpha, \quad|G L|=|H M|=|L E|=
$$

$$
\begin{gathered}
|M F|=\frac{a}{3 \sin \alpha}, \\
\operatorname{area}_{0}=\frac{2 a^{2}}{3}, \quad \operatorname{Arctg} \frac{2}{3} \leq \alpha \leq \frac{\pi}{4} .
\end{gathered}
$$

We want to compute the probability that a segment s with random position and of constant length $l, l<\frac{a}{3}$ intersects a side of lattice \Re, i.e. the probability $P_{\text {int }}$ that a segment s intersects a side of the fundamental cell C_{0}.

The position of the segment s is determinated by its middle point and by the angle φ that s formed with the line $A D$ o $B C$.

To compute the probability $P_{\text {int }}$ we consider the limiting positions of segment s, for a specified value of φ, in the cells $C_{0 i},(i=1,2,3)$ (fig.2).

fig. 2
By denoting $M_{i}(i=1, \ldots, 5)$ as the set of segments s which have their center in $C_{0 i}$ and N_{i} the set of segments s all contained in the cell $C_{0 i}$ we have [9]:

$$
\begin{equation*}
P_{\text {int }}=1-\frac{\sum_{i=1}^{5} \mu\left(N_{i}\right)}{\sum_{i=1}^{5} \mu\left(M_{i}\right)}, \tag{1}
\end{equation*}
$$

where μ is the Lebesgue measure in the Euclidean plane.

To compute the above measure $\mu\left(M_{i}\right)$ and $\mu\left(N_{i}\right)$ we use the Poincaré kinematic measure [7] $d k=d x \wedge$ $d y \wedge d \varphi$, where x, y are the coordinates of the middle point of s and φ is the fixed angle.

2 Main results

Considering that $l<\frac{a}{3}$ we can prove
Theorem. The probability that a random segment s of constant length $l<\frac{a}{3}$ intersects a side of lattice \Re is:

$$
\begin{gather*}
P_{\text {int }}=\frac{3 \operatorname{tg} \alpha}{(\pi-2 \alpha) a^{2}}\left\{\frac{a l}{3}(4-4 \sin \alpha+\right. \\
\operatorname{ctg} \alpha+5 \operatorname{ctg} \alpha \cos \alpha)+ \\
\frac{l^{2}}{4}[3+2 \sin 2 \alpha-5 \cos 2 \alpha+ \tag{2}\\
(1-\operatorname{tg} \alpha+\operatorname{ctg} \alpha)(\pi-2 \alpha)]\} .
\end{gather*}
$$

Proof. Taking into account the symmetries of the lattice and the different values of φ we have:

$$
\begin{aligned}
& \operatorname{area} \widehat{C}_{01}(\varphi)=\operatorname{areaC}_{01}-\sum_{i=1}^{5} \operatorname{areaa}_{i}(\varphi), \\
& \operatorname{area} \widehat{C}_{02}(\varphi)=\operatorname{area}_{02}-\sum_{i=1}^{5} \operatorname{areab}_{i}(\varphi) \\
& \operatorname{area} \widehat{C}_{03}(\varphi)=\operatorname{area}_{03}-\sum_{i=1}^{5} \operatorname{areac}_{i}(\varphi)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{area} \widehat{C}_{04}(\varphi)=\operatorname{areaC}_{04}-\sum_{i=1}^{5} \operatorname{aread}_{i}(\varphi) \\
& \operatorname{area} \widehat{C}_{05}(\varphi)=\operatorname{areaC}_{05}-\sum_{i=1}^{5} \operatorname{areae}_{i}(\varphi)
\end{aligned}
$$

We obtain that:

$$
\mu\left(M_{i}\right)=\int_{\alpha}^{\frac{\pi}{2}} d \varphi \iint_{\left\{(x, y) \in C_{0 i}\right\}} d x d y=
$$

$$
\begin{gathered}
\int_{\alpha}^{\frac{\pi}{2}}\left(\operatorname{areaC}_{0 i}\right) d \varphi=\left(\frac{\pi}{2}-\alpha\right) \text { area }_{0 i}, \\
(i=1, \ldots, 5) .
\end{gathered}
$$

then

$$
\begin{align*}
& \sum_{i=1}^{5} \mu\left(M_{i}\right)=\left(\frac{\pi}{2}-\alpha\right) \sum_{i=1}^{5} \operatorname{area} C_{0 i}= \\
& \left(\frac{\pi}{2}-\alpha\right) \text { area } C_{0}=\frac{(\pi-2 \alpha) \operatorname{ctg} \alpha}{3} a^{2} . \tag{3}
\end{align*}
$$

In same way to compute $\mu\left(N_{i}\right)$ we have that:

$$
\begin{gathered}
A_{1}(\varphi)=A_{3}(\varphi)=\sum_{i=1}^{5} \operatorname{areaa}_{i}(\varphi)= \\
\frac{a l}{6}[c t g \alpha \cos \varphi+(c t g \varphi+1) \sin \varphi]- \\
\frac{l^{2}}{4}[(1+c t g \alpha) \sin 2 \varphi+1-\cos 2 \varphi], \\
A_{2}(\varphi)=A_{4}(\varphi)=\sum_{i=1}^{5} \operatorname{areab_{i}}(\varphi)= \\
\frac{a l}{3}(\cos \varphi+c t g \alpha \sin \varphi)- \\
\frac{l^{2}}{4}[2 \sin 2 \varphi+(t g \alpha-c t g \alpha) \cos 2 \varphi+\operatorname{tg} \alpha+\operatorname{ctg} \alpha] \\
\text { and } \quad \\
A_{5}(\varphi)=\sum_{i=1}^{8} \operatorname{areae} e_{i}(\varphi)=\frac{a l}{3}(\cos \varphi+c t g \alpha \sin \varphi)- \\
\frac{l^{2}}{4}[\sin 2 \varphi-\operatorname{tg} \alpha \cos 2 \varphi-\operatorname{tg} \alpha] .
\end{gathered}
$$

Then we obtain that:

$$
\begin{gathered}
\mu\left(N_{i}\right)=\int_{\alpha}^{\frac{\pi}{2}} d \varphi \iint_{\left\{(x, y) \epsilon \widehat{C}_{0 i}(\varphi)\right\}} d x d y= \\
\int_{\alpha}^{\frac{\pi}{2}}\left[\operatorname{area} \widehat{C}_{0 i}(\varphi)\right] d \varphi=\int_{\alpha}^{\frac{\pi}{2}}\left[\operatorname{area} C_{0 i}-A_{i}(\varphi)\right] d \varphi= \\
\left(\frac{\pi}{2}-\alpha\right) \operatorname{area~}_{0 i}-\int_{\alpha}^{\frac{\pi}{2}}\left[A_{i}(\varphi)\right] d \varphi .
\end{gathered}
$$

and

$$
\begin{gather*}
\sum_{i=1}^{3} \mu\left(N_{i}\right)=\frac{(\pi-2 \alpha) \operatorname{ctg} \alpha}{3} a^{2}- \\
\int_{\alpha}^{\frac{\pi}{2}}\left[\sum_{i=1}^{3} A_{1}(\varphi)\right] d \varphi \tag{4}
\end{gather*}
$$

In the end, from (1), (3) and (4) we obtain the probability (2).

References:

[1] D. Barilla, G. Caristi, A. Puglisi and M. Stoka, A Buffon-Laplace type problems for an irregular lattice with maximum probability, Applied Mathematical Sciences, vol. 8 (2014),no. 165, pp. 8287-8293.
[2] G. Caristi, A. Puglisi and M. Stoka, A Laplace type problem for regular lattices with octagonal cell, Far East Journal of Mathematical Sciences, vol. 48, issue 1, January 2011, pp. 103-118.
[3] R. Delin, Topics in Integral Geometry, Singapore, New Jersey, London, and Hongkong: World Scientic, 1994.
[4] X. Fengfan and L. Deyi, On generalized Buffon Needle problem for lattices, Acta Mathematica Scientia 2011, 31B(1), pp. 303-308.
[5] G. Caristi and M. Ferrara, On Buffon's problem for a lattice and its deformations. Beitrage zur Algebra und Geometrie, 2004, 45(1), pp. 13-20.
[6] G. Caristi and M. Stoka, A Buffon-Laplace type problem for an irregular lattice with "body test" rectangle, Applied Mathematical Sciences, vol. 8 (2014), pp. 8395-8401.
[7] H. Poincarè, Calcul des probabilitès, 2nd ed., Gauthier-Villard, Paris, 1912.
[8] L. A. Santalò, Integral Geometry and Geometric Probability, London: Addison-Wesley Publishing Company, 1976.
[9] M. Stoka, Probabilités géométriques de type "Buffon" dans le plan euclidien, Atti Accd. Sci. Torino, T, 110.

