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Abstract: - The energy dispatch presents high variability due to the high increase due to the stochasticity of 

renewable resources. The deviations from unforeseen events increase the marginal cost of power generation, thus 

improving cost estimation It turns out to be essential. The estimation of uncertainty costs by the energy use wind 

presents an impact significant due to its stochasticity. This study aims to validate the uncertainty cost function 

for wind energy systems using Monte Carlo simulations, numerical integration, and analytical methods, where 

the power output is related to wind speed by (P = k∙ V3). Wind speed is modeled using the Weibull distribution, 

and uncertainty costs are computed for overestimation and underestimation scenarios. Numerical integration, and 

closed-form analytical expressions are formulated based on the lower incomplete gamma function. Monte Carlo 

simulations are used to generate wind speed scenarios, while numerical integration and analytical formulations 

are employed to derive expected costs. The mean uncertainty cost obtained from Monte Carlo simulations 

matches the results from numerical integration and analytical methods, validating the proposed approach. The 

study demonstrates the reliability of the uncertainty cost function for wind energy systems, providing a robust 

framework for managing uncertainty in renewable energy integration.  This framework allows system operators 

to accurately quantify uncertainty costs, thereby improving dispatch decisions. Relative errors between methods 

ranged from 0.008% to 0.042%. Other methods evaluated include Kalman filtering and neural network wind 

forecasting, which significantly reduced costs for two low-power scheduled dispatch cases: 1 MW and 10 MW, 

to 50.694% and 62.285%. 

 

Key-Words: - Uncertainty Cost Functions, Cubic Wind Speed-Power Relationships, Controllable Energy 

Systems, Monte Carlo, Wind Energy, Stochastic Modeling. 

 

1 Introduction 
Economic dispatch of wind-integrated power 

systems suffers from high uncertainty costs due to the 

cubic wind–power law and wind variability. This 

paper addresses the lack of a fully validated 

uncertainty-cost function for Weibull-distributed 

wind speeds. The incorporation of wind energy into 

electrical power systems inevitably introduces a 

degree of uncertainty, primarily stemming from the 

inherent intermittency of wind resources [1,14]. This 

intermittency directly affects the predictability and 

reliability of power generation, posing significant 

challenges for economic dispatch and overall energy 

management strategies. Electrical power systems that 

integrate renewable energy sources such as solar or 

wind energy, must contend with the inherent 

uncertainty regarding the availability of injected or 

demanded power. This uncertainty subsequently 

leads to uncertainty costs, which must be carefully 

considered within stochastic economic dispatch 

models to ensure accurate energy resource allocation 

and system management [1,14]. The stochastic nature 

of wind turbine speed introduces uncertainties that 

can significantly affect the economic dispatch of 

electric power [2,15]. These uncertainties necessitate 

the development and implementation of robust 

methodologies for quantifying and mitigating the 

associated costs, thereby ensuring the stability and 
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economic viability of power grids with substantial 

renewable energy penetration. 

Accurate modelling and quantification of 

uncertainty costs are essential for the effective 

management of energy resources and the reliable 

operation of power grids [1, 14]. By accurately 

assessing the economic impact of wind power 

variability, system operators can make informed 

decisions regarding resource allocation, grid 

infrastructure investments, and the implementation of 

advanced control strategies. The estimation of these 

costs is crucial for proper management of energy 

resources and accurate allocation of the amount of 

energy available for the system [1, 14]. Furthermore, 

the availability of reliable uncertainty cost functions 

facilitates the development of robust economic 

dispatch models that can effectively balance the 

trade-offs between cost minimization and system 

reliability, thereby ensuring the long-term 

sustainability of wind-integrated power systems [2-

7].  

Uncertainty cost formulations have been analyzed 

to contrast the real power generation failures from 

overestimation due to penalties due to failure to 

supply agreed upon and underestimation due to 

losses due to not taking advantage of opportunities 

[7, 18]. In literature, some reports are made of studies 

for the power dispatch wind with techniques 

inadequate, which bring network effects such as 

increase in the frequency and magnitude of 

fluctuations [8, 20]. Therefore, the need to use 

reliable forecasting techniques, which allow carry out 

a sophisticated management of these resources [15-

19]. 

This article proposes a technique for energy 

estimation of wind power, which provides an 

approach to uncertainty cost estimation associated 

with the formulation of distribution functions that 

allow the characterization of air speed [20-21]. The 

formulation incorporates properties statistics of the 

office air formulation economical with air speed. 

This formulation allows improved market 

competitiveness economically in those that require 

efficiency computational, since the stochasticity of 

the power supply is represented by Monte Carlo 

simulations, allowing an answer competitiveness 

with scenarios with uncertainty wind power. The 

presented article has the following contributions. 

1. Derive closed-form uncertainty cost 

expressions for P = k V³ under Weibull wind. 

2. Validate these expressions against numerical 

integration and Monte Carlo simulation. 

3. Quantify computational performance for 

different power ratings. 

4. Analysis of the Kalman filtering method and 

neural network wind forecasting to estimate 

uncertainty costs due to overestimation and 

underestimation. 

 

The article is organized with the following Sections. 

Section 2 presents a review of the state of the art in 

cost estimation under uncertainty in wind energy 

systems. Section 3 describes the methodology 

proposed for this research. Section 4 presents the 

results obtained from the simulation and its 

corresponding validation. Finally, Section 5 presents 

the conclusions reached and proposes future 

research. 

 

2 State of the art 
Seminal work incorporating both over- and 

underestimation penalties for wind using Weibull 

wind speed into economic dispatch. Cost terms 

explicitly split, numerical scenario-based 

optimization used, setting conceptual framework for 

risk-aware wind integration in power systems [5, 14-

15].  Shi (2010) Extended distance with explicit 

reserve and environmental cost modeling, tied to 

uncertainty in wind output [4]. Adopted similar 

probability-based approaches, using evolutionary 

programming for optimal power flow [2,16-19]. Shi 

(2012) systematized optimal power flow solutions 

with wind, refined cost function approach 

incorporating opportunity costs of shortfall or 

surplus, and further emphasized Monte Carlo 

scenario generation driven by Weibull Wind 

probability distribution functions [21-22]. 

Rapid adoption of metaheuristic algorithms 

(Cuckoo Search, Harmony Search, Aquila 

Optimizer) to cope with increased problem 

complexity due to wind uncertainty [1, 3, 5, 6, 7]. 

Monte Carlo scenario generation with Weibull wind 

modeled as standard; focus on solver performance 

and integration of cost penalty functions into optimal 

power flow. Cost models largely follow [5], with 

minor variations in presenting or scaling under and 

overestimation penalties. Extensive benchmarking 

on IEEE test systems. 

Yan (2017) Introduced statistical learning for 

improved wind forecasting, defined quadratic and 

probability-of-shortfall-based cost metrics, used 

probabilistic wind power output but did not reach 

closed-form gamma- function results [8]. Arevalo 

(2019) shifted towards analytical closed-form 

formulas for expected uncertainty costs (though 

mainly Rayleigh for wind), and crucially validated 

them with Monte Carlo simulations, directly 

connecting analytics to simulation [9]. Reyes (2020) 

Extended [9], derived marginal and minimum 
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uncertainty cost functions for multiple renewables 

[10]. Cross- comparison of analytical approaches and 

Monte Carlo simulation; introduced concept of 

uncertainty cost function and marginal uncertainty 

cost for wind. 

In literature, not single paper fully validates an 

uncertainty cost function for wind power, assuming 

P = k·V³ and Weibull- distributed wind speeds, using 

all three methods: Monte Carlo simulation, numerical 

integration, and closed-form analytical expressions 

based on the gamma function. However, partially 

relevant studies do exist. optimal power flow and 

economic dispatch papers employ Monte Carlo 

methods with Weibull distributions and the cubic 

power law [1–7], while only [9-14] provide partial 

analytical cost derivations, primarily for The 

Rayleigh case, supported by Monte Carlo validation. 

 

3 Proposed Methodology 
Describes the Weibull distribution parameters 

(scale c and shape k) and their role in modeling wind 

speed variability. Wind speed (V) is modeled using 

the Weibull distribution, characterized by scale 

parameter (c = 10) and shape parameter (k = 2). The 

probability density function of the Weibull 

distribution is given by [9, 10]: 

 

𝑓(𝜈)  =  
𝑘

𝑐
·  (

𝜈

𝑐
)

𝑘 − 1

·  exp ( − (
𝜈

𝑐
)

𝑘

)               (1) 

 

𝑣 is the wind speed, 𝑘is the shape parameter, and 

𝑐is the scale parameter. Explain the relationship 𝑃 =
𝑘 · 𝑉³and its significance in wind energy systems, the 

constant used in the study is k = 1/100. 

𝑃 = 𝑘 · 𝑉³                                                                  (2) 
 

According to these values, the programmed power 

and the number of Monte Carlo simulations are 

established. To generate 100,000 stochastic 

scenarios, we have: generate wind speeds, compute 

power outputs, and calculate overestimation and 

underestimation costs. For each scenario i, the wind 

speed 𝑣𝑖is generated from the Weibull distribution, 

and the power output ( 𝑊𝑖) is computed as: 

𝑊(𝜈) =
𝜈3

100
                                                              (3) 

 

Present the numerical integration approach for 

computing expected overestimation and 

underestimation costs. Explain the integration limits 

and the use of the Weibull probability density 

function. 

𝐶𝑂 = {𝑊𝑠 − 𝑊𝑖 if 𝑊𝑖 𝑊𝑠 ≥  𝑊𝑖, 0 otherwise,
𝐶𝑈 = { 𝑊𝑖 −  𝑊𝑠𝑖𝑓 𝑊𝑖 >  𝑊𝑠, 0 otherwise.     (4) 
 

 

3.1 Neural Network Forecasting of Wind 

Speed 
To forecast wind speed, it is employed a feedforward 

neural network trained on historical wind data using 

a sliding window of fixed length. Given a time, series 

of wind speeds 𝑉 =  {𝑣1, 𝑣2, … , 𝑣𝑇}, the network 

learns the mapping. 

𝑣𝑡+1 =  𝑓(𝑣𝑡 , 𝑣𝑡−1, … , 𝑣𝑡−𝑛+1)             (5) 

where 𝑣𝑡+1 is the forecasted wind speed at time 

𝑡 − 𝑛 + 1, and 𝑛 is the window size. The network 

function 𝑓 is defined as: 

𝑓(𝑋) =  𝜙(2)(𝑾(𝟐)𝜙(1)(𝑾(𝟏)𝒙 + 𝒃(𝟏)) + 𝒃(𝟐)) 
(6) 

where 𝐖(𝟏), 𝐖(𝟐)  are weight matrices for the 

input and output layers, 𝐛(𝟏), 𝐛(𝟐) are bias vectors, 

and 𝜙(𝟏), 𝜙(𝟐) are activation functions. 

 

Kalman Filtering for Wind Speed Estimation 

To improve prediction accuracy, it is applied a 

Kalman filter to correct the neural network output 

based on sensor measurements. The system is 

modelled as a linear dynamic process: 

𝑥𝑡 =  𝐴𝑥𝑡−1 +  𝑤𝑡, 𝑤𝑡 ∼ 𝑁(0, 𝑄), 
𝑧𝑡 =  𝐻𝑥𝑡−1 +  𝑣𝑡 , 𝑣𝑡 ∼ 𝑁(0, 𝑅),                         (7) 

where 𝑥𝑡 is the true wind speed at time 𝑡, 𝑧𝑡 is the 

noisy measurement, and 𝐴, 𝐻 are system matrices 

(usually 𝐴 =  𝐻 =  1). 

At each time step, the filter proceeds through 

prediction and update phases. The following is the 

prediction step. 

�̂�𝑡│𝑡−1 =  𝐴�̂�𝑡−1│𝑡−1,                   (8) 

𝑃𝑡│𝑡−1 =  𝐴𝑃𝑡−1│𝑡−1𝐴⊤ + 𝑄,                          (9) 

The following is the update step. 

𝐾𝑡 =
𝑃

𝑡│𝑡−1
𝐻⊤

𝐻𝑃
𝑡│𝑡−1

𝐻⊤+ 𝑅
,                           (10) 

�̂�𝑡│𝑡 =  �̂�𝑡│𝑡−1 + 𝐾𝑡 (𝑧𝑡 − 𝐻�̂�𝑡│𝑡−1),               (11) 

𝑃
𝑡│𝑡

=  (𝐼 − 𝐾𝑡𝐻)𝑃
𝑡│𝑡−1

.                  (12) 
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The corrected estimate 𝑥
𝑡│𝑡

 is then used in the 

Monte Carlo simulation to compute the expected 

penalty cost.  

 

3.2 Numerical integration 
Present the numerical integration approach for 

computing expected overestimation and 

underestimation costs. Explain the integration limits 

and the use of the Weibull probability density 

function. 

Expected Costs via Numerical Integration, is 

calculated the expected overestimation cost and 

expected underestimation cost. 

𝐶𝑂
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

=  ∫ 𝐶𝑂(𝜈) ·  𝑓(𝜈)𝑑𝜈
∞

0
                         (13) 

𝐶𝑈
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =  ∫ 𝐶𝑈(𝜈) ·  𝑓(𝜈)𝑑𝜈

∞

0
                         (14) 

The total expected cost can be calculated as 

𝐶𝑡𝑜𝑡𝑎𝑙
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  =  𝐶𝑂

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  +  𝐶𝑈
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

             (15) 

where 

𝐶𝑂(𝜈) = (𝑊𝑠 − 𝑊(𝜈)) · 𝐼(𝑊(𝜈) < 𝑊𝑠)        (16) 

𝐶𝑈(𝜈) = (𝑊(𝜈) − 𝑊𝑠) · 𝐼(𝑊(𝜈) > 𝑊𝑠)        (17) 
 

3.2.1 Underestimation costs 

The steps to determine cost underestimation are 

described below, 𝐼(. )which is the indicator of 

the function. 

𝐶𝑈
expected

=  ∫ (𝑊(𝑣) −  𝑊𝑠) ⋅  𝑓(𝑣)  𝑑𝑣
∞

𝑣𝑠
    (18) 

The integral is split into two parts, 

𝐶𝑈
expected

= ∫ 𝑊(𝑣). 𝑓(𝑣) 𝑑𝑣
∞

𝑣𝑠

− ⋯ 

… 𝑊𝑠 ∫ 𝑓(𝑣) 𝑑𝑣
∞

𝑣𝑠
                                             (19) 

Both terms are resolved for cost underestimation. 

𝐼1 =  ∫ 𝑊(𝑣) ·  𝑓(𝑣)𝑑𝑣
∞

𝑣𝑠
,                            (20) 

 𝐼2 =  ∫ 𝑓(𝑣)𝑑𝑣
∞

𝑣𝑠
                                          (21) 

 

Replacing both terms, we obtain the following 

expression.  

𝐶𝑈
expected

=  𝐼1 − 𝑊𝑠 · 𝐼2                                   (22) 

Substitute 𝑊(𝜈) =
𝜈3

100
 and 𝑓(𝑣) 

𝐼1 =
𝑐3

100
·  Γ (

𝑘 + 3

𝑘
, 𝑢𝑠)                                   (23) 

where 𝑢𝑠 =  (
𝑣𝑠

𝑐
)

𝑘
, the integral 𝐼2 is 

𝐼2 = exp(− 𝑢𝑠)                                             (24) 
 

The expected underestimation cost is 

𝐶𝑈
expected

=
𝑐3

100
· Γ (

𝑘 +  3

𝑘
, 𝑢𝑠) − 𝑊𝑠 · … 

… exp(−𝑢𝑠)                                                   (25) 
3.2.2 Overestimation costs 

The steps for determining cost overestimation 

are described below. The overestimation cost 

CO(𝑣) es given by: 

𝐶𝑂
expected

= ∫ (𝑊𝑠 −  𝑊(𝑣)) · 𝑓(𝑣)
∞

0
𝑑𝑣        (26) 

where 𝑓(𝑣)is the Weibull, the integral is split into 

two parts with the probability distribution functions. 

𝐶𝑂
expected

= ∫ 𝑊𝑠 · 𝑓(𝑣) · 𝐼(𝑊(𝑣) <  𝑊𝑠)𝑑𝑣

∞

0

… 

… − ∫ 𝑊(𝑣) · 𝑓(𝑣) · 𝐼(𝑊(𝑣) <  𝑊𝑠)𝑑𝑣
∞

0
     (27) 

The two terms are presented from the two 

expressions shown 

𝐼1 =  ∫ 𝑊𝑠 ·  𝑓(𝑣) ·  𝐼(𝑊(𝑣) <  𝑊𝑠)𝑑𝑣
∞

0

, (28) 

 𝐼2 = ∫ 𝑊(𝑣) ·  𝑓(𝑣) ·  𝐼(𝑊(𝑣) <  𝑊𝑠)𝑑𝑣
∞

0
 (29) 

Therefore, the expression for overestimation costs 

is obtained from the two terms. 

𝐶𝑂
expected

 =  𝐼1  −  𝐼2                                           (30) 

The integral 𝐼1simplifies to: 

𝐼1 =  𝑊𝑠 ·  ∫ 𝑓(𝑣)𝑑𝑣
𝑣𝑠

0
                                           (31) 

where the expression can be represented by the 

function 

𝐹(𝑣𝑠)  =  1 −  exp (− (
𝑣𝑠

𝑐
)

𝑘

)                              (32) 

The integral 𝐼1simplifies to: 
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𝐼1 =  𝑊𝑠 ·  ∫ 𝑓(𝑣)𝑑𝑣
𝑣𝑠

0
                                          (33) 

The integral 𝐼2 es: 

𝐼2 =  ∫ 𝑊(𝑣) ·  𝑓(𝑣)𝑑𝑣
𝑣𝑠

0
                                       (34) 

Substitute 𝑊(𝑣) =
𝑣3

100
 and f( 𝑣): 

𝐼2 =  
𝑘

100 · 𝑐𝑘 ∫ 𝑣𝑘+2 ·  exp (− (
𝑣

𝑐
)

𝑘

) 𝑑𝑣
𝑣𝑠

0
      (35) 

 

Let 𝑢 =  (
𝑣

𝑐
)

𝑘
, then 𝑑𝑢 =  

𝑘

𝑐
 ·  (

𝑣

𝑐
)

𝑘 − 1
𝑑𝑣, 

and𝑣 =  𝑐 ·  𝑢
1

𝑘 

𝐼2 =  
𝑐3

100
∫ 𝑢

𝑘 + 3

𝑘−1
𝑢𝑠

0
 ·  𝑒−𝑢𝑑𝑢                                  (36) 

 

where 𝑢𝑠 = (
𝑣𝑠

𝑐
)

𝑘
.The integral is expressed in 

terms of the lower incomplete gamma function: 

𝐼2  =  
𝑐3

100
 ·  𝛾 (

𝑘 + 3

𝑘
, 𝑢𝑠)                                          (37) 

where 𝛾(𝑎, 𝑥)is the lower incomplete gamma 

function. The expected overestimation cost es: 

𝐶𝑂
expected

 =  𝐼1  −  𝐼2                                             (38) 

substitute 𝐼1and 𝐼2: 

𝐶𝑂
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝑊𝑠 · (1 − exp(−𝑢𝑠)) − ⋯ 

… (
𝑐3

100
) · 𝛾 (

𝑘 + 3

𝑘
, 𝑢𝑠)                                   (39) 

using the relationship between the gamma 

function and the incomplete gamma function: 

 

𝛾(𝑎, 𝑥)  =  𝛤(𝑎)  ·  𝑔𝑎𝑚𝑚𝑎𝑖𝑛𝑐(𝑥, 𝑎, ′𝑙𝑜𝑤𝑒𝑟′)     (40) 

 

where gammainc(𝑥, 𝑎, ′𝑙𝑜𝑤𝑒𝑟′)is the regularized 

lower incomplete gamma function. Thus: 

𝐼2 =
𝑐3

100
 ·  Γ (

𝑘 + 3

𝑘
) ·

𝑔𝑎𝑚𝑚𝑎𝑖𝑛𝑐 (𝑢𝑠,
𝑘 + 3

𝑘
, ′𝑙𝑜𝑤𝑒𝑟′)                           (41) 

substitute 𝐼1and 𝐼2: 

𝐶𝑂
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =  𝑊𝑠 ·  (1 −  exp(−𝑢𝑠)) … 

… −  (
𝑐3

100
) ·  𝛾 (

𝑘 + 3

𝑘
, 𝑢𝑠)                                      (42) 

 

Using the relationship between the gamma 

function and the incomplete gamma function: 

𝛾(𝑎, 𝑥) = 𝛤(𝑎) · 𝑔𝑎𝑚𝑚𝑎𝑖𝑛𝑐(𝑥, 𝑎,′ 𝑙𝑜𝑤𝑒𝑟′)(43) 
where gammainc (𝑥, 𝑎, ′𝑙𝑜𝑤𝑒𝑟′) is the 

regularized lower incomplete gamma function. Thus: 

𝐼2 =
𝑐3

100
· Γ (

𝑘 +  3

𝑘
) · … 

…  𝑔𝑎𝑚𝑚𝑎𝑖𝑛𝑐 (𝑢𝑠,
𝑘 + 3

𝑘
, ′𝑙𝑜𝑤𝑒𝑟′)                 (44) 

The final analytical expression for the expected 

overestimation cost is: 

𝐶𝑂
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝑊𝑠 · (1 − 𝑒𝑥𝑝(−𝑢𝑠)) − ⋯ 

𝑐3

100
· Γ (

𝑘 +  3

𝑘
) · … 

… 𝑔𝑎𝑚𝑚𝑎𝑖𝑛𝑐 (𝑢𝑠,
𝑘 + 3

𝑘
, ′𝑙𝑜𝑤𝑒𝑟′)              (45) 

 

4 Problem Solution 
The analysis is performed for four case studies, each 

of which presents the following values. The studies 

are evaluated for 𝑊𝑠,1=1 MW, 𝑊𝑠,2=10 MW, 

𝑊𝑠,3=35 MW, and 𝑊𝑠,4=50 MW. The results are 

presented below. Table 1 shows that simulation times 

range from 4.26 to 6.18 s, and total expected costs 

range from $12.49 to $39.84/MW. 

Table 1. Simulation time and expected value. 

Description 𝑊𝑠,1 𝑊𝑠,2 𝑊𝑠,3 𝑊𝑠,4 

Elapsed time (s) 6.18 4.41 4.26 4.55 

Total expected 

cost ($/MW) 

12.4

9 

11.9 27.1 39.84 

 

Table 2 shows that using the numerical integration 

method the total expected estimate is made cost 

ranging from $11.9 to $39.88/MW, costs are also 

separated into two types, underestimation costs and 

overestimation costs. 

 

 

 

Table 2. Simulation of total expected cost. 

Description 𝑊𝑠,1 𝑊𝑠,2 𝑊𝑠,3 𝑊𝑠,4 

Total 

expected 

overestimati

on cost 

($/MW) 

0.12 4.32 24.4 38.29 
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Total 

expected 

underestimat

ion cost 

($/MW) 

12.41 7.61 2.69 1.59 

+Total 

expected cost 

($/MW) 

12.53 11.93 27.09 

 

39.88 

 

The values found by Monte Carlo simulations show 

the expected costs according to the four cases 

analysed, the costs range between 11,925 and 39,877 

according to the total expected cost. 

 

Table 3. Analytical Costs Development. 

Description 𝑊𝑠,1 𝑊𝑠,2 𝑊𝑠,3 𝑊𝑠,4 

Total 

expected 

cost 

($/MW) 

12.533 11.925 27.094 39.877 

 

Costs with neural network forecasting and Kalman 

filter show a variation between 4.4975 and 42.79 for 

the power case studies. 

 

Table 4. Kalman filtering and neural network wind 

forecasting. 

Description 𝑊𝑠,1 𝑊𝑠,2 𝑊𝑠,3 𝑊𝑠,4 

Total expected 

cost ($/MW) 

6.18 4.49

8 

27.699 42.79 

 

The relative error is calculated as the difference in 

absolute value between the numerical integration and 

the analytical cost calculations, divided by the 

percentage of the analytical calculations. These 

values range from 0.008% to 0.042%, demonstrating 

that the method used offers outstanding 

approximations compared to the analytical method. 

The method combining the Kalman filter and the 

neural network for wind forecasting presents higher 

error rates than Monte Carlo simulations. However, 

when evaluating the uncertainty costs due to 

overestimation and underestimation, these costs are 

reduced by 50.694% and 62.285% for scheduled 

powers of 𝑊𝑠,1 = 1 MW and 𝑊𝑠,2 = 10 MW, 

respectively. The cost reduction is beneficial for 

power dispatch. In contrast, for scheduled powers of 

𝑊𝑠,3=35 MW and 𝑊𝑠,4 = 50 MW, uncertainty costs 

increase. 

 

Table 5. Estimation of relative error 

Description 𝑊𝑠,1 𝑊𝑠,2 𝑊𝑠,3 𝑊𝑠,4 

Relative 

error with 

analytical 

costs (%) 0.024% 0.042% 0.015% 0.008% 

Relative 

error with 

Kalman 

filtering 

(%) 50.694% 62.285% 2.232% 7.305% 

 

Figure 1 presents histograms describing the 

distribution of wind speed, generated power, and 

costs associated with estimation errors for a given 

𝑊𝑠,1 = 1MW capacity. The first histogram shows 

that most wind speeds are between 5 and 15 m/s, 

while the second indicates that power generation is 

usually low, concentrated below 50 MW. This 

relationship reflects the direct dependence between 

wind speed and power generation. The last two 

histograms illustrate the economic costs due to 

estimation errors. Underestimating generation can 

lead to significant costs, with most scenarios below 

$50, although some reach up to $400. In contrast, 

overestimating generates much lower costs, generally 

less than $1. This highlights that the economic impact 

of underestimating wind generation is considerably 

more critical than that of overestimating it. 

 

 
Figure 1. Histograms of costs, power and wind speed. 

 

Figure 2, Figure 3, Figure 4 and Figure 5 show the 

frequency of uncertainty costs used for 𝑊𝑠,1=1 MW, 

𝑊𝑠,2=10 MW, 𝑊𝑠,3=35 MW, and 𝑊𝑠,4=50 MW. In 

all cases, penalty costs are evaluated based on 

multiple scenarios. For all the capacities analysed, 

the vast majority of scenarios present low penalty 

costs, typically less than $50. This indicates that, 

regardless of the system power, prediction errors 

generally do not generate large costs. However, as the 
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nominal power increases, especially in the 50 MW 

case, a slight dispersion towards higher costs is 

observed, although these cases remain rare. This 

suggests that, although larger systems have the 

potential to incur higher uncertainty costs, the general 

behaviour is still dominated by low penalties. 

 

 
Figure 2. Uncertainty cost function for different 

powers at 1 MW wind speed. 
 

 
Figure 3. Uncertainty cost function for different 

powers at 10 MW wind speed. 

 

 
Figure 4. Uncertainty cost function for different 

powers at 35 MW wind speed. 

 

 
Figure 5. Uncertainty cost function for different 

powers at 50 MW wind speed. 
 

4 Conclusions 
The study is validated for the use of Monte Carlo 

simulations, numerical integration, and analytical 

methods to calculate uncertainty costs in wind power 

systems. The power-to-wind speed relationship, 

expressed as 𝑃 = 𝑘 ⋅  𝑉3, is suitable for modeling 

power output, and the Weibull distribution is 

effective in representing wind speed variability. The 

results obtained from Monte Carlo simulations are in 

good agreement with the results derived from 

numerical integration and analytical methods, 

confirming the accuracy of the proposed approach. 

The case studies conducted for different wind 

generation capacity levels of 1 MW, 10 MW, 35 

MW, and 50 MW show that the simulation times are 

reasonably fast, ranging between 4.26 s and 6.18 s. 

This suggests that the proposed model is efficient in 

terms of computational time, which is crucial for its 

practical application in assessing uncertainty costs in 

wind power systems. The calculation of the relative 

error between numerical integration and analytical 

cost development showed exceptional results, 

ranging from 0.008% to 0.042%. This suggests that 

the method used is highly accurate and a reliable tool 

for estimating uncertainty costs in wind energy 

systems, with minimal deviation from the analytical 

results. The method combining the Kalman filter and 

neural network for wind forecasting shows higher 

error rates compared to Monte Carlo simulations. 

However, when assessing the uncertainty costs due to 

overestimation and underestimation, these costs are 

reduced by 50.694% and 62.285% for scheduled 

power values of  

𝑊𝑠,1=1 MW and 𝑊𝑠,2 = 10 MW, respectively. This 

reduction in costs proves beneficial for power 

dispatch. In contrast, for scheduled power values of 

𝑊𝑠,3 = 35 MW and 𝑊𝑠,4=50MW, uncertainty costs 

increase. This study provides a solid foundation for 

the implementation of uncertainty models in wind 

energy systems, facilitating informed cost decisions 
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and investment planning in this type of renewable 

energy. Validating the methods and verifying their 

accuracy increases confidence in the large-scale 

application of these models. 
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