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Abstract: - The present work narrates a clear logical approach to estimating Limit Cycles (LC) in 3×3 Nonlinear 
systems. The estimation of LC is done employing graphical method assuming harmonic balance approximation 
and are validated by computer simulations. The graphical method is developed using both computer graphics and 
geometric tools. The computer simulations are done by developing a suitable program with MATLAB code and 
also using the SIMULINK Toolbox of MATLAB software. Considering the structure of 3×3 nonlinear systems 
is a bit complex, the estimation of LC is done considering the frequency of LC remains the same at every point 
of the loop. Once the LC is predicted/detected in an autonomous state, the investigation explores the quenching 
of the oscillation at high frequency, ten times higher than the frequency of LC applied at the input node, which 
is normally termed a Signal Stabilization. The process of Signal Stabilization is a type of response which exhibits 
both transients and steady states. Of course, with the proper amplitude of the dither signal, the synchronizing 
frequency of the output should be the frequency of the dither signal at the steady state. However, the Signal 
Stabilization process is made faster and, in minimum time, the steady-state synchronizing value is realized 
without the transient and any ripples at steady state by a discrete signal which is termed as deadbeat approach to 
response. In this article, the Signal Stabilization with deadbeat approach has been explored analytically and is 
validated by computer simulations. 
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1 Introduction 

Exhibition of Limit Cycles in single-input and 
single-output (SISO) nonlinear (NL) systems has 
been considered to be the basic characteristics of 
instability [1-5]. For the last six decades, researchers 
have been focusing on the investigation of LC in 2×2 
nonlinear systems [6-48]. In the estimation and 
analysis of LC in SISO/2×2 nonlinear systems, the 
use of describing functions (DFs) has gained much 
importance and is well established [4, 5, 10, 13, 16, 
23, 29, 33, 49, 50, 51]. Some researchers [52, 53, 54, 
55, 56, 57] have reported their observations of the 
exhibition of LC in flow and thermodynamics, in 
cell models, in the dynamic model where the NL 
system switches between a stable LC and the stable 
equilibrium point, in an autocatalytic system, in 
Biological Oscillators and in natural system 
respectively.  

However, little literature is available where the 
prediction /investigation of LC for 3×3 nonlinear 
systems has been discussed [6, 38, 40, 41, 42, 58, 
59]. 

In the case of occurrence/exhibition of LC, it is 
essential to quench the Limit Cycling oscillations. 

Signal stabilization is the most reliable and 
established method [5, 30, 31, 46, 49, 50] to quench 
the Limit Cycling oscillations. Signal stabilization 
has also been used in [5, 30, 31, 46, 49, 50] to quench 
such oscillations in the 2×2 nonlinear systems as 
well as in the 3×3 systems [58, 59]. 

It has been observed that during the process of 
signal stabilization, the synchronization causes the 
transients to have overshoots, undershoots and even 
some ripples [58]. In such a case, it is proposed to 
achieve a near-instantaneous response to a change in 
the reference signal, effectively eliminating any 
overshoot or settling time, resulting in a very fast 
and precise output with minimal error and ripples in 
the synchronization. 

The work is presented in the following 
sequences:  

Section 1, as an introduction, covers the literature 
survey, section 2 presents the graphical method of 
estimation of LC, which has been substantiated by 
computer simulation, section 3 discusses the signal 
stabilization with deterministic signals, section 4 
proposes the Signal Stabilization with deadbeat 
approach, which aims at achieving deadbeat 
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synchronization using discrete or digital controller 
[60]. This has been illustrated through examples. 
Section 5 ends with a conclusion.   
 

2 Estimation of LC in 3x3 Nonlinear 

Systems 
The analytical expression of prediction of LC is 
complex, involved and cumbersome [6,48,49]. 
Graphical method is preferred for determination LC 
which offers insight into the problem and such 
simpler for visualization. 
 

2.1 Graphical Method: 
The normalization phase diagram method is 

followed as has been used in [46] and [6] for 2x2 and 
3x3 nonlinear systems respectively. 

A class of 3x3 nonlinear system is considered as 
shown in Fig.1. 

The three groups of normalized phase diagrams 
[6] are drawn as:  

Group1: In subsystem S1, S2 & S3: C1 & C2 are 
negative but C3 is positive  

Group2: In subsystem S1, S2 & S3: C2 & C3 are 
negative but C1 is positive 

Group3: In subsystem S1, S2 & S3: C3 & C2 are 
negative but C2 is positive 

Example 1 and 2: The linear elements in both the 
Examples are same i.e. G1(s) = 2

s(s+1)2 ; G2(s) = 
1

𝑠(𝑠+4)
 : G3(s) = 1

𝑠(𝑠+2)
  and Nonlinear elements are 

shown Fig2(a) and  Fig2(b) used in Ex. 1 and Ex. 2 
respectively.  

Fig. 2(a): Relay used in Ex. 1 

 
Fig. 2(b): Saturation NL elements used with slope k1, 

k2, k3 in Ex. 2 

In both the examples, non-memory NL elements 
are used. Considering the harmonic linearization 
concept, these NL elements are replaced by their 
respective DFs [28]. For non-memory elements, the 
DFs are real functions and it is not contributing to 
any phase angles. Only the transfer functions are 
complex functions of s (the Laplace operator). 

It is to be noted that in frequency response, only 

sinusoidal input and steady state output are 

considered, so that in the analysis & is replaced by 

jω [6]. N1, N2 & N3 are also absolute values of DFs 
representing the NL element subsystems S1, S2 & S3 
respectively. G1, G2 & G3 are the absolute values of 
transfer functions representing the linear elements of 
subsystems S1, S2 & S3 respectively. X1, X2 & X3 are 
taken as the amplitude of the concerned sinusoidal 
inputs to the NL elements. C1, C2 & C3 are taken also 
the amplitudes of sinusoidal outputs of subsystems 
S1, S2 & S3 respectively.  

For Ex. 1, the different quantities with different 
value of ω, are calculated and shown in Table 1.  

θL1 = Arg. (G1cjω) = -900-2 tan-1 (ω) 

θL2 = Arg. (G2cjω) = -900- tan-1 (𝜔

4
) 

θL3 = Arg. (G3cjω) = -900- tan-1 (𝜔

2
) 
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N2 = (11-3𝜔2)𝜔2 ± 
√(11 − 3𝜔2)𝜔4 − 8(𝜔2 + 16)(1 − 𝜔2)𝜔2  
………..   (1) 

N1 = 𝜔
2−1

8
 N2 + 9𝜔2−𝜔4

8
  …………………  (2) 

𝑋1

𝑋2
 = 

(1+𝜔2)√𝜔2+16−2𝑁2)+𝑁2
2

2𝑁1√𝜔2+16
  ………………(3) 

 𝑋1

𝑋2
 = 𝐵𝐷 𝑖

𝐴𝐷𝑖
=  √

(1−𝑢𝑖)2

(1−𝑢𝑖)2+(𝑢𝑖)2     ……………(4) 

With a particular frequency, ω three groups of 
subsystems 1,2 & 3. The Normalized Phase 
Diagrams (NPD) are presented in figure 3(a), 3(b) & 
3(c) respectively. Any group out of three is used for 
determination of LC and any other values as desired. 
 

 

 
 
 
 
 
 
 
 
 
 

 
In the light of Fig. 3(a),(b) & (c) quenching in Group 
1 depicts: X2 traces a line drawn at an angle 𝜃𝐿2  with 
the C2 (C2 = - R1 ) and X3 traces a line drawn at an 
angle 𝜃𝐿3. The intersections of two lines and the 
circle drawn having radius, r = ½ sin θL1 would 
represent possible self-sustained oscillations (LC). 
Similar case would happen with Groups 2 & 3.  
In order to estimate the LC if Group 1 is considered 
for which Table 1 shows:  𝜃𝐿1, 𝜃𝐿2, 𝜃𝐿3, r =½ sin θL1, 
centre of the circle, C (1/2, -1/2tan𝜃𝐿1), and the 
intersecting point of the two lines and the circle 
conforming to a particular value of frequency ω for 
Ex. 1. For ω = 0.701,𝑋1

𝑋2
,  calculated from Equations 

3 and 4 are matched which confirms the frequency 
of LC is 0.70 and other quantities of interest be read 
from the NPD. 
 

Table 1: Shows the θL1, θL2, θL3, r=½ sin θL1, and the 

intersection points of the two lines with the circles 

for Group 1 related to Ex. 1. 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

Fig.3(b): NPD with C1, C2 & C3 in the Group 2, 

where C2 & C3 are negative but C1 is positive 

Fig. 3(a): NPD with C1, C2 & C3 in the Group 1, 

where C1 & C2 are negative but C3 is positive 

Fig. 3(c): NPD with C1, C2 & C3 in the Group 3, 

C3 & C2 are negative but C2 is positive 

Kartik Chandra Patra, Asutosh Patnaik
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 24 Volume 10, 2025



Table 1: Phase diagrams for different ω and its resulting values of r for example 1 (Rectangular Hysteresis) 

using graphical methods 

 

(rad/

sec) 

θL1 

(degre

e) 

θL2 

(degre

e) 

θL3 

(degree) 

r=½ 
sin θL1 

units 

X1/X2 

from 

eqn.  

3 

X1/X2 

from eqn. 4 
NPD Remarks 

0.60 -151.9 -98.53 -106.70 - 0.55 - - 

 

The 
concerned 
lines and 
circle are not 
intersecting. 

0.650 -156.05 -99.23 -108 0.58 - - 

 

The 
concerned 
lines and 
circle are not 
intersecting. 

0.700 -159.98 -99.926 -109.29 -2.12 - - 

 

The 
concerned 
lines and 
circle are not 
intersecting. 

0.701 -160.06 -99.94 -109.32 -3.13 1.0 
1.02 
(matched) 

                  
 

 
              D (1,2) 

The 
concerned 
lines and 
circle are  
intersecting at 
D(1,2)  
confirming 
the 
occurrence of 
LC, =0.701 
rad/sec, 
X1=BD2=6.0 
units 
X2=AD2=6.0 
units 
X3=B’D2= 
6.3 units 
C1 = OD2 = 6 
units 
C2= C3=1unit 

0.750 -163.74 -100.62 -110.56 -1.35 - - 

 

The 
concerned 
lines and 
circle are not 
intersecting. 
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2.2 Digital Simulation  

For Ex. 1 and Ex. 2, a MATLAB code is developed 
to validate the results obtained with the graphical 
method [6]. 

Fig 4(a) shows the canonical from of Fig. 1 for the 
Ex. 1 & 2. 

Fig 4(b) shows the digital equivalent for Ex. 1 & 2. 

Ex. 1 & Ex. 2: A 3×3 system shown in Fig.1 has three 
NL elements as represented in Fig.2(a) and Fig.2(b) 
for the respective Ex.1 & Ex.2. Also the three linear 
transfer functions are given by 𝐺1(𝑠) =

2

𝑠(𝑠+1)2  ; 𝐺2(𝑠) =
2

𝑠(𝑠+4)
 𝑎𝑛𝑑 𝐺3(𝑠) =

1

𝑠(𝑠+2)
. 

Partial Fraction Expansion of G1(s), G2(s) and G3(s):  

𝐺1(𝑠) =
𝐴

𝑠
+

𝐵

𝑠 + 1
+

𝐶

(𝑠 + 1)2

=
𝐴 (𝑠 + 1)2 + 𝐵𝑠(𝑠 + 1) + 𝐶𝑠

𝑠(𝑠 + 1)2
 

𝑂𝑟
   s2(A + B) + s (2A + B + C) + A

s (s + 1)2
=

2

s(s + 1)2
 

Or A=2; B=C= -2;  

Hence G1(s) =
2

s
−

2

s + 1
−

2

(s + 1)2

∶
2

s
,

−2

s + 1
,

−2

s + 1
(

1

s + 1
) 

𝐺2(𝑠) =
1

𝑠(𝑠 + 4)
=

𝐴

𝑠
+

𝐵

(𝑠 + 4)
=

=
4𝐴 + 𝑠(𝐴 + 𝐵)

𝑠(𝑠 + 4)
 

𝑂𝑟 4𝐴 = 1: 𝐴 =
1

4
, 𝐴 + 𝐵 = 0: 𝐵 = −𝐴 = −

1

4
 

Hence G2(s) =
0.25

s
−

0.25

s + 4
 

𝐺3(𝑠) =
1

𝑠(𝑠 + 2)
=

𝐴

𝑠
+

𝐵

𝑠 + 2
=

𝐴(𝑠 + 2) + 𝐵𝑠

𝑠(𝑠 + 2)

=
2𝐴 + (𝐵 + 𝐴)𝑠

𝑠(𝑠 + 2)
 

Or 2A = 1: A =
1

2
, A + B = 0: B = −A = −

1

2
.  

Hence G3(s) =
0.5

s
—

0.5

s + 2
 

If, sampling period, T is infinitesimally small, TG(z) 
 G(s). 

Z[G)s]:  

𝐺1(𝑠): 
2

𝑠


2𝑧

𝑧 − 1
;

−2

𝑠 + 1


−2𝑧

𝑧 − 𝑒−𝑇 
;  

−2

(𝑠 + 1)2


−2𝑇𝑧 𝑒−𝑇

(𝑧 − 𝑒−𝑇)2
 

𝐺2(𝑠):
0.25

𝑠


0.25𝑧

(𝑧 − 1)
;
−0.25

𝑠 + 4


−0.25𝑧

𝑧 − 𝑒−4𝑇
; 

𝐺3(𝑠):
0.5

s


0.5𝑧

(𝑧 − 1)
;

0.5

s + 2


−0.5𝑧

𝑧 − 𝑒−2𝑇
 

From the Fig. 4(a) and 4(b) following algorithm has 
been derived:     

(1)  
OW1(z)

Y1(z)
=

2z

z − 1
⟹ 2Y1(z) =

z − 1

z
OW1(z)

= OW1(z) − z−1OW1(z) 

𝑍−1 [OW1(nT)] = 2Y1 (nT) + OW1(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(2)  
OW2(z)

Y1(z)
=

−2z

z − e−T
⟹ −2Y1(z)

=
z − e−T

z
OW2(z)

= OW2(z) − z−1e−TOW2(z) 

𝑍−1 [OW2(nT)] = -2Y1 (nT) +e−T OW2(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(3)  
OW3(z)

Y1(z)
=

−2Tze−T

(z − e−T)2
⟹ −2Tze−TY1(z)

=
(z − e−T)2

z
OW3(z)

= z∗OW3(z) − 2e−T OW3(z)

+ e−2Tz−1OW3(z) 

Or -2Te−Tz−1Y1(z)=OW3 (z) -2e−Tz−1OW3 (z) 
+ e−2Tz−2 OW3 (z) 

𝑍−1 [OW3(nT)] = - 2Te−TY1(n − 1̅̅ ̅̅ ̅̅ ̅T)+2e−T 
OW3(n − 1̅̅ ̅̅ ̅̅ ̅T) - e−2TOW3 (n − 2̅̅ ̅̅ ̅̅ ̅T) 
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(4)
𝑇𝑈1(𝑧)

𝑌2(𝑧)
=

0.25𝑧

(𝑧 − 1)
⇒ 0.25 𝑌2(𝑧)

=
𝑧 − 1

𝑧
𝑇𝑈1(𝑧) − 𝑧−1𝑇𝑈1(𝑧) 

𝑍−1[TU1(nT)] = 0.25Y2 (nT) +TU1(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(5)𝑇𝑈2(𝑧)

𝑌2(𝑧)
=

−0.25𝑧

(𝑧−e−4T)
⇒ −0.25 𝑌2(𝑧) =

𝑧−e−4T

𝑧
𝑇𝑈2(𝑧) = 𝑇𝑈2(𝑧) − 𝑧−1e−4T𝑇𝑈2(𝑧) 

𝑍−1[TU2(nT)] = -0.25Y2 (nT) + e−4TTU2(n − 1̅̅ ̅̅ ̅̅ ̅T) 

(6)𝑇𝑉1(𝑧)

𝑌3(𝑧)
=

0.5𝑧

(𝑧−1)
⇒ 0.5 𝑌3(𝑧) =

𝑧−1

𝑧
𝑇𝑉1(𝑧) =

𝑇𝑉1(𝑧) − 𝑧−1𝑇𝑉1(𝑧) 

𝑍−1 [TV1 (nT)] =0.5Y3 (n T) +TV1(n − 1̅̅ ̅̅ ̅̅ ̅T) 

Fig. 4(a):  Canonical form of Fig. 1 for Ex.1 & 2 

 

 

 
 

Fig. 4(b): The Digital equivalent of Fig. 1 for Ex. 1 

& 2 

(7)𝑇𝑉2(𝑧)

𝑌3(𝑧)
=

−0.5𝑧

(𝑧−e−2T)
⇒ −0.5 𝑌3(𝑧) =

𝑧−e−2T

𝑧
𝑇𝑉2(𝑧) = 𝑇𝑉2(𝑧) − 𝑧−1 ∗ 𝐴𝐾2 ∗ 𝑇𝑉2(𝑧) 

𝑍−1[TV2(nT)] = -0.5Y3 (n T) + AK2* TV2(n − 1̅̅ ̅̅ ̅̅ ̅T) 

Let us take(n − 1̅̅ ̅̅ ̅̅ ̅T) is the zeroth instant; nT is the first 
instant, so we can write:  

OW1(n − 1̅̅ ̅̅ ̅̅ ̅T) = OW1NOW1N; OW1 (n T) = 
OW1N1; OW2(n − 1̅̅ ̅̅ ̅̅ ̅T) = OW2NOW2N; OW2 
(n T) = OW2N1 

OW3(n − 2̅̅ ̅̅ ̅̅ ̅T) = OW3N (-1)OW3NN; OW3 
(n − 1̅̅ ̅̅ ̅̅ ̅T) = OW3N OW3N ; OW3 (nT)=OW3N1 

Now C1 (nT) = OWN1 = T∗ [OW1N1 + OW2N1 + 
OW3N1] = T∗ [OW1 (nT) +OW2 (nT) + OW3 (nT)] 

=T∗[2Y1 (nT) + OW1N-2Y1 (nT)+ AK∗OW2N– 
2∗T∗ AK1 ∗  OY1N + 2∗AK1∗OW3N - AK2∗OW3 
NN] =OWN1=C1 
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Similarly,  

TU1(n − 1̅̅ ̅̅ ̅̅ ̅T) = TU1N  TU1N; TU1 (nT) = 
TU1N1, TU2(n − 1̅̅ ̅̅ ̅̅ ̅T) = TU2N= TU2N; TU2 (nT) 
= TU2N1 

Now C2 (nT) = TUN1 = T*[TU1N1+TU2N1] 
=T*[TU1 (nT) + TU2 (nT)] = T* [0.25 Y2 (n T) + 
TU1N – 0.25Y2 (nT) + AK3∗TU2N] = TUN1 = C2 

Similarly, 

TV1(n − 1̅̅ ̅̅ ̅̅ ̅T) = TV1N  TV1N; TV1 (n T) = 
TV1N1 

TV2(n − 1̅̅ ̅̅ ̅̅ ̅T) = TV2N  TV2N; TV2 (n T) = 
TV2N1 

Now C3 (n T) = TVN1 = T*[TV1N1 + TV2N1] = 
T*[TV1 (n T) + TV2 (n T)] 

  = T*[0.5Y3 (n T) + TV1N-0.5Y3 (n 
T) +AK2∗ TV2N] = TVN1 = C3 

Next Run: 

 R1=ORN1=C3 – C2 =TVN1 – TUN1 

 R2 = TRN1 = C1 – C3 = OWN1 – TVN1 

 R3 = THRN1= C2 – C1 = TUN1 – OWN1 

X1 = OXN1 = ORN1 – OWN1, OYN1 = OF (OXN1); 
X2 = TXN1 = TRN1 – TUN1, TYN1 = TF (TXN1) 

X3 = THXN1 = THRN1 – TVN1, THYN1 = THF 
(THXN1) 

Using the above algorithm, a suitable program has 
been developed with MATLAB code. The results of 
which in image form shown in Fig.6 (a) and 6(b) for 
Ex. 1 and 2 respectively. The numerical results are 
shown in Table 2a and 2b for Ex. 1 and 2 
respectively. 

The numerical results are presented in Table 2(a) and 
Table 2(b) for Ex. 1 and 2 respectively. 

2.3 Application of SIMULINK Toolbox of 

MATLAB:  

Ex. 1 and 2 are revisited again.  

Fig.5 (a) and (b) represent the simulation diagram for use 
of SIMULINK to investigate corresponding to the Ex. 1 & 
2 respectively.  

The SIMULINK Toolbox is used to determine X1, X2, X3, 
C1, C2 & C3 for both the Ex. 1 and 2 and the results are 
compared with the graphical method and digital 
simulation. 

Fig. 5(a) and 5(b) represents the simulation diagram using 
SIMULINK Tool Box for prediction of LC in case of Ex. 
1 and 2 respectively. 

Fig. 5(a): Simulation block using SIMULINK for 

getting the solution of the Ex. 1 

Fig. 5(b): Simulation block using SIMULINK for 

getting the solution of the Ex. 2. 
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The results thus obtained are entered in Tab. 2 (a) & 
Tab. 2 (b) for Ex. 1 and 2 respectively. 

 

 

2.4 Comparison of Results 

Figure 6(a) and 6(b) show the Images (Results) 
obtained from digital simulation (developed 
programme) and that of using SIMULINK tool box 
for Ex. 1 and 2 respectively.  

Table 2(a): Results obtained using different methods for Ex.1 (Ideal Relay). 

Sl. 

No. 
Method C1 C2 C3 X1 X2 X3  

1 Graphical 6.0 1.0 1.0 6.0 6.0 6.3 0.70 

2 Digital Simulation 4.83 0.74 0.95 4.72 4.91 5.23 0.70 

3 
Using SIMULINK 
TOOL BOX OF 

MATLAB 
5.95 1.01 0.96 4.84 5.12 5.62 0.70 

Table.2(b): Results obtained using different methods for Ex.2 (Saturation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sl. 

No 
Method C1 C2 C3 X1 X2 X3  

1 Digital Simulation 4.345 1.06 1.06 4.464 4.581 4.762 0.628 

2 

Use of  
SIMULINK 

TOOL BOX OF 
MATLAB 

4.30 1.05 1.05 4.425 4.534 4.74 0.6283 
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Fig. 6 (a): Images obtained using Digital Simulation and SIMULINK for C1, C2, C3, X1, X2, X3 of Ex. 1. 

Fig. 6 (b): Images obtained using Digital Simulation and SIMULINK for C1, C2, C3, X1, X2, X3 of Ex. 2. 
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3. Quenching of LC with the method of 

Signal Stabilization in 3x3 Non-linear 

Systems:  

3.1.  Use of Deterministic Dither Signal 

The concept of Signal Stabilization is narrated in 2x2 
systems, as in [5,30,46,49,50]: In the event of 
exhibition of LC in 2x2 non-linear systems under 
autonomous condition, the quenching/extinction of 
LC can be done through injection of suitable high 
frequency dither signal, preferably 10 times more 
than the limit cycling frequency ωs. The process of 
quenching such oscillations is termed signal 
stabilization or forced oscillation, which has also 
been described appropriately in [30,33,46] for 2x2 
systems and in [6] for 3x3 systems.     

The quenching of limit cycling oscillations are 
achieved by the method of signal stabilization. This 
has been illustrated by injecting a high frequency 
signal 5 sin ωft where, ω = 7.5 rad/sec and 6.5 rad/sec 
shown in Fig. 7(a) and 7(b) for Ex. 1 & 2 
respectively. The corresponding results/images are 
shown in Fig. 8(a) and 8(b) for Ex. 1 & 2 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1. Signal Stabilization with deadbeat 

approach 

The process of signal stabilization is a type of 
response which exhibits both transients and steady 
states. Of course, with the proper amplitude of the 
dither signal, the synchronizing frequency should be 
the frequency of the dither signal at the steady state. 
However, the signal stabilization process is made 
faster and, in the minimum time, the steady-state 
synchronized value is determined without the 
transients and any steady-state error by a discrete 
signal which is termed as edged deadbeat approach 
of response 

A digital system with all poles at origin and in Z-
domain at z = 0 is termed as deadbeat [60]. 

 

 

 

 

 

Fig. 7 (a): Equivalent block diagram of Fig1 for 

stabilizing the signal using SIMULINK Tool Box for 

Ex. 1. 

Fig. 7 (b): Equivalent block diagram of Fig1 for 

stabilizing the signal using SIMULINK Tool Box 

for Ex. 2. 
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Fig. 8(a): Stabilized (Synchronized) results with Deterministic signal for Ex. 1. The forcing signal 

(Stabilizing signal) is U = 5 sinf t (f = 7.5 rad / sec). 

Fig. 8(b): Stabilized (Synchronized) results with Deterministic signal for Ex. 2. The forcing signal 

(Stabilizing signal) is U = 5 sinf t (f = 6.5 rad / sec). 

C1ss, ω = 6.58 rad/sec 

C2ss, ω = 6.59 rad/sec 

C3ss, ω = 6.68 rad/sec 

X1ss, ω = 6.53 rad/sec 

X2ss, ω = 6.65 rad/sec 

X3ss, ω = 6.43 rad/sec 
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In design of a digital controller taking a simple model 
as shown in Fig. 9: 

Fig. 9: A simple model of a Digital Controller with 

Unity Feedback 

M(z) = Closed loop transfer function = =
𝐶(𝑧)

𝑅(𝑧)
=

1

𝑍𝑛 
in order to have deadbeat response [61]. 

where n=No. of excess poles than zeroes. 

In the signal stabilization the input is B sin ωft.  

Z[B sin ωft] = B z sin ω𝑓T

𝑧2−2𝑧 cos ω𝑓T+1
, here n=1.  

Hence 1

𝑍𝑛 = 1

𝑍1 =  𝑧−1. In the used of SIMULINK 
Tool Box a 𝑧−1 signal to be multiplied with the 
stabilized / synchronized output as shown in Fig. 
10(a) and 10(b) for Ex. 1 & 2 respectively and 
corresponding results with deadbeat response has 
been shown in Fig. 11(a) & 11(b) for Ex. 1 & 2 
respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

G
p

D(
z)

+   
–   

R
(z

C
(z

Fig. 10(b): Relevant Block Diagram of Fig1 for 

signal stabilization with deadbeat response using 

SIMULINK Tool Box for Ex. 2 

Fig. 10(a): Relevant Block Diagram of Fig. 1 for 

signal stabilization with deadbeat response using 

SIMULINK Tool Box for Ex. 1. 
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Fig. 11 (a): Stabilized with deadbeat signals using SIMULINK Tool Box for Example 1 

Fig. 11 (b): Stabilized with deadbeat signals using SIMULINK Tool Box for Example 2 
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4. Conclusion 

It is always an approximation in Digital Control due 
to the sampling process and also an apprehension of 
an alias if there is any deviation in the sampling 
theorem in its execution / implementation. Still, the 
application of Digital Control is preferred because it 
provides a deadbeat response which is only possible 
in discrete systems that offer transient free, with no 
steady state error and a much faster response. This 
enables real-time applications due to their faster and 
error-free response. 

Signal Stabilization with deadbeat response offered 
an exciting result in accuracy and fastness. The 
steady state was observed almost immediately after 
starting all the runs. Under steady state, the 
synchronized frequency was matched with the 
forcing signal frequency. In the present work, the 
novelty has been shown through digital simulation, 
which has also been predicted analytically. Signal 
Stabilization supported by dead beat response has 
never been attempted elsewhere, even in SISO 
systems. Because of its fastness in response, it can 
also be tried with real-time application in the future 
for any multivariable nonlinear systems where LC 
exhibits.    

In comparison, of Fig. 8 (both (a) & (b)) with Fig. 11 
(both (a) & (b)): Transient free response seen in Fig. 
11 saves about 40 seconds (present in Fig. 8), which 
is a remarkable saving of time in response. This 
facilitates the adaption of such digital controllers in 
real-time applications. 
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