

According to Stanescu, et al. [1], the handling of the
increasing volume of data and storing and analyzing
this data are pressing concerns in big data. Semi-
structured data has been widely used in areas such as
data integration, data distribution, data warehousing,
management, information retrieval, and knowledge
management for large amounts of semi-structured
data on the web [2].

Assunção, et al. [3] identified another important
issue related to the method of handling and
processing semi-structured data with a flexible
schema. Semi-structured data are required to store
and handle large amounts of data with flexible
schemas, which have emerged as one of the biggest
data models for handling large amounts of data.
Information technology in big organizations is trying
to shift from structured data to semi-structured data.

Currently, a Relational Database Management
System (RDBMS) is inefficient in handling
applications and software requirements of big data,
such as supporting horizontal scaling for a distributed
environment and the inability to achieve effective
data [4, 5]. Therefore, many organizations are looking
forward to the next generation of data management to
support their business applications” is almost
identical to the following: “Nowadays, big
organizations are looking forward to NoSQL

databases as the next generation of data management
to support their business applications” [6, 7]

These issues and challenges have led to the
development of Not only SQL (NoSQL) databases as
a new technology to overcome the limitations of the
relational database, such as designing a schema
without strict constraints [8, 9]. In addition, NoSQL
databases can accept all types of structured, semi-
structured, and unstructured data and have many
features, such as support for distributed systems,
flexible schema, horizontal scalability, and easy
replication [10, 11].

Nowadays, big organizations are looking forward
to NoSQL databases as the next generation of data
management to support their business applications
[6]. This is due to the exponential increase in the
amount of data and the need for a flexible schema
with semi-structured data.

One of the most powerful types of NoSQL
databases is the document-oriented database, which
supports a flexible schema that used to store, retrieve,
and manage data using a semi-structured data format,
as well as provide high performance, availability, and
scalability [1]. Also, the document-oriented database
can define a field into a document, and the application
can query this document by using the fields. In
addition, document-oriented databases can create an
index over fields, and these indexes can help optimize
queries used as a reference to the fields [12]. This
capability means that a document-oriented database

A Conceptual Model of Semi−structured Data for Big Data
Applications

SHADY HAMOUDA
Liwa College, Abu Dhabi, UNITED ARAB EMIRATES

Abstract: The vast influx of data has posed significant challenges for major corporations. This deluge
has sparked numerous issues within big data, prompting a need for research and industrial solutions.
Among the crucial challenges is the requirement for semi-structured data storage and handling to
manage large volumes of data with adaptable schemas. Recently, researchers have proposed features
and specifications for designing schemas tailored to semi-structured data formats. However, these
proposals have not undergone evaluation based on semi-structured properties. Consequently, this study
assesses these features within the context of semi-structured properties for big data applications. The
findings indicate that semi-structured properties partially or fully support some of these features.

Key-words: Conceptual Model, Semi-Structured Data, Schema, Document-Oriented Data, Big Data.

Received: March 13, 2024. Revised: August 6, 2024. Accepted: September 11, 2024. Published: November 1, 2024.

1. Introduction

Shady Hamouda
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 20 Volume 9, 2024

mailto:shady.hamouda@lc.ac.ae
mailto:shadyhamoda@gmail.com

can be more suitable than other NoSQL databases for
storing a large amount of data that needs to be
retrieved based on more complex criteria [13].

In the current era, with the advent of new

applications and the necessity of integrating diverse
data types into big data applications, structured data
faces numerous constraints and regulations. These
challenges stem from the need to store and process
various data types within a single application, as well
as the demand for developing applications capable of
managing large volumes of data with varied uses.

Currently, document-oriented databases are
becoming increasingly popular due to their
scalability, availability, and performance. These
databases store data in semi-structured data formats
such as XML, JSON, and BSON, which do not
require a formal structure. However, designing a
schema for a document-oriented database can be
challenging due to the lack of specifications for
conceptual models.

A semi-structured data is a form of structured data
that can deal with any data type without a formal
structure. This data format can store data in XML,
JSON, and BSON. The following are models that
have been proposed to handle semi-structured data.

ER for XML (ERX) is a conceptual model used to
overcome complex XML processors that can be
adopted to visually describe XML document
structures from ER models [14, 15]. ERX has many
major drawbacks in representing the properties of
semi-structured data, such as the irregular structure of
data, mixed content, abstraction, and heterogeneity.

The object relationship attribute model for semi-
structured data (ORA-SS) was designed to provide
the appropriate conditions for nested relationships
with semantic data [14]. ORA-SS is a semantically
rich data model used for semi-structured data and has
four basic concepts: object classes, relationship types,
attributes, and references. It consists of four
diagrams: schema, instance, functional dependency,
and inheritance diagrams. However, ORA-SS schema

diagrams, as traditional databases, may contain
redundancies and suffer from abnormal updating
[16]. In addition, ORA-SS does not directly support
the representation of non-hierarchical relationships
and mixed content in a conceptual-level semi-
structured data model [17].

The extensible ER (XER) model is used to describe
an XML document structure through conceptual
models. It can automatically generate XML document
definitions and schemas from the ER model [14].
However, XER does not support most semi-
structured semantic properties.

Ganguly and Sarkar [14] defined EReX as a
conceptual model extended to XML, which is added
to the ER model to provide different features of XML.

- Each entity types are formed according to the type of
relationship.

- The roles of entity types in relationship types are
specified and categorized by the constraints.

- The constraint for the participants in a relationship
type is specified by a thick solid line.

EReX does not have cardinality and an array
relationship and does not explicitly support content
with the separation of structure.

XUML aims to support the design of XML
documents and XML databases and the information
integration of XML [18]. It does not cover the
properties of self-evolution, abstraction, cardinality,
and explicit separation of structure and content.

The idea of XSEM is to divide the XML conceptual
modeling process into two parts. The first part
consists of designing an overall conceptual schema
using an extension of the classical ER model. The
second part involves designing a hierarchical
organization of the structures from the first part using
a hierarchical model [19]. XSEM has drawbacks in
representing some of the most important properties of
semi-structured data, such as inheritance,
heterogeneity, and array relationship.

2. A Semi-structured Data Model

2.1 ERX

2.2 ORA-SS

2.3 XER

2.4 EREX

2.5 XUML

2.6 XSEM

Shady Hamouda
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 21 Volume 9, 2024

The concept of the graph object-oriented semi-
structured data model (GOOSSDM) is to use object-
oriented data models to represent a semantic graph. It
supports hierarchical and non-hierarchical
relationships and provides an abstraction conceptual
model with graphical constructs to the designer and
the user.

Graphical notations data type documentation (GN-
DTD) proposes to arrange the content of XML
documents to provide an improved understanding of
DTD structures and enhance the XML design and
normalization process. GN-DTD was developed to
represent and support XML structures and capture the
semantics of XML documents [20].

Numerous properties of conceptual models for
semi-structured data need to be addressed to handle
semi-structured data. These properties can include
lenient structure, lenient participation/instances,
hierarchical and non-hierarchical structures, ordering,
irregular structure of data, disjunction, self-evolution,
mixed content, abstraction, explicit separation of
structure and content, partial
relationship/participation, heterogeneity, n-array
relationship, inheritance, reuse potential, constraints,
functional dependencies, and symmetric and
recursive relationships [14].

 The study of Hamouda,2019; proposal
specifications and features for the document-oriented
database, which is the basic concept to design a
schema. In conclusion, Various models have been
proposed to handle semi-structured data, but there is
a need to evaluate their compatibility with document-
oriented databases.
 This study discusses the data format and
modelling of semi-structured data to evaluate the
semantic properties of the conceptual model with
semi-structured modelling. The result shows that
none of the existing semi-structured models can
handle a large volume of data with a flexible schema.
Therefore, this study evaluates these specifications
and features of a semi-structured data format based on
the proposed schema for a document-oriented
database to evaluate the semantic properties of the
conceptual model with semi-structured modelling.
The result of this study has been shown which feature
can be partial or full supported by the proposed
schema.

This study proposes a new schema named "Schema
for Semi-Structured Data" (SemiSchema). The
SemiSchema consists of specifications and features
that provide new features and specifications to
improve the concepts and schema of semi-structured
data presented in previous studies, such as Arora and
Aggarwal [21], Atzeni, et al. [22], Hashem and Ranc
[23], Bhogal and Choksi [24]. For instance,
SemiSchema provides new features for semi-
structured data, such as flexible schema and time
stamps, which are not covered by previous semi-
structured data models.
 Ferro, et al. [25] explained that the relationships
of document--oriented database can be represented by
embedded or reference documents. Embedded
documents store related data in a single document;
this denormalized data allows systems to query and
update related data in a single database operation. The
embedded model is used when a one-to-many
relationship exists between entities; child documents
always appear within the parent document.
Embedding delivers good performance for read
operations, but documents may grow after creation,
thereby possibly affecting write performance.
 In contrast, the reference document stores the
relationships between data by providing links from
one document to another and is normalized data. The
reference document is used when numerous many-to-
many relationships exist. A reference document can
provide more flexibility than an embedded document.

Previous studies have highlighted the properties of
semi-structured data in general without addressing
the representation of each component needed to
design a document-oriented data schema. The schema
not only includes collections, documents, and key
values, but also a significant amount of business logic
implemented in the form of stored procedures and
functions. This section outlines the main components
of SemiSchema as follows:

i. a collection representing the database table,
ii. a document representing the table record,
iii. key-value pairs, as a key represents the

attribute and value represents the data type of
this attribute according to the type of value,

iv. the array data type can be used to represent
multiple values or many documents.

2.7 GOOSSDM

2.8 GN-DTD

3. Design a Schema for Semi-structure
Data (Semischema)

3.1 Semischema Components

Shady Hamouda
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 22 Volume 9, 2024

v. embedded and reference documents

representing the relationship types between
the collection.

The SemiSchema specifications represent notations
for a semi-structure data schema based on the ER
schema as follows:

Table 1: SemiSchema Specifications

SEMISCHEMA

Components
SEMISCHEMA
Specification

Description and condition

Key-value

{K1,…..,Ki}
The attributes of each collection are described by using K, which
represents the name of the attribute. These attributes are listed inside
two brackets with a comma between them.

K The primary key is represented by an underline of the attribute.

K The foreign key is represented by a dashed line of the attribute.

K@ The unary relationship is described by adding @ after the attribute K
and the name of the relationship.

K# The derived attribute is described by a hash after the attribute K.

Key-value with
array data type MV[K1,…,Ki] The multi-valued attribute is described by the name of the attribute

with an array data type, while Ki represents all the multi-values.

Collection
CA{ K1, …,Ki }

CA: the name of the composite attribute.
Ki : a set of key names listed in the document with a comma between
them.
i : number of composite attributes

Embedded
document in the
collection

Collection_name{
K1, . .
Embedded document {
K1,…..,Ki},
Kn
}

Creates a document for all main collections with all the keys of this
collection. Identifies a primary key for main collection levels.
- The embedded document is stored in the related document.
- Adds the embedded document with its key values as an array of
embedded documents.
- Adds a primary key for each embedded document.

 collection{k1.ki,embedded document[{k1..kj}]}

Embedded
document and

Reference document

Collection1{
K1,
Collection2
[{kp,,,ki},,,{kp..ki}] }

Collection2{
K1;
Collection1
[{kp,,,ki},,,{kp..ki}]

}

This type of relationship is identified by creating two collections named
Collection 1 and Collection 2, then storing the primary key of the related
document of Collection 1 inside Collection 2, and vice versa. If the
document of Collection 1 is stored inside Collection 2, then the name of
the document root becomes Collection 1.
Kp: primary key.
Ki: number of keys.
Collection name [{K1,…. Ki},…..,{K1,…. Ki}]

This study considers two dimensions of big data:
volume and semi-structured data. The contribution of
this study is that it addresses issues of big data, such
as data volume, and represents a semi-structured data
schema.
 This study highlights that JSON is more compact
than XML for semi-structured data and plays an
important role in representing semi-structured data

models. However, there is a lack of research on how
to represent a conceptual model for semi-structured
data using the JSON format. To overcome this
problem, the SemiSchema applies the existing
features of semi-structured models and adds two new
features required to support a big data application: a
flexible schema and a timestamp. A flexible schema
is needed to respond to changing business
requirements and to yield dynamic data that can adapt
to the demands of scalability, high availability, and
storage of immense amounts of data.

3.2 Semischema Specifications

3.3 Semischema Features

Shady Hamouda
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 23 Volume 9, 2024

 Additionally, the timestamp feature is required for
semi-structured data. Real-time applications need a
way to evolve with time, and the timestamp data type
is better and more efficient than the date-time data
type. These features can address the issue of how to
handle and process semi-structured data with a
flexible schema, as presented by (Assunção,
Calheiros et al., 2015). Additionally, these features
can resolve challenges faced by current big
organizations, such as how to handle increasing data
volumes with flexible data schemas (Kanade et al.,
2014; Madison et al., 2015).

The semi-structure features that are applied in a
SemiSchema can be described as follows:

i. No strict structure: A SemiSchema has no
strict formatting, which means that similar
document attributes in each document are
not important, and new attributes can be
added at any time without any strict
structure.

ii. No strict participation/instance: In a
SemiSchema, each key may correspond to
any kind of data type, and the same key may
have different values. Therefore, no strict
participation for a SemiSchema exists.

iii. Hierarchical structure: A SemiSchema can
support tree data structures of hierarchical
relationships. The concept of embedding a
document into a collection considers the
hierarchical structure between two
collections, and each collection may have
many embedded documents.

iv. Non-hierarchical structure: The main
collection (parent) stores each tree node in a
document, and each tree node stores the ID
of the main document. Thus, each collection
may have many references to other
collections with no hierarchical structure.

v. Ordering: The concept of the SemiSchema is
a flexible schema; the order of key-value in
the document will depend on how to insert
the key value into the document. Therefore,
this feature is supported by the SemiSchema
and can be implemented through the
application.

vi. The irregular structure of data: The
SemiSchema stores data in a semi-structured
data format, and thus stores data as a key–
value. The values of this key can be any data
type, and the key-value pairs are stored
within documents. As each document has a
flexible schema, it thus allows the storage of
data in an irregular structure.

vii. Disjunction: The SemiSchema is less
homogeneous, and this disjunction is
represented by an embedded document, the
main document ID associated with the
embedded document ID, and the embedded
ID that can access all the embedded fields.

viii. Self-evolving: Self-evolving considers the
main concept of the SemiSchema, as each
document has a self-description that allows
each key to be self-described.

ix. Mixed content: The SemiSchema allows
each key to have different content in each
document, and this content can be blended
into the same document without a structure.
The concept of key-value entails accepting
any kind of data without any constraint or
definition of the type of key because the
constraint of value will be responsible for
the application.

x. Abstraction: The SemiSchema hides the
complexity of data. The key can be accessed
without any details of the value type as the
content in each key is not important,

xi. The explicit separation of structure and
content: The logical structure of documents
is represented in a separate hierarchy by
considering the content of the key-value
series.

xii. Partial relationship/participation: In the
schema of a document, a relationship can be
represented by using references and
embedded documents that can identify the
parent and child of each document. The
main collection includes the parent and the
embedded documents, which are considered
the child. The reference model between
collections represents the participation
between the parent and child.

xiii. N-array relationship: In many-to-many
SemiSchema relationships and multi-value
attribute representation in array values; this
feature makes JSON better than other
formats used in the document-oriented
database.

xiv. Inheritance: The SemiSchema supports
inheritance through the embedded
document, as the main document can
describe the common properties, and the
embedded document can be represented by
the sub-properties of the main document
data.

xv. Reuse potential: The reference linking of the
relationship between two documents
describes their reuse potential.

Shady Hamouda
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 24 Volume 9, 2024

xvi. Constraints: One of the advantages of the
SemiSchema is its flexible schema, such that
dealing with different data types or with
each document may have different fields
depending on the system. Moreover, if any
constraint needs to be applied, it will be
implemented by a programming application.

xvii. Cardinality: The SemiSchema supports
cardinality features, like the relational
database, which retains relationships
between the tables through embedded and
reference approaches.

xviii. Functional dependencies: The data are
organized into the concept of the key- value.
Each key is used to store the value, which
can be determined by the key. Each
document also has a primary key used to
identify all document keys. Therefore, all
document fields are functionally dependent
on the primary key document. The
SemiSchema supports the concept of
functional dependencies.

xix. Symmetric relationship: Each value in the
document relates to the key, and each key
symmetrically relates to the value.

xx. Recursive relationship: This feature
describes the relationships between the
documents. A unary relationship is stored in
the related collection, which is described as
a recursive relationship.

xxi. Flexible schema: This new feature is
required for big data not covered by any
semi-structured model or relational
database, as well as for new business
requirements and changes. In the
SemiSchema, the schema can be changed at
any time. The SemiSchema allows the
addition of any field in any document
without constraint and permits each
document to have different numbers of
fields. It also enables the changing of
relationships before or after implementation.

xxii. Timestamp: This feature is required for
semi-structured data. Real-time applications
need a way to evolve with time. The time-
stamp data type is better and more efficient
than the date-time data type. The
SemiSchema provides time-stamp data for
each document that it supports.

A document-oriented database is designed for

storing, retrieving, and managing document-oriented
or semi-structured data. The central concept of a
document-oriented database is the notion of a

document. Where the contents within the document
are encapsulated or encoded in a standard format such
as JSON or BSON, And XML.

The case study is the schema of the W3school website
(http://www.w3schools.com/). The W3school
schema, presented in Figure 1, can be described as the
PRODUCT has CATEGORIES and SUPPLIERS, and
ORDER has ORDERDETAILS and SHIPPERS to the
CUSTOMER through the EMPLOYEES.

The SemiSchema were applied to the schema shown
in Figure 1, and the output of this schema, presented
in Figure 2, is as follows:

i) Created new collections for the main strong
entity, which are PRODUCT, ORDER, and
EMPLOYEES.

ii) Mapped the relationship between PRODUCT
and CATEGORY by store CATEGORIES as
embedded documents in the PRODUCT
collection. Also, mapped the relationship
between PRODUCT and SUPPLIERS by
store SUPPLIERS as embedded documents
in the PRODUCT collection

iii) Mapped the relationship between ORDER and
ORDERDETAILS by creating an embedded
document for ORDERDETAILS in the
ORDER collection. Also, the relationship
between ORDER and SHIPPERS was
mapped to create embedded documents for
SHIPPERS in the ORDER collection.

iv) Mapped the relationship between ORDERS
and CUSTOMERS by creating an embedded
document for CUSTOMERS in the ORDERS
collection.

4. Case Study: W3school Schema

Shady Hamouda
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 25 Volume 9, 2024

Figure 1: ER schema for W3schools [26].

Product{productId,

productname,unite,price,productsCol,

Category{CategoryID,CategoryName,Des

cripation},

Suppliers{SupplierID,SupplierName,Co

ntactName,Address,City,PostCode,Coun

try,Phone}}

Order{OrderID,EmployeeID,ProductID,O

rderID,

OrderDetails{OrderDetailsID,ProductI

D,Quantity}, ShipperID,ShipperName,

Phone},

Customer{CustomerID,CustomerName,Con

tactName,Address,City,PostCode,Count

ry},

Employee{EmployeeID,LastName,FirstNa

me, BirthDay,Photo,Notes} }

Figure 2: The SEMISCHEMA for W3schools.

 As Figure 2 shows, the ER schema first depicted
in Figure 1 has been mapped in it entirety without
missing any specification. The SemiSchema of
Figure 2 contains three collections PRODUCT,
ORDER, and EMPLOYEE, as the PRODUCT collection
contains CATEGORY and SUPPLIERS entities as
embedded documents based on the TRs. Also, the
ORDER collection contains ORDERDETAILS,
SHIPPERS, and CUSTOMERS entities as an
embedded document based on the SemiSchema. The
evaluation of this case study assessed the flexibility
of the schema by checking whether the features of the
SemiSchema were compatible with any business
requirement changes.

The flexibility of the schema refers to the evaluation
of the capability to meet and respond to business
change requirements during the development process
[27]. Accordingly, this evaluation can enable
organizations to achieve flexibility in software
development for managing unpredictable and
changing conditions [28].
 This evaluation tested the flexibility of the
SemiSchema using the W3schools schema in Figure
2 in order to determine whether it could keep up with
new business requirements. In a relational database,
the new field should add to all table records to change
its schema. By contrast, a SemiSchema allows the
addition or alteration of the data for a specific
document in any structure without changing the
database schema. A SemiSchema thereby permits the
application to use the required data while ignoring the
unrequired data.
 In the W3schools schema (Figure 1), the
relationship between PRODUCTS and SUPPLIES is
one to one. In this case, the W3schools schema needs
to change the business requirements by allowing one
PRODUCT to have many SUPPLIES or each
SUPPLIER to provide many PRODUCTS; however,
this new requirement creates difficulty in changing
the relational database schema. To incorporate this
requirement in the relational database, a new table
should be added to allow the PRODUCT to have many
SUPPLIERS. The relational database schema will
not allow the same PRODUCT to have many
SUPPLIERS because it is fixed and has change
constraints.

5. Evaluate the Flexibility of the Schema

Shady Hamouda
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 26 Volume 9, 2024

 The previous scenario indicates that the change
requirements will affect the database schema, query
level, and reporting level. Given that the relational
database needs to change, all queries related to
PRODUCT and SUPPLIER need to be redesigned and
recoded. By contrast, a SemiSchema supports a
flexible schema with semi-structured data that can
add or change relationships between entities without
adverse effects.
 In the previous case in Figure 2, the relationships
between PRODUCTS and SUPPLIERS can be
changed without affecting the schema because the
PRODUCT collection stores the SUPPLIERS as
embedded documents and lists SUPPLIERS for each
product. In a SemiSchema, mapping one-to-one or
one-to-many relationships can occur via the
embedded documents.
 Therefore, this schema can store many
SUPPLIES as embedded documents into each
PRODUCT, as shown in Figure 2. In addition, the
second evaluation assessed the flexible schema
feature and data based on the semi-structure features.
Ultimately, the issue confronting the current
application is how fast development processes can
respond to meet users’ changed requirements. The
flexibility of the schema is presented to integrate the
changes in business requirements with the existing
code after the completion of the changes.
 The flexible schema feature may be suitable for
handling the large volume and variety of data of
modern applications. It also allows the dynamic
modification of the schema without interruption, as
well as simplified application design and a reduction
in the overall efforts needed to develop applications.

This study addresses issues related to the
specifications and features of semi-structured data
that are not presented in previous models. These
specifications and features can address most of the
features of semi-structured data models while adding
two new features – a flexible schema and a timestamp
– that are needed for big data applications. To define
a schema for semi-structured data, the Schema for
Semi-Structured Data components, specifications,
and features can be used as a conceptual model to
design a schema for semi-structured data.
 The schema will store data as a key-value concept
by regarding the key as a field and the value as a field.
These values can be of any data type, such as string,
integer, array, and nested document. This property

ensures flexibility and scalability in organizing and
handling different types of data. In future work, this
study can be extended to evaluate the schema of semi-
structured data for a real-time application and assess
the features of semi-structured data.

[1] L. Stanescu, M. Brezovan, and D. D.
Burdescu, "Automatic mapping of MySQL
databases to NoSQL MongoDB," in Computer

Science and Information Systems (FedCSIS),

2016 Federated Conference on, 2016, pp.
837-840: IEEE.

[2] L. Zhang, N. Li, and Z. Li, "An overview on
supervised semi-structured data
classification," in 2021 IEEE 8th International

Conference on Data Science and Advanced

Analytics (DSAA), 2021, pp. 1-10: IEEE.
[3] M. D. Assunção, R. N. Calheiros, S. Bianchi,

M. A. Netto, and R. Buyya, "Big Data
computing and clouds: Trends and future
directions," Journal of Parallel and

Distributed Computing, vol. 79, pp. 3-15,
2015.

[4] C. A. Győrödi, D. V. Dumşe-Burescu, D. R.
Zmaranda, R. Ş. Győrödi, G. A. Gabor, and G.
D. J. A. S. Pecherle, "Performance analysis of
NoSQL and relational databases with
CouchDB and MySQL for application’s data
storage," vol. 10, no. 23, p. 8524, 2020.

[5] M. Dahiya, S. Sharma, and S. Grima, "Big
Data Analytics Application in the Indian
Insurance Sector," in Big Data Analytics in the

Insurance Market: Emerald Publishing
Limited, 2022, pp. 145-164.

[6] W. Qi, M. Sun, S. R. A. J. J. o. M. Hosseini,
and Organization, "Facilitating big-data
management in modern business and
organizations using cloud computing: a
comprehensive study," pp. 1-27, 2022.

[7] N. Deepa et al., "A survey on blockchain for
big data: approaches, opportunities, and future
directions," 2022.

[8] A. Erraji, A. Maizate, M. Ouzzif, and Z. I. J.
E. T. BATOUTA, "Migrating Data Semantic
from Relational Database System To NOSQL
Systems to Improve Data Quality for Big Data
Analytics System," vol. 107, no. 1, p. 19495,
2022.

[9] M. A. Fouly, T. H. A. Soliman, and A. I.
Taloba, "Developing an Efficient Secure
Query Processing Algorithm for Unstructured

6. Conclusion

References

Shady Hamouda
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 27 Volume 9, 2024

Data on Encrypted Databases," in 2022 10th

International Japan-Africa Conference on

Electronics, Communications, and

Computations (JAC-ECC), 2022, pp. 252-257:
IEEE.

[10] J. Chaudhary, V. Vyas, and C. Jha,
"Qualitative Analysis of SQL and NoSQL
Database with an Emphasis on Performance,"
in IOT with Smart Systems: Proceedings of

ICTIS 2022, Volume 2: Springer, 2022, pp.
155-165.

[11] F. Tesone, P. Thomas, L. Marrero, V. Olsowy,
and P. Pesado, "A Comparison of DBMSs for
Mobile Devices," in Computer Science–

CACIC 2021: 27th Argentine Congress,

CACIC 2021, Salta, Argentina, October 4–8,

2021, Revised Selected Papers, 2022, pp. 201-
215: Springer.

[12] H. Hashem and D. Ranc, "Evaluating NoSQL
document oriented data model," in 2016 IEEE

4th International Conference on Future

Internet of Things and Cloud Workshops

(FiCloudW), 2016, pp. 51-56: IEEE.
[13] A. Corbellini, C. Mateos, A. Zunino, D.

Godoy, and S. Schiaffino, "Persisting big-
data: The NoSQL landscape," Information

Systems, vol. 63, pp. 1-23, 2017.
[14] R. Ganguly and A. Sarkar, "Evaluations of

Conceptual Models for Semi-structured
Database System," International Journal of

Computer Applications, vol. 50, no. 18, 2012.
[15] A. Sengupta, S. Mohan, and R. Doshi, "XER-

extensible entity relationship modeling," in
Proceedings of the XML 2003 Conference,
2003, pp. 140-154.

[16] A. Qtaish, M. T. J. J. o. I. Alshammari, and K.
Management, "A narrative review of storing
and querying xml documents using relational
database," vol. 18, no. 04, p. 1950048, 2019.

[17] S. Hamouda, R. Sughayyar, and O. E. Elejla,
"Semi-Structured Schema for a Big Data (S-
SSBD)," in KEOD, 2021, pp. 202-209.

[18] H. Liu, Y. Lu, and Q. Yang, "XML conceptual
modeling with XUML," in Proceedings of the

28th international conference on Software

engineering, 2006, pp. 973-976: ACM.
[19] M. Necasky, "XSEM: a conceptual model for

XML," in Proceedings of the fourth Asia-

Pacific conference on Comceptual modelling-

Volume 67, 2007, pp. 37-48: Australian
Computer Society, Inc.

[20] Z. Zainol and B. Wang, "GN-DTD: Graphical
notations for describing XML documents," in
Advances in Databases Knowledge and Data

Applications (DBKDA), 2010 Second

International Conference on, 2010, pp. 214-
221: IEEE.

[21] R. Arora and R. R. Aggarwal, "Modeling and
querying data in mongodb," International

Journal of Scientific and Engineering

Research, vol. 4, no. 7, 2013.
[22] P. Atzeni, F. Bugiotti, L. Cabibbo, and R.

Torlone, "Data modeling in the NoSQL
world," Computer Standards & Interfaces,

2016.
[23] H. Hashem and D. Ranc, "Evaluating NoSQL

document oriented data model," in Future

Internet of Things and Cloud Workshops

(FiCloudW), IEEE International Conference

on, 2016, pp. 51-56: IEEE.
[24] J. Bhogal and I. Choksi, "Handling big data

using NoSQL," in Advanced Information

Networking and Applications Workshops

(WAINA), 2015 IEEE 29th International

Conference on, 2015, pp. 393-398: IEEE.
[25] M. Ferro, E. Silva, R. J. D. Fidalgo, and K.

Engineering, "Astar: A modeling language for
document-oriented geospatial data
warehouses," p. 102174, 2023.

[26] L. Rocha, F. Vale, E. Cirilo, D. Barbosa, and
F. Mourão, "A Framework for Migrating
Relational Datasets to NoSQL1," Procedia

Computer Science, vol. 51, pp. 2593-2602,
2015.

[27] S. Rathor, D. Batra, and W. Xia, "What
Constitutes Software Development Agility?,"
2016.

[28] A. Gamal, S. Barakat, and A. J. J. o. b. i. Rezk,
"Standardized electronic health record data
modeling and persistence: A comparative
review," vol. 114, p. 103670, 2021.

Shady Hamouda
International Journal of Education and Learning Systems

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 28 Volume 9, 2024

