
 

 

A Markov Chain Model for the APOS/ACE Instructional Treatment of 
Mathematics 

 
MICHAEL GR. VOSKOGLOU 

Mathematical Sciences, School of Technological Applications 
Graduate T. E.I. of Western Greece 
Meg. Alexandrou 1 – 263 34 Patras 

GREECE 
mvosk@hol.gr ; http://eclass.teipat.gr/eclass/courses/523102 

 
 
Abstract: - The ACE teaching style is the pedagogical approach of the APOS instructional treatment of 
mathematics implemented with the help of computers. In this paper a Markov Chain model is introduced on the 
components of the ACE cycle on the purpose of studying mathematically its flow-diagram. This leads to a 
measure evaluating the student difficulties in learning mathematics. A classroom example is also presented 
illustrating the applicability and usefulness of the model. 
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1 Introduction 
The APOS/ACE instructional treatment of 
mathematics has been developed in the USA during 
the 1990’s by a team of mathematicians and 
mathematics educators led by Ed Dubinsky [1-3]. In 
earlier works we have applied the APOS/ACE 
approach for teaching the irrational numbers [4] and 
the polar coordinates on the plane [5-6] and also for 
assessing, with the help of fuzzy logic, its 
effectiveness in improving the student learning 
skills [7]. 
     In the present work we introduce a Markov 
Chain (MC) with states the components of the ACE 
teaching style of mathematics on the purpose of 
studying mathematically the flow-diagram of the 
ACE cycle. This leads to a measure for evaluating 
the student difficulties in learning mathematics. The 
rest of the paper is formulated as follows: In Section 
2 a brief account of the main ideas of the 
APOS/ACE theory is presented. Our MC model is 
developed in Section 3, while in Section 4 examples 
are provided on teaching the derivative illustrating 
the model’s applicability and usefulness in practice. 
The article closes with the conclusions and some 
hints for future research on the subject, which are 
contained in Section 5.  

  
 

2 The APOS/ACE Instructional 
Treatment of Mathematics 

APOS is a theory based on Piaget’s principle that an 
individual learns by applying certain mental 
mechanisms to build specific mental structures and 
utilizes those structures to deal with problems 
connected to the corresponding situations [8] As a 
matter of fact, the APOS theory argues that the 
teaching and learning of mathematics should be 
based on helping students to use the mental 
structures that they already have and to develop 
new, more powerful structures, for handling more 
and more advanced mathematics. Those structures 
include Actions, Processes, Objects and Schemas, 
the acronym APOS being formed by the initial 
letters of the above four words.  
     Two are the mental mechanisms involved in the 
APOS approach, called interiorization and 
encapsulation respectively. A mathematical concept 
is first formed as an action. As one repeats and 
reflects on an action, this action may be interiorized 
to a process enabling the individual to perform the 
same activities in his/her mind. When the individual 
becomes aware of a process as a totality and 
becomes able to construct transformations on this 
totality, then the process has been encapsulated to 
an object. This is often neither easy nor immediate, 
because encapsulation entails a radical sift in the 
nature of one’s conceptualization, since it signifies 
the ability to think of the same concept as a 
mathematical entity to which new, higher-level 
transformations can be applied.  On the other hand, 
the mental process that led to a mental object 
through encapsulation remains still available and 
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many mathematical situations require one to de-
encapsulate an object back to the process that led to 
it. Finally, the actions, processes and objects 
involved in a mathematical topic need to be 
organized in an individual’s coherent cognitive 
schema.  
     For example, if one can think of a function only 
through an explicit expression connecting the two 
variables involved, then he/she is having an action 
understanding of functions. On the contrary, a 
process understanding of a function enables the 
individual to think about it in terms of inputs and 
outputs, possibly unspecified. Further, an object 
understanding allows one to form sets of functions, 
to define operations on such sets, to equip them with 
a topology, etc. Going back from a composite 
function to its component functions for the better 
understanding of the rule of derivation of a 
composite function, or going back from the 
derivative to the initial function in order to 
understand the process of the integration of a 
function, constitute classical examples of de-
encapsulating an object back to the process that led 
to it Finally, it is the schema structure that enables 
one to see and use a function in a given 
mathematical or real world situation. Fig. 1, taken 
from Dubinsky’s personal web page [9], represents 
graphically the APOS approach.  

 

Fig. 1.  Graphical representation of the APOS 
approach 

     The implementation of the APOS as a 
framework for teaching and learning mathematics 
involves three stages. First a theoretical analysis, 
called Genetic Decomposition (GD) of the concepts 
under study, is performed. In the next stage 
instructional sequences based on the GD are 
developed and implemented and finally data are 
collected and analysed in order to test and refine the 
GD [2]. 

     The APOS theory has important consequences 
for education. Simply put, it says that the teaching 
of mathematics should aim in helping students to 
use the mental structures they already have to 
develop an understanding of as much mathematics 
as those available structures can handle. For 
students to move further, teaching should help them 
to build new, more powerful structures for handling 
more and more advanced mathematics. Dubinsky 
and his collaborators realized that for each mental 
construction that comes out of an APOS analysis, 
one can find a computer task of writing a program 
or code, such that, if a student engages in that task, 
he (she) is fairly likely to build the mental 
construction that leads to learning the corresponding 
mathematical topic. Based on the above aspect, the 
pedagogical approach based on APOS analysis, 
known as the ACE teaching cycle, is a repeated 
cycle of three components: (A) activities on the 
computer, (C) Classroom discussion and (E) 
Exercises done outside the class (Fig. 2) 

 

Fig. 2. The ACE teaching cycle. 

     In applying the ACE cycle the mathematical 
topic to be learnt is divided to smaller subtopics and 
each one of the iterations of the cycle corresponds to 
one of those subtopics. The computer activities, 
which form the first step of the ACE approach, are 
designed to foster the students’ development of the 
appropriate mental structures. The students do all of 
their work in cooperative groups. In classroom the 
teacher guides the students to reflect on the 
computer activities and their relation to the 
mathematical concepts being studied. They do this 
by performing mathematical skills without using the 
computer.  They discuss their results and listen to 
explanations by fellow students or the teacher of the 
mathematical meanings of what they are working 
on. The homework exercises are fairly standard 
problems related to the topic being studied. Students 
reinforce the knowledge obtained in the computer 
activities and classroom discussions by applying it 
in solving these problems. The implementation of 
the ACE cycle and its effectiveness in helping 
students make mental constructions and learn 
mathematics has been reported in several research 
studies of the Dubinsky’s team (e.g. [1, 3, 10, 11],  
etc.).  
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3 The Markov Chain Model  
Roughly speaking, a MC is a stochastic process that 
moves in a sequence of steps (phases) through a set 
of states and has a “one-step memory”. This means 
that the probability of entering a certain state in a 
certain step, known as the transition probability 
between steps, depends on the state occupied in the 
previous step and not in older steps. This is known 
as the Markov property. However, for being able to 
model as many real life situations as possible by 
using MCs, one could accept in practice that the 
transition probability, although it may not be 
completely independent of previous steps, it mainly 
depends on the state occupied in the previous step 
[12]. When the set of states of a MC is a finite set, 
then we speak about a finite MC. For general facts 
on finite MCs we refer to the book [13]   
     Here, in order to study mathematically the flow-
diagram of the ACE cycle, we introduce a finite MC 
with states the components S1 = computer activities, 
S2 = classroom discussion and S3 = homework 
exercises, of the ACE cycle. Denote by pij the 
transition probability from state Si to state Sj, i, j = 
1, 2, 3. Then the matrix A= [pij] is called the 
transition matrix of the MC. Taking into account the 
flow-diagram of the ACE cycle presented in Fig. 2 it 
is straightforward to check that 
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    Since the transition from a state to some other 
state is the certain event, we have that  

P12  + p13  =   p21 + p23  = 1          (2). 

     A state of a MC is called absorbing if, once 
entered, it cannot be left. Further a MC is said to be 
an absorbing MC (AMC) if it has at least one 
absorbing state and if from every state it is possible 
to reach an absorbing state, not necessarily in one 
step. Obviously the present MC is an AMC with S3 
being its unique absorbing state ad S1 its starting 
state.  
     Applying the standard theory of the AMCs ([13], 
Chapter 3) we bring the transition matrix A to its 
canonical form A*  by listing the absorbing state first 

and then we make a partition of  A* as follows: 

                                                                  

                   13 2S S S  

A* = 
1

3

2

S

S
S

13 12

23 21

1 | 0 0

| 0
| 0

p p
p p

 
 − − − − 
 
 
 

= 
1 |

|
|

I O

R Q

 
 − − 
  

       (3). 

     In the above partition I1 is the 1 X 1 unitary 
matrix, O is a 1 X 2 zero matrix, R is the 2 X 1 
transition matrix from the non-absorbing states to 
the absorbing state and Q is the 2 X 2 transition 
matrix between the two non absorbing states. Then, 
if I2 denotes the 2 X 2 unitary matrix, we have 

I2 – Q = 12

21

1
1
p

p
− 

 − 
         (4). 

    Since the determinant of I2 – Q is non zero, I2 – Q 
is an invertible matrix. Note that that this matrix 
turns to be always invertible regardless to the 
number of states of the corresponding AMC 
[14].  
     Then, the fundamental matrix N of the AMC is 
defined to be the inverse matrix of I2 – Q. Therefore  

N = [nij] = (I2 – Q)– 1 = 2
2

1 ( )
( )

adj I Q
D I Q

−
−

   (5). 

     The matrix adj (I2 – Q) in equation (5) is the 
adjoin matrix of I2 – Q and D (I2 – Q) is the 
determinant of I2 - Q.( [15], Section 2.4). It is 
recalled that the adjoin matrix of I2 – Q is the matrix 
of the algebraic complements of the transpose 
matrix of I2 – Q, which is obtained by turning the 
rows of I2 – Q to columns and vice versa.. Replacing 
the matrix I2 – Q from (4) to (5) and making the 
corresponding calculations one finds that 

N = 12

2112 21

11
11

p
pp p

 
 − −−  

        (6). 

     It is well known ([13], Chapter 3) that the 
element nij of the fundamental matrix N gives the 
mean number of times in state Si before the 
absorption, when the starting state of the AMC is Sj , 
where Si and Sj are non absorbing states. In our case, 
since S1 is the starting state of the MC, it becomes 
evident that the mean number of steps of the MC 
before the absorption is given by the sum  

t = n11 + n12 = 12

12 21

1
1

p
p p
+

−
    (7). 
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     It is logical to accept that the greater is the value 
of t, the more the student difficulties during the 
ACE cycle. On the other hand, the total time spent is 
another factor, apart for t, indicating the student 
difficulties. However, the total duration of the steps 
S1 and S2 of the ACE cycle is usually prefixed by the 
instructor, which means that in this case t could be 
considered as a measure of the student difficulties 
during the computer activities and the classroom 
discussion.  
 
 
4 The Classroom application 
The following classroom application took place 
some time ago at the Graduate Technological 
Educational Institute of Western Greece in the city 
of Patras with subjects 30 students of the first term 
in an engineering department of the School of 
Technological Applications. In order to help 
students to have a better understanding of the 
graphical representation of the derivative, we 
designed [16], in collaboration with Vahid Borji 
who performed a similar classroom application in an 
Iranian University [17], an APOS GD by giving 
emphasis to the following points:  

1. Connecting two points (a, f(a)) and (b, f(b)) 
on the graph of a given function y = f(x) to 
construct the corresponding chord of the 
graph. 

2. Calculating the slope of a secant 
line at the point (a, f(a)) as the other point 
(b, f(b)) is moving approaching it.  

3. Defining the tangent line at the point (a, 
f(a)) of the graph of a function y = f(x) and 
calculating its slope by the limit:  

( ) ( )limx a
f x f a

x a→

−
− , which is by definition the 

derivative f’(a).  
4. Calculating οn the basis of the above 

process the derivative f΄’(a) at a point (α, 
f(α)) from a given table of suitable values of 
the function  y = f(x) without using limits. 

5. Presenting examples of constructing the 
graph of the derivative function f΄(x) when 
the graph but not the analytic formula of y = 
f(x) is given. 

     Next, an ACE approach was developed on the 
basis of the above GD. Three computer activities 
were designed with the help of the proper software 
corresponding to three iterations of the ACE cycle 
as follows:  

• The first activity, connected to the points 1-
3 of the above GD, focused on a limit 
process, where a point B (b, f(b)) moving on 

the graph of y = f(x) approaches the fixed 
point A (a, f(a)), which means that the 
corresponding secant line approaches the 
tangent line of the graph at the point A. 

•  In the second activity, connected to the 
point 4 of the GD, a ready computer 
procedure was given to students that designs 
the graph of y = f(x) and its tangent line at 
a, computes the slope of the tangent and 
plots the point (a, f¨(α)) in the same 
coordinate system.  

• The third activity, connected to the point 5 
of the GD, expanded the second one to a 
procedure that plots any points of the form 
(x, f¨(x)) when the graph of  y = f(x) is given 
and designs the graph of the derivative 
function f΄(x) in the same coordinate system 

     The following three exercises were given to 
students for solution without the help of computers 
after the end of each computer activity: 
     Exercise 1 (connected to the first activity): Using 
the graph of the function y = f(x) and the Table of its 
values given in Fig. 3 approximate the value of the 
derivative f ΄(x) at x = 0.04. 

 

Fig. 3. The graph and data of Exercise 1 

     Exercise 2 (Connected to the second computer 
activity): The line L is the tangent to the graph of 
the function y= f(x) of Fig. 4 at the point (4, 4). 
Calculate the value of f ΄(4).  

 
Fig. 4. The graph of y= f(x) in Exercise 2 
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Exercise 3 (Connected to the third computer 
activity): Taking into account that the tangent at the 
point (a, f(a)) of the graph of the function y = f(x) of 
Fig. 5 is parallel and that the tangent at (b, f(b)) is 
perpendicular to the x-axis, sketch the graph of the 
derivative function  f΄(x). 

 
Fig. 5. The graph of y= f(x) in Exercise 3 

    The last exercise, having the greatest difficulty 
among the others, can be solved by taking into 
account the following points, for which a particular 
emphasis had been given by the instructor during 
the classroom discussions: 
     - Since the tangent of the given graph at (a, f(a)) 
is parallel to the x-axis, its slope is equal to zero, 
which means that f ΄(α) = 0. Consequently, the graph 
of f ΄(x) intersects the x-axis at a. 
    - Since the tangent of the graph of f(x) at b is 
perpendicular to the x-axis, its slope is equal to +∞ , 
therefore b does not belong to the domain of f΄(x). 
    -  At the point (c, f(c)) the left and right tangents 
to the graph of f(x) are different, which means that 
f΄(x) is not defined at c. 
    - If f(x) is strictly increasing (decreasing) in an 
interval I, then f΄(x)>0 (<0) for all x in I. Therefore, 
the graph of f΄(x) in I lies over (under) the x-axis 
     - If the concavity of f(x) in an interval I is 
upwards (downwards), which means that f΄΄(x)>0 
(<0), the derivative function f΄(x) is strictly 
increasing (decreasing) in I.  
     All the above lead to the draft design of the 
graph of f ΄(x) presented in Fig. 6 

 
Fig. 6. The graph of f΄(x) in Exercise 3 

    Inspecting the student answers in Exercise 1, I 
realized that 18 out of 30 solved it correctly. This 
means that the target of the first iteration of the ACE 
cycle was succeeded by those students. On the 
contrary, it became evident that for the rest of the 
students the classroom discussion following the first 
computer activity was necessary in order to reflect 
better on this activity and its relation to the 
mathematical topic being studied. In other words 
and in terms of the MC model of Section 2 one 

concludes that p13 =
18
30

 and p12 =
12
30

  

     At the end of the classroom discussion an 
analogous exercise was given for solution to the 12 
students that had failed to solve Exercise 1. In this 
case I found 8 correct solutions, which means that 

p23 =
8

12
 and p21 =

4
12

. Replacing the values of the 

tradition probabilities in equation (7) one finds that t 

=
21
13

≈ 1.62. 

     Working similarly for Exercise 2 and the second 

iteration of the ACE cycle I found that p13 =
14
30

, 

p12   = 
16
30

 and p23 = p21 =
8

16
. In this case equation 

(7) gives that t = 
23
11

≈ 2.09. 

     Finally, for Exercise 3 and the third iteration of 

the ACE cycle I found that p13 =
10
30

, p12   = 
20
30

 and  

p23 = p21 =
10
20

. In this case equation (7) gives that t 

= 
5
2
= 2.5. 

     In concluding, the student difficulties were grater 
during the third iteration and lower during the third 
iteration of the ACE cycle. This seems to be logical 
due to the increasing difficulty of the topics tackled 
in each of the tree iterations of the ACE teaching 
approach. 
 
 
5.  Conclusion 
The MC model developed in the present work for 
studying the ACE teaching style, i.e. the 
pedagogical outcome of the APOS instructional 
treatment of mathematics, led to a numerical 
measure of the student difficulties during the several 
iterations of the ACE cycle for learning a certain 
mathematical topic. This is very useful for the 
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mathematics instructor, because it helps the 
improvement of the corresponding APOS GD and 
the instructor’s teaching plans in general for 
enhancing the student performance. The classroom 
application presented on teaching the graphical 
representation of the derivative illustrated the 
applicability and usefulness of our model in 
practice.  
     Our plans for future research on the subject 
include the effort of combining MCs with other 
suitable mathematical tools like fuzzy logic, grey 
system theory, etc., for improving the effectiveness 
of our methods for representing mathematically the 
APOS/ACE instructional treatment of mathematics.  
On the other hand, our second target focuses on 
more applications of similar methods to other 
mathematical topics (e.g. see [18]. 
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