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Abstract: We consider a one-dimensional jump-diffusion process {X(t), t ≥ 0} whose continuous part is a
Wiener process with zero drift. The jumps are exponential and depend on the sign of X(t). Let τ(x) be the
first time that the process, starting from X(0) = x, is equal to zero, or |X(t)| = d. We obtain exact analytical
expressions for the moment-generating function of τ(x), its mean, and the probability that X(τ(x)) = 0. To do
so, we solve integro-differential equations, subject to the appropriate boundary conditions.
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1 Introduction
Let {B(t), t ≥ 0} be a standard Brownian motion
and {N(t), t ≥ 0} be a Poisson process with rate
λ. The two stochastic processes are assumed to
be independent. We define the one-dimensional
jump-diffusion process {X(t), t ≥ 0} by

X(t) = X(0) + µdt+ σdB(t) +

N(t)∑
i=1

Yi, (1)

where µ ∈ R and σ > 0 are constants. If the rate
λ is equal to 0, {X(t), t ≥ 0} is a Wiener process
with drift µ and dispersion parameter σ. Moreover,
Y1, Y2, . . . are independent random variables that
are identically distributed as the variable Y whose
probability density function is given by

fY (y) =

{
θe−θy for y ≥ 0 if X(t) < 0,
θeθy for y < 0 if X(t) > 0, (2)

where θ > 0. That is, when X(t) is negative,
the jumps are positive and exponentially distributed
with parameter θ, whereas when X(t) is positive,
the jumps are negative and their absolute values are
exponentially distributed with parameter θ.

In, [1] and, [2] the random variable Y had
an asymmetric double exponential distribution,
irrespective of the value of X(t). Furthermore in,
[2] the jump-diffusion process {X(t), t ≥ 0} was

generalized as follows:

X(t) = X(0) +

∫ t

0
µ[X(s)]ds

+

∫ t

0
σ[X(s)]dB(s) +

N(t)∑
i=1

Yi, (3)

where µ(·) ∈ R and σ(·) > 0.
Next, assume that X(0) = x. In, [1] the authors

defined the first-passage time

Tb(x) = inf{t ≥ 0 : X(t) ≥ b (> 0)}, (4)

where x ≤ b, and obtained various results about the
distribution of Tb(x) and X(Tb(x)). This random
variable was generalized in, [2] to

Ta,b(x) := inf{t ≥ 0 : X(t) /∈ (a, b)} (5)

for x ∈ [a, b].
In this paper, we take µ = 0 in Eq. (1). Moreover,

we define

τ(x) = inf{t ≥ 0 : X(t) = 0 or |X(t)| ≥ d}, (6)

where x ∈ [−d, d].
In the next section, we will obtain exact analytical

expressions for the moment-generating function of
τ(x):

M(x;α) := E
[
e−ατ(x)

]
, (7)

where α > 0, its mean m(x) := E[τ(x)], and
the probability p(x) := P [X(τ(x)) = 0]. As
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we will see, the functions M(x;α), m(x) and p(x)
satisfy integro-differential equations. We will solve
these equations, subject to the appropriate boundary
conditions, by first transforming them into ordinary
differential equations.

In general, boundary value problems for
integro-differential equations are very difficult
to solve explicitly and exactly. In addition to, [2]
the author has treated such problems in a number
of papers, as well as stochastic control problems
involving jump-diffusion processes. In, [3] the
first-passage area of one-dimensional jump-diffusion
processes was computed; see also, [4], [5], [6] and,
[7].

Jump-diffusion processes appear in various fields.
An important application is in mathematical finance
([8]). In, [9] they are used as models in reliability
theory.

2 Explicit solutions
The infinitesimal generator of the jump-diffusion
process defined in Eq. (1) with µ = 0 is (see, [1] or,
[10])

Lu(x) :=
1

2
σ2u′′(x) + λ

{∫ ∞

−∞
u(x+ y)fY (y)dy

− u(x)

}
(8)

for any twice continuously differentiable function
u(x). It follows that the function M(x;α) satisfies
the integro-differential equation (IDE) (dropping the
argument α for the sake of brevity)

1

2
σ2M ′′(x) + λ

{∫ ∞

−∞
M(x+ y)fY (y)dy

− M(x)

}
= αM(x) (9)

and is such that M(0) = 1 and M(x) = 1 if
|x| ≥ d. Moreover, by symmetry, we can write that
M(−x) = M(x). It follows that we can consider the
above equation in the interval [0, d] only.

Next, with the function fY (y) defined in Eq. (2),
if x > 0 we have∫ ∞

−∞
M(x+ y)fY (y)dy =

∫ 0

−∞
M(x+ y)θeθy dy

=

∫ −x−d

−∞
1 · θeθy dy +

∫ 0

−x−d
M(x+ y)θeθy dy

= e−θ(x+d) +

∫ 0

−x−d
M(x+ y)θeθy dy

z=x+y
= e−θ(x+d) +

∫ x

−d
M(z)θeθ(z−x)dz. (10)

Differentiating Eq. (9) and making use of Leibniz
integral rule together with the above result, we obtain
that

1

2
σ2M ′′′(x)− (λ+ α)M ′(x) + λθ

{
M(x)

− e−θ(x+d) −
∫ x

−d
M(z)θeθ(z−x)dz

}
= 0. (11)

Finally, since (from Eqs. (9) and (10))

λ

{
e−θ(x+d) +

∫ x

−d
M(z)θeθ(z−x)dz

}
=

−1

2
σ2M ′′(x) + (λ+ α)M(x), (12)

we can state the following proposition.

Proposition 2.1. The moment-generating function
M(x) of the random variable τ(x) satisfies, for
λ > 0, the third-order linear ordinary differential
equation (ODE)

1

2
σ2M ′′′(x) +

1

2
θσ2M ′′(x)− (λ+ α)M ′(x)

= αθM(x) (13)

for x ∈ (0, d). Furthermore, the boundary conditions
areM(0) = 1 andM(x) = 1 if x ≥ d.

Remark 2.1. If the stochastic process jumps from
a positive to a negative value (or vice versa), we
assume thatX(t) was never equal to 0 when the jump
occurred.

We will now solve Eq. (13). For the sake of
simplicity, we set σ = λ = θ = α = d = 1. The
equation reduces to

1

2
M ′′′(x) +

1

2
M ′′(x)− 2M ′(x) = M(x). (14)

With the help of the software programMaple, we find
that the solution to the above equation that satisfies
the conditions M(0) = M(1) = 1 and M(1/2) = r
is given by

M(x) ≈ κ

[
(−3.8292 + 6.0365r)e−0.4707x

+ (4.9859− 5.5079r)e−2.3429x

+ (0.5980− 0.5285r)e1.8136x
]
(15)

for x ∈ [0, 1], where

κ := 0.5699. (16)
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Substituting the above expression for M(x) into the
IDE (9), we find that this equation is satisfied if and
only if we take r ≈ 0.8239.

Let

H1(x) :=
1

2
M ′′(x) + λ

{∫ ∞

−∞
M(x+ y)fY (y)dy

− M(x)

}
−M(x)

λ=1
=

1

2
M ′′(x) +

∫ ∞

−∞
M(x+ y)fY (y)dy

− 2M(x) (17)

for x ≥ 0. The function H1(x) is shown in Figure 1.
We see that it is practically equal to zero in the interval
[0, 1].

Figure 1: FunctionH1(x) defined in Eq. (17) for x in
the interval [0, 1].

When there are no jumps, that is, when λ = 0, the
functionM0(x) that corresponds toM(x) satisfies the
simple second-order linear ODE

1

2
σ2M ′′

0 (x) = αM0(x), (18)

subject to the boundary conditionsM(0) = M(d) =
1. We find, with σ = α = 1, that

M0(x) =
(e

√
2 − 1)e−

√
2x − (e−

√
2 − 1)e

√
2x

e
√
2 − e−

√
2

(19)
for 0 ≤ x ≤ 1. The functions M(x) and M0(x) are
displayed in Figure 2.

Next, the mean m(x) of the first-passage time
τ(x) is a solution of

1

2
σ2m′′(x) + λ

{∫ ∞

−∞
m(x+ y)fY (y)dy

− m(x)

}
= −1. (20)

Figure 2: Functions M(x) (full line) and M0(x) in
the interval [0, 1], when σ = λ = θ = α = d = 1.

In addition, the boundary conditions are m(0) = 0
and m(x) = 0 if |x| ≥ d. Proceeding as above, we
can prove the following corollary.
Corollary 2.1. The mean m(x) of the random
variable τ(x) satisfies, for λ > 0, the ODE
1

2
σ2m′′′(x) +

1

2
θσ2 m′′(x)− λm′(x) = −1 (21)

for x ∈ (0, d), subject to the boundary conditions
m(0) = 0 andm(x) = 0 if x ≥ d.
Remark 2.2. Notice that Eq. (21) is a second-order
linear ODE with constant coefficients for l(x) :=
m′(x).

The solution to Eq. (21) such thatm(0) = m(d) =
0 and m(d/2) = r, when σ = λ = θ = d = 1, is
found to be

m(x) ≈ x− 0.9520(3.4366r − 0.4208)e−2x

− 0.0474ex (34.7345r + 8.0257)

+ 4.9177r − 0.02024. (22)

Moreover, the above function satisfies the IDE (20)
with the previous choices for the various parameters
if the constant r is taken to be r ≈ 0.1754. Indeed, if
we define

H2(x) =
1

2
m′′(x) +

∫ ∞

−∞
m(x+ y)fY (y)dy

− m(x) + 1, (23)

we find that H2(x) ≈ 0 for x ∈ [0, 1]; see Figure 3.
In the absence of jumps, the function m0(x)

corresponding tom(x) satisfies the ODE
1

2
σ2m′′

0(x) = −1 (24)

and is subject to the conditionsm0(0) = m0(1) = 0.
When σ = 1, we easily find that

m0(x) = x− x2 for x ∈ [0, 1]. (25)
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Figure 3: FunctionH2(x) defined in Eq. (23) for x in
the interval [0, 1].

In Figure 4, we see the effect of the jumps on themean
m(x) of τ(x).

Figure 4: Functionsm(x) (full line) andm0(x) in the
interval [0, 1], when σ = λ = θ = d = 1.

Finally, to obtain the probability

p(x) := P [X(τ(x)) = 0], (26)

we must solve the IDE

1

2
σ2p′′(x)+λ

{∫ ∞

−∞
p(x+y)fY (y)dy−p(x)

}
= 0.

(27)
This function is such that p(0) = 1 and p(x) = 0 if
|x| ≥ d.

As we did previously, we can transform the above
IDE into an ODE.

Corollary 2.2. The probability p(x) defined in
Eq. (26) satisfies, when λ > 0, the ODE

1

2
σ2p′′′(x) +

1

2
θσ2p′′(x)− λp′(x) = 0 (28)

for x ∈ (0, d). The boundary conditions are p(0) = 1
and p(x) = 0 if x ≥ d.

When σ = λ = θ = 1, the ODE in Eq. (28)
becomes

1

2
p′′′(x) +

1

2
p′′(x)− p′(x) = 0. (29)

As in the case of the function m(x), the above
equation is a second-order (homogeneous) ODE for
q(x) := p′(x). Its general solution is

p(x) = c1 + c2e
x + c3e

−2x, (30)

where ci is an arbitrary constant, for i = 1, 2, 3. The
solution for which p(0) = 1, p(1) = 0 and p(1/2) =
r is the following:

p(x) ≈ 0.1672e−2x
[
(r − 1)e2x+0.5

+ (r − 1)e2x+1.5 + (−r + 1)e3x+0.5

+ e2x+2.5 r − e3x+1.5 r

+ (r − 1)e2x+1 + e2x+2 r

− e3x+1 r + (−r + 1)e3x

+ e2x r − 19.5716r + 12.1825
]

(31)

for x ∈ [0, 1].
The only constant r such that the function defined

in Eq. (31) is a solution of the IDE (27) (when σ =
λ = θ = d = 1) is r ≈ 0.5712. In Figure 5, we
present the function

H3(x) :=
1

2
p′′(x) +

∫ ∞

−∞
p(x+ y)fY (y)dy − p(x).

(32)
It is practically equal to zero, as it should be.

Figure 5: FunctionH3(x) defined in Eq. (32) for x in
the interval [0, 1].

When λ = 0 and σ = 1, the function p0(x) that
corresponds to p(x) satisfies the elementary ODE

1

2
p′′0(x) = 0, (33)

subject to the conditions p0(0) = 1 and p0(1) = 0.
The solution is

p0(x) = 1− x for x ∈ [0, 1]. (34)
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The functions p(x) and p0(x) are markedly different,
as can be seen in Figure 6.

Figure 6: Functions p(x) (full line) and p0(x) in the
interval [0, 1], when σ = λ = θ = d = 1.

3 Conclusion
Because diffusion processes are unable to adequately
reproduce phenomena such as variations in stock
market indices like the NASDAQ, it is now common
practice to add jumps according to a Poisson process
to the model.

When the jump size is a continuous
random variable, this has the consequence of
transforming ordinary differential equations into
integro-differential equations, which makes the
problem of calculating quantities of interest such
as the average time required for the process to
leave a given interval much more difficult. In
the case of random jumps having a distribution of
discrete type, the equations to be solved would be
difference-differential equations.

In this paper, we considered a Wiener process
with jumps whose amplitude, in absolute value,
was distributed according to an exponential law.
However, the sign of the jumps depended on the sign
of the stochastic process.

We have obtained analytical expressions for the
moment-generating function and themean of a certain
first-passage time. We have also calculated the
probability of the process hitting the origin before a
boundary at x = d.

As a follow-up to this work, we could try to
calculate quantities of interest for other processes
whose continuous parts are important diffusion
processes such as geometric Brownian motion, which
is extensively used in financial mathematics.

Finally, we could also consider jump-diffusion
processes in two or more dimensions. By using
symmetry in the problems studied, it is sometimes
possible to reduce these multi-dimensional problems
to one-dimensional ones.
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