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Abstract: In this paper, we addressed an issue of building dynamic classifier chain ensembles for multi-label clas-
sification. We built a classifier that allows us to change label order of the chain without rebuilding the entire model.
Such a model allows anticipating the instance-specific chain order without a significant increase in computational
burden. The proposed chain model is built using the Naive Bayes classifier as a base single-label classifier. Ad-
ditionally, we proposed a simple heuristic that allows the system to find relatively good label order. That is, the
heuristic tries to minimise the phenomenon of error propagation in the chain. The experimental results showed that
the proposed model based on Naive Bayes classifier the above-mentioned heuristic is an efficient tool for building
dynamic chain classifiers.
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1 Introduction

Under well-known single-label classification frame-
work, an object is assigned to only one class which
provides a full description of the object. However,
many real-world datasets contain objects that are as-
signed to different categories at the same time. All of
these categories constitute a full description of the ob-
ject. Omitting of one of these concepts induces a loss
of information. Classification process in which such
kind of data is involved is called multi-label classifi-
cation [10]. A great example of a multi-label dataset
is a gallery of tagged photos. Each photo may be
described using such tags as mountains, sea, forest,
beach, sunset, etc. Multi-label classification is a rel-
atively new idea that is explored extensively for last
two decades. As a consequence, it was employed in
a wide range of practical applications including text
classification [17], multimedia classification [24] and
bioinformatics [33] to name a few.

Multi-label classification algorithms can be
broadly partitioned into two main groups i.e. dataset
transformation algorithms and algorithm adaptation
approaches [10].

Methods belong to the group of algorithm adapta-
tion approaches provides a generalisation of an exist-
ing multi-class algorithm. The generalised algorithm
is able to solve multi-label classification problem in

a direct way. Among the others, the most known ap-
proaches from this group are: multi label KNN algo-
rithm [17], the Structured SVM approach [5] or deep-
learning-based algorithms [31].

In this paper, we investigate only dataset trans-
formation algorithms that decompose a multi-label
problem into a set of single-label classification tasks.
To reconstruct a multi-label response, during the in-
ference phase, outputs of the underlying single-label
classifiers are combined in order to create a multi-
label prediction.

Let’s focus on one of the simplest decomposi-
tion methods. That is the binary relevance (BR) ap-
proach that decomposes a multi-label classification
task into a set of one-vs-rest binary classification prob-
lems [1]. This approach assumes that labels are con-
ditionally independent. However the assumption does
not hold in most of real-life recognition problems, the
BR framework is one of the most widespread multi-
label classification methods [30]. This is due to its ex-
cellent scalability and acceptable classification qual-
ity [19].

To preserve scalability of BR systems, and pro-
vide a model of inter-label relations, Read et al. [22,
23] provided us with the Classifier Chain model (CC)
which establish a linked chain of modified one-vs-rest
binary classifiers. The modification consists of an ex-
tension of the input space of single-label classifiers
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along the chain sequence. To be more strict, for a
given label sequence, the feature space of each clas-
sifier along the chain is extended with a set of binary
variables corresponding to the labels that precede the
given one. The model implies that, during the train-
ing phase, input space of given classifier is extended
using the ground-truth labels extracted from the train-
ing set. During the inference step, due to lack of
the ground-truth labels, we employ binary labels pre-
dicted by preceding classifiers. The inference is done
in a greedy way that makes the best decision for each
of considered labels. That is, the described approach
passes along the chain, information allowing CC to
take into account inter-label relations at the cost of al-
lowing the label-prediction-errors to propagate along
the chain [23]. This way of performing classification
induces a major drawback of the CC system. That is,
the performance of a chain classifier strongly depends
on chain configuration [25]. To overcome these ef-
fects, the authors suggested to generate an ensemble
of chain classifiers (ECC). The ensemble consists of
classifiers trained using different label sequences [22].

The originally proposed ECC ensemble uses ran-
domly generated label orders. This simple, yet ef-
fective approach allows improving the classification
quality significantly in comparison to single chain
classifier. However, the intuition says that there is still
room for improvement. Indeed, later research shows
that the members of the ensemble may be chosen in
such a way that provides further improvement of clas-
sification quality [12, 11, 29]. The above-cited re-
search provides methods of building the entire ensem-
ble in a heuristic way. That is, the algorithms generate
a large set of random label orders and then chooses
the best ensemble using a genetic algorithm.

Another strategy is to generate bootstrap sam-
ples of the original training set and then to choose
the best classifiers for each of samples. Under this
framework, the chain structure is usually optimised
using Bayesian Network [36] or Monte Carlo optimi-
sation [20].

The previously cited methods build ensemble
structure during the training procedure. Consequently,
throughout this paper, this kind of methods will be
called static methods. The dynamic chain classifiers,
on the other hand, determines the best label order at
the prediction phase [4]. The above-mentioned clas-
sifier produces a set of randomly generated label se-
quences and then validates the chain classifiers. Dur-
ing the validation phase, each point from the valida-
tion set is assigned with a label order that produces
the most accurate output vector for this point. As the
experimental research shows, the dynamic methods of
building a label order may achieve better classification
quality [4].

We observed that during the building of a dy-
namic chain classifier, multiple chain classifiers must
be learned. These classifiers are built using the same
training set and differ only in chain order. As a
consequence, the computational burden of the algo-
rithm may be reduced if there exists a classifier that is
trained once and changing the label sequence is done
without rebuilding the model. To address this issue,
we built a model based on the Naive Bayes [15] ap-
proach that meets the above-mentioned properties.

Additionally, we proposed a dynamic method of
determining the chain order based on classification
quality for each label separately.

The rest of the paper is organised as follows. Next
Section 1 provides a formal description of the multi-
label classification problem and describes the devel-
oped approach. Section 3 contains a description of the
conducted experiments. The results are presented and
discussed in Section 4. Finally, Section 5 concludes
the paper.

2 Proposed Method
In this section, we introduce a formal notation of
multi-label classification problem and provide a de-
scription of the proposed method.

2.1 Preliminaries
Under the multi-label (ML) formalism a d −
dimensional object ~x = [x1, x2, . . . , xd] ∈ X is as-
signed to a set of labels indicated by a binary vector of
length L: ~y = [y1, y2, . . . , yL] ∈ Y = {0, 1}L, where
L denotes the number of labels.

In this paper, we follow a statistical classifica-
tion framework. As a consequence, it is assumed
that object ~x and its set of labels y are realizations of
corresponding random vectors ~X = [X1,X2, . . . ,Xd],
~Y = [Y1,Y2, . . . ,YL] and the joint probability distri-
bution P (~X, ~Y) on X × Y is known.

Because the above-mentioned assumption is
never meet in real world, in this study, we suppose that
multi-label classifier H , which maps feature space X
to the set Y , is built in a supervised learning procedure
using the training set T containing N pairs of feature
vectors ~x and corresponding class labels ~y:

T =
{
(~x(1), ~y(1)), (~x(2), ~y(2)), . . . , (~x(N), ~y(N))

}
.

(1)

2.2 Naive Bayes Classifier for Classifier
Chains

In this paper, we consider ML classifiers build accord-
ing to the chain rule. That is, the classifier H is an

Pawel Trajdos, Marek Kurzynski
International Journal of Education and Learning Systems 

http://iaras.org/iaras/journals/ijels

ISSN: 2367-8933 134 Volume 2, 2017



ensemble of L single-label classifiers ψi that consti-
tutes a linked chain which is built according to a per-
mutation of label sequence π. As it was mentioned
earlier, in this paper we follow the statistical classifi-
cation framework. Consequently, each classifier ψπ(i)
along with the chain makes its decision according to
the following rule:

hπ(i)(~x) = argmax
y∈{0,1}

P (Yπ(i) = y|Bπ(i)(~x)), (2)

where Bπ(i)(~x) is a random event defined below:

Bπ(i)(~x) = (~X = ~x,Yπ(i−1) = hπ(i−1)(~x)

,Yπ(i−2) = hπ(i−2)(~x), · · ·
,Yπ(1) = hπ(1)(~x)). (3)

The probability defined in (2) is then computed
using the Bayes rule:

P (Yπ(i) = y|Bπ(i)(~x)) =
P (Yπ(i) = y)

P (Bπ(i)(~x))

∗ P (Bπ(i)(~x)|Yπ(i) = y).

(4)

The term P (Bπ(i)(~x)) does not depend on event
Yπ(i) = y. Consequently, the decision rule (2) is
rewritten:

hπ(i)(~x) = argmax
y∈{0,1}

P (Yπ(i) = y)

∗ P (Bπ(i)(~x)|Yπ(i) = y) (5)

Now, to improve the readability we simplify the
notation:

P (Bπ(i)(~x)|Yπ(i) = y) = P (Bπ(i)(~x)|y). (6)

Then, following the Naive Bayes rule, we assume
that all random variables that constitute Bπ(i)(~x) are
conditionally independent given Yπ(i) = y. Conse-
quently, P (Bπ(i)(~x)|y) is defined using the following
formula:

P (Bπ(i)(~x)|y) =
d∏

m=1

P (~Xm = ~xm|y)

∗
l=i−1∏
l=1

P (Yπ(l) = hπ(l)(~x)|y). (7)

Now, it is easy to see that the term∏l=i−1
l=1 P (Yπ(l) = hπ(l)(~x)|y), contrary to∏d
m=1 P (

~Xm = ~xm|y), depends on the chain
structure. Furthermore, all probability distributions
used in the above-mentioned terms can be estimated
during the training phase when the chain structure is
unknown.

The training and inference phases are described
in detail using pseudocode shown in Algorithms 1
and 2.

Algorithm 1 Pseudocode of the learning procedure.
Input data:
T - training set;

BEGIN
Split T into TA and V so that:
|TA| = t|T | and |V| = (1− t)|T |, t ∈ (0, 1)
TA ∩ V = ∅;
Using TA build estimators of
the following distributions:
P (Yπ(i) = y)∀i ∈ {1, 2, · · · , L}, y ∈ {0, 1}
P (~Xm|Yπ(i) = y)∀i ∈ {1, 2, · · · , L}, y ∈ {0, 1},m ∈ {1, 2, · · · , d}
P (Yπ(l)|Yπ(i) = y)∀i, l ∈ {1, 2, · · · , L}; i 6= l

END

Algorithm 2 Pseudocode of the inference procedure.
Input data:
~x ∈ X -- input instance;
V -- validation set;

BEGIN
#Query the BR models
FOR i ∈ {1, 2, · · · , L}:
e0i =

∏d
m=1 P (~Xk = ~xm|Yi = 0);

e1i =
∏d
m=1 P (~Xk = ~xm|Yi = 1);

END FOR;
Determine label permutaion π using V and ~x;
SET i = 1;
DO:
hπ(i)(~x) = argmaxy∈{0,1} e

y
π(i)

P (Yπ(i) = y)

FOR j ∈ {i+ 1, i+ 2, · · · , L}:
d0
π(j)

:= e0
π(j)
∗ P (Yπ(i) = hπ(i)(~x)|Yπ(j) = 0)

d1
π(j)

:= e1
π(j)
∗ P (Yπ(i) = hπ(i)(~x)|Yπ(j) = 1)

END FOR;
i := i+ 1;

WHILE(i < L);
RETURN [h1(~x), h2(~x), · · · , hL(~x)];

END

2.3 Computational complexity

In this section, we assess the increase in computa-
tional complexity that the proposed algorithm causes.

First of all, it is easy to see that for both the origi-
nal and the proposed algorithm the number of estima-
tors that must be built to assess P (~Xm|Yπ(i) = y)∀i ∈
{1, 2, · · · , L}, y ∈ {0, 1} is: 2Ld.

The number of estimators of P (Yπ(i) = y)∀i ∈
{1, 2, · · · , L}, y ∈ {0, 1} that must be built is also the
same for both classifiers: L.

The key difference is in the number of estimators
of P (Yπ(l)|Yπ(i) = y) that must be built. For the
original CC classifier the number of estimators that is
built is L(L−1). On the other hand our method builds
2L2 estimators.

At the inference phase, the only additional cal-
culations are performed to determine the permutation
of labels. Since the validation set is involved in this
process, a number of calculations is proportional to
O(|V|L).
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2.4 Dynamic Chain order
In this subsection, we define a local measure of clas-
sification quality. To do so, we employed a modified
version of the well-known F1 measure.

First of all, we defined a fuzzy neighbourhood in
the input space. The neighbourhood of an instance ~x
is defined using the following fuzzy set [35]:

N (~x) =
{(
~x(n), ~y(n), µ(~x, ~x(n))

)
:
(
~x(n), ~y(n)

)
∈ V

}
,

(8)
where each tripplet

(
~x(n), ~y(n), ζ)

)
defines fuzzy set

with the membership coefficient ζ. The membership
function µ(~x, ~x(n)) is defined using gaussian potential
function:

µ(~x, ~x(n)) = exp(−βδ(~x, ~x(n))2). (9)

The distance function δ(~x, ~x(n)) is simple euclidean
distance and the β coefficient is tuned during the ex-
periments.

Then, we define set of points that belongs to given
label Vl and that are classified as given label Dl:

Vl =
{(
~x(n), ~y(n), 1

)
:(

~x(n), ~y(n)
)
∈ V, ~y(n)l = 1

}
(10)

Dl =
{(
~x(n), ~y(n), 1

)
:(

~x(n), ~y(n)
)
∈ V, hBRl (~x(n)) = 1

}
(11)

The above-mentioned classifier responses are related
to the binary relevance classifier that can be built with-
out knowing the order of the chain. The classifier is
defined using the following classification rule:

hBRπ(i)(~x) = argmax
y∈{0,1}

P (Yπ(i) = y)

∗
d∏

m=1

P (~Xm = ~xm|Yπ(i) = y) (12)

Since the neighbourhood of a given instance is de-
fined as a fuzzy set, consistently the above-mentioned
sets are also defined as fuzzy. However, the sets are
fuzzy singletons. The visualisation of aforementioned
sets is provided in Figure 1.

Using the above-mentioned sets we define local
True Positive rate, False Positive rate, False Negative
rate respectively:

TPl(~x) = |Vl ∩ Dl ∩N (~x)| , (13)

FPl(~x) = |(Dl \ Vl) ∩N (~x)| , (14)

FNl(~x) = |(Vl \ Dl) ∩N (~x)| , (15)

Figure 1: Visualisation of ground truth labels and the
decision set of the algorithm.

where | · | is the cardinality of a fuzzy set [7]. Then,
we define the local measure of classification quality:

Fl(~x) =
2TPl(~x)

2TPl(~x) + FPl(~x) + FNl(~x)
(16)

Finally, the label order π is chosen so that the fol-
lowing inequalities are met:

Fπ(1)(~x) ≥ Fπ(2)(~x) ≥ · · · ≥ Fπ(L)(~x). (17)

That is labels for whom the classification quality is
higher precedes other labels in the chain structure. In
other words, this simple heuristic is aimed at dealing
with error propagation in the chain structure by em-
ploying the most accurate models at the beginning of
the chain.

2.5 The Ensemble Classifier
Now, let us define a ML K − element classifier en-
semble: eH = {H1, . . . ,HK}. The ensemble is built
using classifier chain algorithms defined in previous
sections. Each ensemble classifier is built using a sub-
set of the original dataset. The size of subset is 66%
of the original training set.

The BR transformation may produce imbalanced
single-label dataset. To prevent the classifier from
learning from a highly imbalanced dataset, we applied
the random undersampling technique [9]. The ma-
jority class is undersampled when imbalance ratio is
higher than 20. The goal of undersampling is to keep
the imbalance ratio at the level of 20.

The research on the application of Naive Bayes
algorithm under the CC framework shows that when
the number of features in the input space is signifi-
cantly higher in comparison to the number of labels
the Naive Bayes classifier may not perform well [4].
To prevent the proposed system from being affected
by this phenomenon, we applied the feature selec-
tion procedure for each single-label separately. That
is, the attributes are selected in order to improve the
classification quality for given label. The feature se-
lection removes only attributes related to the origi-
nal input space. Features related to labels are passed
through the chain without selection. We employed
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the selection procedure based on correlation. In other
words, we select attributes that are highly correlated
to the predicted label and their inter-correlations are
low [14]. Additionally, if the number of selected fea-
tures is higher than 300, we select 300 random fea-
tures from the set of previously selected features.

The final prediction vector of the ensemble is ob-
tained via is a simple averaging of response vectors
corresponding to base classifiers of the ensemble fol-
lowed by the thresholding procedure:

h̃i(~x) =

t

K−1
K∑
k=1

hki (~x) > 0.5

|

, (18)

where J·K is the Iverson bracket.

3 Experimental Setup
The conducted experimental study provides an empir-
ical evaluation of the classification quality of the pro-
posed method and compares it to reference methods.
Namely, we conducted our experiments using the fol-
lowing algorithms:

1. The proposed approach (Section 2).

2. Static ensemble generated using a genetic algo-
rithm [29]. The enesmble is tuned to optimise
the macro-averaged F1 measure

3. ECC ensemble with randomly generated chain
orders [22].

4. OOCC dynamic method proposed by da Silva et
al. [4]. The ensemble is tuned to optimise the ex-
ample based F1 measure. Additionally, the ref-
erence method uses single split into training and
validation sets.

In the following sections of this paper, we will re-
fer to the investigated algorithms using the above-said
numbers. The reference algorithm also uses Naive
Bayes algorithm with data preprocessing procedures
described in Section 2.5.

The extraction of training and test datasets was
performed using 10 fold cross-validation. For each
ensemble, the proportion of the training set TA was
fixed at t = 0.6 of the original training set (see Algo-
rithm 1). For each ensemble, the size of the commit-
tee was set to K = 20. For the algorithm based on
the genetic algorithm, the initial size of the committee
was set to 3K. Each numeric attribute in the training
and validation datasets was also standardised. After
the standardisation, the mean value of the attribute is
0 and its standard deviation is 1.

The β coefficient was tuned during the training
procedure using 3 CV approach. The best value
among {1, 2, · · · , 10} is chosen.

Single label classifiers were implemented using
WEKA software [13]. Multi-label classifier were im-
plemented using Mulan software [26].

The experiments were conducted using 32 multi-
label benchmark sets. The main characteristics of the
datasets are summarized in Table 1. We used datasets
from the sources abbreviated as follows:A [3], B [21]
M–[27]; W–[33]; X–[34]; Z–[37]; T–[28]; O – [18].
Some of the employed sets needed some preprocess-
ing. That is, we used multi-label multi-instance [37]
sets (sources Z and W) which were transformed to
single-instance multi-label datasets according to the
suggestion made by Zhou et al. [37]. Multi-target re-
gression sets (No 9, 31) were binarised using simple
thresholding strategy. That is if the response is greater
than 0 the resulting label is set relevant. Two of the
used datasets are synthetic ones (source T) and they
were generated using algorithm described in [28]. To
reduce the computational burden, we use only a sub-
set of original Tmc2007 and IMDB sets. Additionally,
the number of labels in Stackex datasets is reduced to
15.

The algorithms were compared in terms of 11 dif-
ferent quality criteria coming from three groups [19]:
Instance-based (Hamming, Zero-One, F1, False Dis-
covery Rate, False Negative Rate); Label-based. The
last group contains the following measures: Macro
Averaged (False Discovery Rate (FDR, 1- Precision),
False Negative Rate (FNR, 1-Recall), F1) and Micro
Averaged versions of the above-mentioned criteria.

Statistical evaluation of the results was performed
using the Wilcoxon signed-rank test [6, 32] and the
family-wise error rates were controlled using the
Holm procedure [6, 16]. For all statistical tests, the
significance level was set to α = 0.1. Additionally,
we also applied the Friedman [8] test followed by the
Nemenyi post-hoc procedure [6].

4 Results and Discussion
The results of the experimental study are presented in
Tables 2 – 1 and Figure 2. Tables 2 and 3 show full
results of the experiment. Table 1 provides results of
the statistical evaluation of the experiments. Figure 2
visualises the average ranks and provide a view of the
Nemenyi post-hoc procedure.

First, let’s analyse differences between the pro-
posed heuristic and the simple ECC ensemble. The
proposed method is tailored to optimise the macro-
averaged F1 loss so we begin with investigating
macro-averaged measures. It is easy to see that both
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Table 1: Summarised properties of the datasets em-
ployed in the experimental study. Sr denotes the
source of dataset, No. is the ordinal number of a set,
N is the number of instances, d is the dimensionality
of input space, L denotes the number of labels. LC,
LD, avIR are label cardinality, label density and aver-
age imbalance ratio respectively [19, 2].
No Name Sr N d L LC LD avIR
1 Arts1 M 7484 1733 26 1.654 .064 94.74
2 Azotobacter W 407 20 13 1.469 .113 2.225
3 Birds M 645 260 19 1.014 .053 5.407
4 Caenorhabditis W 2512 20 21 2.419 .115 2.347
5 Drosophila W 2605 20 22 2.656 .121 1.744
6 Emotions M 593 72 6 1.868 .311 1.478
7 Enron M 1702 1001 53 3.378 .064 73.95
8 Flags X 194 43 7 3.392 .485 2.255
9 Flare2 M 1066 27 3 0.209 .070 14.15
10 Genbase M 662 1186 27 1.252 .046 37.32
11 Geobacter W 379 20 11 1.264 .115 2.750
12 Haloarcula W 304 20 13 1.602 .123 2.419
13 Human X 3106 440 14 1.185 .085 15.29
14 Image M 2000 294 5 1.236 .247 1.193
15 IMDB M 3042 1001 28 1.987 .071 24.61
16 LLOG B 1460 1004 75 1.180 .016 39.27
17 Medical M 978 1449 45 1.245 .028 89.50
18 MimlImg Z 2000 135 5 1.236 .247 1.193
19 Ohsumed O 13929 1002 23 1.663 .072 7.869
20 Plant X 978 440 12 1.079 .090 6.690
21 Pyrococcus W 425 20 18 2.136 .119 2.421
22 Reutersk500 B 6000 500 103 1.462 .014 51.98
23 Saccharomyces W 3509 20 27 2.275 .084 2.077
24 Scene X 2407 294 6 1.074 .179 1.254
25 SimpleHC T 3000 30 10 1.900 .190 1.138
26 SimpleHS T 3000 30 10 2.307 .231 2.622
27 SLASHDOT B 3782 1079 22 1.181 .054 17.69
28 Stackex chem A 6961 540 15 1.010 .067 3.981
29 Stackex chess A 1675 585 15 1.137 .076 4.744
30 Tmc2007-500 M 2857 500 22 2.222 .101 17.15
31 water-quality M 1060 16 14 5.073 .362 1.767
32 yeast M 2417 103 14 4.237 .303 7.197

methods are comparable in terms of recall but the pro-
posed one is significantly better in terms of precision.
It means that the proposed method makes significantly
less false positive predictions. Consequently, under
the macro-averaged F1 loss the proposed method out-
performs the ECC ensemble. The same pattern is also
present in results related to micro-averaged measures.
However, the difference for the micro-averaged F1

measure is not significant. In contrast, under example
based measures, except the Hamming loss, there are
no significant differences between investigated meth-
ods.

The results show that the proposed heuristic pro-
vides an effective way of improving classification
quality for classifier chains ensemble. Moving the
best performing label-specific models at the begin-
ning of the chain reduces the error that propagates
along the chain. What is more, the experimental study
also showed that the Naive Bayes classifier combined
with proper data preprocessing may be effectively em-
ployed in classifier chain ensembles.

Now, let’s compare the proposed method to the
other algorithm based on the dynamic chain approach.
When we investigate the example-based criteria it is

Table 2: Full results – micro-averaged criteria. Each
row corresponds to the set-specific result under given
quality criterion.

Micro FDR Micro FNR Micro F1
No. 1 2 3 4 1 2 3 4 1 2 3 4
1 .523 .578 .636 .519 .926 .822 .923 .934 .873 .751 .873 .884
2 .513 .453 .437 .318 .956 .953 .958 .956 .922 .915 .923 .921
3 .469 .603 .541 .413 .636 .674 .633 .648 .573 .648 .596 .563
4 .462 .437 .409 .143 .845 .825 .848 .846 .761 .734 .760 .741
5 .550 .518 .546 .451 .839 .885 .868 .874 .764 .816 .797 .796
6 .392 .381 .389 .377 .279 .268 .277 .288 .340 .330 .338 .336
7 .742 .755 .777 .700 .511 .454 .517 .520 .663 .662 .695 .632
8 .256 .261 .262 .264 .210 .211 .217 .230 .234 .237 .241 .248
9 .628 .547 .640 .602 .673 .664 .691 .678 .659 .616 .674 .649
10 .215 .071 .469 .127 .443 .046 .419 .425 .351 .060 .450 .308
11 .415 .449 .458 .315 .927 .916 .938 .927 .873 .860 .891 .871
12 .303 .436 .355 .341 .874 .865 .867 .882 .790 .785 .785 .803
13 .586 .593 .592 .579 .639 .604 .620 .641 .615 .599 .607 .613
14 .574 .555 .574 .581 .308 .303 .305 .286 .473 .457 .472 .472
15 .692 .759 .724 .646 .926 .888 .907 .909 .881 .849 .863 .857
16 .971 .976 .984 .973 .654 .542 .511 .673 .947 .954 .969 .951
17 .335 .238 .415 .326 .681 .412 .686 .620 .571 .341 .596 .514
18 .482 .479 .489 .480 .455 .472 .458 .445 .469 .476 .474 .463
19 .334 .425 .340 .310 .728 .532 .728 .747 .614 .484 .615 .629
20 .553 .568 .577 .559 .844 .842 .828 .843 .771 .771 .756 .771
21 .448 .479 .530 .306 .958 .931 .933 .956 .923 .883 .883 .917
22 .876 .926 .956 .874 .570 .524 .481 .554 .808 .872 .918 .804
23 .641 .553 .522 .477 .954 .963 .960 .968 .919 .932 .927 .939
24 .402 .393 .403 .409 .198 .211 .195 .194 .315 .314 .315 .318
25 .262 .235 .254 .240 .504 .508 .503 .513 .407 .402 .404 .407
26 .410 .445 .421 .418 .781 .754 .773 .778 .681 .659 .674 .679
27 .235 .335 .239 .208 .841 .620 .834 .856 .738 .516 .728 .757
28 .437 .464 .437 .420 .837 .783 .839 .850 .748 .691 .751 .763
29 .359 .341 .348 .357 .838 .792 .834 .839 .742 .685 .736 .744
30 .389 .406 .390 .361 .316 .306 .312 .325 .355 .360 .354 .344
31 .500 .509 .503 .492 .333 .325 .350 .369 .429 .432 .437 .437
32 .364 .352 .367 .353 .344 .350 .346 .358 .355 .351 .357 .356

easy to see that the OOCC algorithm outperforms the
proposed one in terms of FDR and Hamming loss.
Those results combined with results achieved in terms
of macro and micro averaged measures shows that
the OOCC mthod seems to be too much conserva-
tive. That is, it tends to makes many false negative
predictions in comparison to the other methods. The
outstanding results for the Hamming loss are a con-
sequence of the imbalanced nature of the multi-label
data. That is, the presence of labels is relatively rare
and the prediction that contains many false negatives
may achieve inadequately hight performance under
the Hamming loss [19].

On the other hand, the average ranks clearly show
that the method based on genetic algorithm achieves
the best results in comparison to the other investi-
gated methods. The main reason is that the GA-
based approach optimises the entire ensemble struc-
ture, whereas the investigated dynamic chain meth-
ods, choose the best label order for single classifier
chain. Then the locally chosen chains are combined
into an ensemble. It gives us an important clue. That
is when we consider an algorithm for dynamic chain
order selection, we should think about a single chain
and the global structure of the entire ensemble as well.
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Figure 2: Visualisation of average ranks achieved by
algorithms and corresponding critical distances for the
Nemenyi post-hoc test. Each axis of the radar plot
corresponds to given quality criterion. The closer a
point is to the centre of the radar plot, the lower av-
erage rank is (lower is better). Black bars parallel
to criterion-specific axes denote critical difference for
the Nemenyi tests.

5 Conclusions
The main goal of this research was to provide an effec-
tive chain classifier that allows changing label order at
relatively low computational cost. We achieved it us-
ing a classifier based on the Naive Bayes approach. To
prove that the proposed method allows handling inter-
label relations in an efficient way, we proposed a sim-
ple heuristic method that determines label order that
should minimise label propagation error. Indeed, the
experimental results showed that the proposed method
is able to produce a good chain structure at a low
computational cost. However, the proposed method
of building a dynamic ensemble does not allow to
outperform the static system that optimizes the en-
tire ensemble structure. The obtained results are very
promising. We believe that there is still a room for
improvement. In our opinion, the performance of the
system may be improved if we provide better, a better
heuristic that optimises the entire ensemble in a dy-
namic way. The proposed dynamic classifier is a first
step in the process of investigating dynamic classifier
chain ensembles.

Another way of improving this idea is to build
different classifiers that would be able to change the
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Table 4: Result of statistical evaluation. Rnk stands for average rank over all datasets, Frd is the p-value obtained
using the Friedman test and Wp-i denotes the p-value associated with the Wilcoxon test that compares the i-th
algorithm against the others.

Alg. No. 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Hamming Zero-One EX FDR EX FNR

Rnk 2.453 2.672 3.031 1.844 2.516 2.141 2.969 2.375 2.844 1.969 2.906 2.281 2.562 2.031 2.531 2.875
Frd .02113 .19410 .03824 .19410

Wp-1 0.702 0.025 0.063 0.358 0.199 0.761 0.019 0.295 0.134 0.053 0.700 0.700
Wp-2 0.319 0.319 0.006 0.368 0.005 0.239 0.136 0.015
Wp-3 0.001 0.097 0.040 0.136

EX F1 Macro FDR Macro FNR Macro F1

Rnk 2.688 2.031 2.844 2.438 2.312 2.219 3.156 2.312 2.562 1.938 2.359 3.141 2.469 1.812 2.844 2.875
Frd .19410 .04402 .02113 .02113

Wp-1 0.066 0.821 0.821 1.000 0.012 1.000 0.035 0.919 0.022 0.156 0.096 0.248
Wp-2 0.017 0.112 0.031 1.000 0.174 0.002 0.003 0.022
Wp-3 0.590 0.012 0.105 0.733

Micro FDR Micro FNR Micro F1

Rnk 2.469 2.656 3.219 1.656 2.688 1.719 2.344 3.250 2.750 1.781 2.812 2.656
Frd .00027 .00029 .02242

Wp-1 1.000 0.028 0.000 0.005 0.254 0.239 0.044 0.610 1.000
Wp-2 1.000 0.008 0.052 0.000 0.002 0.044
Wp-3 0.000 0.014 1.000

chain structure without retraining the entire model.
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