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Abstract: In this paper we significantly extend previous work on methods for ensuring that control system behavior is invariant
with respect to units chosen for critical state variables when intermediate operations require solutions to underdetermined
or overdetermined systems of equations. For example, least-squares methods are intrinsically sensitive to whether lengths
are defined in units of, e.g., centimeters or meters. Prior work has argued that many practical control systems have such
unrecognized unit dependencies and are thus vulnerable to exhibiting unexpected behaviors in some situations. Here we
extend the underlying theory of unit-consistent generalized inverses (UC inverse) to the more common practical situation in
which some state variables have unit dependencies while others require consistency with respect to rigid rotations. We also
extend the theory of UC inverse by formally proving that their consistency guarantees are preserved under Kronecker (tensor)
products, which is a critical property for using and analyzing complex control systems defined as compositions of simpler
subsystems.

Key–Words: Control Systems, Generalized Matrix Inverse, Inverse Problems, Kronecker product, Linear Estimation, Linear
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1 Introduction

There has been a renewed recognition of the importance of
preserving critical consistency conditions when designing
control systems, e.g., one should expect the behavior of a
system to be the same regardless of whether its length or
distance variables are defined consistently in units of me-
ters or centimeters. This is important because if the behav-
ior is sensitive to the choice of units then its reliability can
only be assessed with respect to a specific scenario or set of
operating assumptions. For example, depending on the for-
mulation of the system it may exhibit one behavior when
initialized at a 2-dimensional location (0, 0) and a very dif-
ferent behavior if initialized at location (1000, 1000) when
clearly the choice of coordinate frame and origin should
be entirely irrelevant to the system’s performance. It is
a fundamental design principle that sensitivity to arbitrary
application-specific details should be minimized whenever
possible. In general, if a system is defined and performs
well in some particular Euclidean coordinate frame then it
should be expected to perform identically if that coordinate
frame is arbitrarily rotated or scaled. Similarly, the per-
formance of the system should not be affected if its key
parameters are all consistently defined in metric units or in
imperial units.

The Moore-Penrose pseudoinverse [1,2] (MP inverse),
A−P , is defined for any m × n matrix A and satisfies the
fundamental generalized inverse properties as well as the
following for any conformant unitary/orthonormal matrices

U and V :
(UAV )−P = V ∗A−PU∗ (1)

The MP inverse is applicable to problems defined in a Eu-
clidean state space for which the behavior of the system of
interest should be invariant with respect to arbitrary rota-
tions of the coordinate frame.

In other contexts consistency must be preserved with
respect to changes of units, e.g., from imperial to metric or
from meters to kilometers, rather than with respect to ro-
tations of a global coordinate frame. For example, in the
case of two state variables representing voltage and pres-
sure, respectively, no physical meaning or interpretation
can be given to a “rotation” of this 2-dimensional subspace
to one in which units of voltage and pressure are mixed. In
other words, the relative effect of a rigid rotation applied
to the two variables implicitly assumes they are defined in
the same units, when of course the choice of units for volt-
age and pressure are fundamentally incommensurate. This
means the result of the rotation will be strongly sensitive
to the arbitrary choice of units on the two variables in a
way that has no meaning with respect to the application of
interest.

This kind of unit consistency requires a generalized in-
verse A−U that satisfies

(DAE)−U = E−1A−UD−1 (2)

where the diagonal matrix D represents units on variables
in one space and the diagonal matrix E represents different
units for the same variables in a different space. The MP
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Inverse does not satisfy Eq. (2):

(DAE)−P

6

= E−1A−PD−1 (3)

which implies that the MP inverse should not be applied
to systems in which unit consistency must be preserved.
More generally, this implies that operations involving the
minimization of a squared-error (i.e., rotation-invariant `2-
norm) criterion should not be applied when unit consis-
tency must be preserved. As will be discussed, this largely
unrecognized fact means that many practical engineering
systems suffer from unrecognized sensitivities to the choice
of units on critical state variables. Such sensitivities not
only can lead to suboptimal performance but also to unex-
pected instabilities and potentially serious failure modes.

In previous works [3, 4] it was shown that the UC in-
verse A−P developed in [5, 6] guarantees controls that are
unit invariant. In this paper we consider the more gen-
eral problem in which the kinematics of a robotic system
include a subset of variables that require unit consistency
while others require consistency with respect to rigid rota-
tions. Specifically, we demonstrate in the case of a rover
that preserving the appropriate consistency conditions for
all state variables ensures behavior that is invariant to the
choice of units on length variables and with respect to ro-
tations of sets of variables that are jointly defined within a
Cartesian coordinate frame. Although we demonstrate the
effectiveness of the approach with these two specific con-
sistency conditions, the principal conclusion to be drawn is
that the approach does in fact generalize as theory predicts
to ensure invariant system behavior with respect to an arbi-
trary mix of consistency conditions assumed across subsets
of the system’s state variables.

After demonstrating an application of the general ap-
proach to the rover problem, we proceed to remedy a cur-
rent deficiency in the theory of the UC inverse by formally
proving that its properties are preserved under Kronecker
(tensor) products.

2 Generalized Consistency Consid-
erations for Multi-dimension Prob-
lem

In this section we examine how the UC inverse can be com-
bined with the MP inverse, and even other generalized in-
verses (e.g., the Drazin inverse [7–9] or other similarity-
consistent inverse [10]), to construct solutions to inverse
problems when there is a mix of variables involving differ-
ent consistency requirements. In addition to variables that
require unit consistency to be preserved, a complex real-
world system may also involve variables defined in a Carte-
sian coordinate frame that require consistency with respect
to rotations of that coordinate frame. In other words, the
behavior of the control system must be invariant with re-
spect to changes of units for some variables and invariant

with respect to rotations for other variables. The UC in-
verse is applicable in one case while the MP inverse is ap-
plicable in the other, but what is needed for such a system
is a generalized inverse that will guarantee unit consistency
for some variables and rotation consistency for others. If
we assume1 that the first m variables require unit consis-
tency, and the remaining n variables require rotation con-
sistency, then the transformation matrix to be inverted can
be block-partitioned as

A =

[
W X
Y Z

]
}m
} n︸︷︷︸

m

︸︷︷︸
n

(4)

It has been shown [6] that the mixed inverse can be ob-
tained from this block-partitioned form as

A−M =[
(W −XZ -PY )

-U −W -UX(Z − YW -UX)
-P

−Z -PY (W −XZ -PY )
-U

(Z − YW -UX)
-P

]
(5)

Consider the control of a planetary rover with a robotic
arm as displayed in Figure 1, which includes two projected
views in directions D1 and D2. The x-y coordinate is
shown as frame F . The frame F ′, which is an orthogonal
transpose of frame F by θ′, will be considered later. The
rover is free to move in any direction on planar terrain, and
its Cartesian position coordinates in this plane are (x1, y1).
The part B can rotate and can also ascend/descend2. In ad-
dition, the arm can elongate within a fixed range, but it can-
not rotate in the vertical plane. Thus there are 5 degrees of
freedom for the design, denoted as q = [θ1, l, x1, y1, z1]

T ,
where (x1, y1, z1) is the position coordinates of part B.

From the geometry relations, the position of tip-point
PA is given as PA = [x, y, z, 0, 0]T ,

x = x1 + l · sin θ0 · cos θ1 (6)

y = y1 + l · sin θ0 · sin θ1 (7)

z = z1 − l · cos θ0 (8)

We can then generate the Jacobian matrix for ~v = Jq̇ as

J =


−l · sin θ0 sin θ1 sin θ0 cos θ1 1 0 0
l · sin θ0 cos θ1 sin θ0 sin θ1 0 1 0

0 − cos θ0 0 0 1
0 0 0 0 0
0 0 0 0 0


The initial states are set to be θ1 = 45◦ and l = 1.0m,

the constant angle θ0 = 45◦. The target velocity of the
1The ordering of the variables is arbitrary so there is no loss of gen-

erality in assuming they are permuted so that the UC variables come first
and the rotation-consistent variables come next.

2The part B can be thought of as an extendible arm for taking a soil or
rock sample.
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(a)

(b)

(c)

Figure 1: Rover with an extendable arm. The rover is free
to move on a plane, body part B can ascend/descend or
rotate, and the arm can be extended. The two projected
views, D1 andD2, show the structure of the arm. θ0 = 45◦

is a fixed angle. The coordinate frame F ′ is a rotation of
the original frame F by an angle of θ′.

tip-point is ~v = [2, 0,−1, 0, 0]m/s. Since the system has
redundant degrees of freedom and therefore J is singular,
q̇ = J −̃1~v has to be solved with a general inverse (e.g.
MP inverse, UC inverse, or mixed inverse). For the un-
known variables in q̇, [θ̇1, l̇] have incommensurate units,
and [ẋ1, ẏ1, ż1] are defined in a common Euclidean space.
Thus the Jacobian matrix can be partitioned as

W =

[
−l · sin θ0 sin θ1 sin θ0 cos θ1
l · sin θ0 cos θ1 sin θ0 sin θ1

]
, X =

[
1 0 0
0 1 0

]

Y =

0 − cos θ0
0 0
0 0

 , Z =

0 0 1
0 0 0
0 0 0


Now the mixed inverse can be used to find the solution

for q̇ using equation 5. We initially use meters as the length
unit and F as the coordinate frame. We will then consider
a change of length units from meters to centimeters and a
coordinate frame rotation from F to F ′ by a rotation angle
of θ′ = 30◦. Given c = 100 as the scale factor to con-
vert from meters to centimeters, the governing equation for
the centimeter and rotated case, ~vcm,F ′ = Jcm,F ′ q̇cm,F ′ ,
can be expressed as a diagonal transformation of the meter
case, ~vm,F = Jm,F q̇m,F , as

c cos(θ′), −c sin(θ′), 0, 0, 0
c sin(θ′), c cos(θ′), 0, 0, 0

0, 0, c, 0, 0
0, 0, 0, c, 0
0, 0, 0, 0, c

 · ~vm,F

=


cos(θ′), − sin(θ′), 0, 0, 0
sin(θ′), cos(θ′), 0, 0, 0

0, 0, 1, 0, 0
0, 0, 0, 1, 0
0, 0, 0, 0, 1

 · Jm,F

·


c, 0, 0, 0, 0
0, 1, 0, 0, 0
0, 0, 1, 0, 0
0, 0, 0, 1, 0
0, 0, 0, 0, 1

 · q̇cm,F ′

This shows the block of the matrix requiring rotation con-
sistency and the block of variables defined in incommen-
surate units. We then test the three possible approaches to
computing the controls: using the MP inverse alone; using
the UC inverse alone; and using the mixed inverse obtained
from equation 5. The solutions for q̇ from the three ap-
proaches are displayed in table 1 for t = 0s. The column
headings give the unit/coordinate frame in which each test
was performed but the results are all given in (converted
to) a common coordinate frame for comparison purposes.
As can be seen, the mixed inverse is the only approach that
produces identical results regardless of coordinate-system
changes. For the other approaches, it can be seen that when
the controls are evaluated with the MP inverse, it gener-
ates the same results when different coordinate frames are
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Table 1: Inverse results. Joint velocities q̇ =
[θ̇1(rad/s), l̇(m/s), ẋ1(m/s), ẏ1(m/s), ż1(m/s)]

T ,
solved with MP inverse, UC inverse, and Mixed inverse ap-
proaches.

Length unit(m) Length unit(cm) Length unit(cm)
Coordinate(F ) Coordinate(F ) Coordinate(F ′)

MP inv q̇ =


−0.6854
0.8536

1.1963

−0.0498
−0.3964

 q̇ =


−1.8179
0.8536

0.5734

−0.5731
−0.3964

 q̇ =


−1.8179
0.8536

0.5734

−0.5731
−0.3964



UC inv q̇ =


−1.2121
1.3536

0.6566

−0.0101
−0.0429

 q̇ =


−1.2121
1.3536

0.6566

−0.0101
−0.0429

 q̇ =


−1.4545
1.5690

0.3676

−0.1943
−0.1095



Mixed inv q̇ =


−1.8182
2.7071

−0.3536
−0.3536
0.9142

 q̇ =


−1.8182
2.7071

−0.3536
−0.3536
0.9142

 q̇ =


−1.8182
2.7071

−0.3536
−0.3536
0.9142



used but not when length units are changed. When the UC
inverse is solely applied to the entire system it generates in-
variant solutions when units are changed but not when rota-
tions are applied. Therefore, it can be concluded that solely
using either the UC inverse or MP inverse alone will not
produce reliable results. Instead, the mixed inverse is re-
quired to ensure that the behavior of the system is invariant
with respect to defined changes of units and coordinates.

A transient simulation was performed for 0.1s to fur-
ther observe the full control process. Figure 2(a) displays
variation of θ1 for the three approaches. It shows that the
angular velocity calculated over time by the MP inverse is
not affected by a rotation of the coordinate frame from F to
F ′ but is affected by a change of the length unit from meters
to centimeters; and the reverse is true for the UC inverse.
By contrast, the angular velocity from the mixed inverse is
identical over time in all cases. In summary, for this system
involving variables with different consistency requirements
the mixed inverse yields reliable control while the alter-
natives do not. This demonstrates the necessity of using
the appropriate inverse to satisfy all applicable consistency
requirements. In the next section we proceed to formally
prove that the approach demonstrated in this section can be
rigorously applied to composite systems defined as tensor
products of simpler subsystems.

3 UC Inverse and the Kronecker
Product

The Kronecker product is often used for the mathematical
representation of a complex system in terms of simpler sub-
systems [11]. In this section we show that the UC inverse

(a)

(b)

(c)

Figure 2: Joint velocity for θ1 solved with different gen-
eralized inverse approaches. (a) MP inverse. (b) UC in-
verse. (c) mixed inverse. Only the mixed inverse yields
the same results over the 0.1s for the transformations in all
three cases.
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satisfies the same useful properties as the MP inverse with
respect to the Kronecker product.

The Kronecker product is a non-commutative tensor
operator, usually denoted as ⊗, which takes an m× n ma-
trix and a p× q matrix and constructs a composition of the
two matrices to produce a higher-dimensionalmp×nq ma-
trix. The definition of the Kronecker product of Am×n and
Bp×q is

A⊗B =


a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB

...
...

. . .
...

am,1B am,2B · · · am,nB


Thus each ai,jB is a of p×q matrix. For example, assuming
A is 2×2 andB is 3×2 (i.e.,m = n = 2 and p = 3, n = 2)
then

A⊗B =


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2
a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2
a1,1b3,1 a1,1b3,2 a1,2b3,1 a1,2b3,2
a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2
a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2
a2,1b3,1 a2,1b3,2 a2,2b3,1 a2,2b3,2


The Kronecker product is important in engineering design
because it can be used to elegantly and efficiently represent
complex systems as compositions of simpler subsystems.
It finds applications in control systems, signal processing,
image processing, semidefinite programming, and quantum
computing [11–17]. It is bilinear and associative:

A⊗ (B + C) = A⊗B +A⊗ C (9)

(A+B)⊗ C = A⊗ C +B ⊗ C (10)

(kA)⊗B = A⊗ (kB) = k(A⊗B) (11)

(A⊗B)⊗ C = A⊗ (B ⊗ C) (12)

and it satisfies the following with respect to the transpose
(and conjugate-transpose) operator

(A⊗B)T = AT ⊗BT (13)

For matrices A,B,C and D for which the products AC
and BD are valid, the following mixed-product property
(so-called because it involves both standard matrix multi-
plication and the Kronecker product) can be shown to hold:

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (14)

If matrices A and B are orthogonal then A ⊗ B is also
orthogonal:

(A⊗B)T (A⊗B) = I (15)

It is also the case that

(A⊗B)−1 = A−1 ⊗B−1 (16)

and more generally

(A1⊗A2⊗· · ·⊗An)
−1 = A−11 ⊗A

−1
2 ⊗· · ·⊗A−1n (17)

The last two properties are necessary to construct a matrix
to transform from one Kronecker-constructed matrix to an-
other Kronecker-constructed matrix, which is required for
performing controls of the kinds of robotic and mechani-
cal systems of interest in this paper, but we also require the
ability to apply generalized matrix inverses in the case of
singular matrices. It has been proven that the MP inverse
satisfies [18]:

(A⊗B)−P = A−P ⊗B−P (18)

and more generally:

(A1⊗A2⊗· · ·⊗An)
−P = A−P1 ⊗A−P2 ⊗· · ·⊗A−Pn (19)

but it has not yet been established that these two results also
hold for the UC inverse. They must be proven in order to
show that the UC inverse can be used for general control
systems represented using Kronecker products. We begin
by proving that the Kronecker product of two diagonal ma-
trices is also diagonal. Given diagonal matrices A and B

A =


a1,1 0 · · · 0
0 a2,2 · · · 0
...

...
. . .

...
0 0 · · · amA,mA

 ,

B =


b1,1 0 0 · · · 0
0 b2,2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · bmB ,mB


the Kronecker product

C = A⊗B =


a1,1B 0 · · · 0
0 a2,2B · · · 0
...

...
. . .

...
0 0 · · · amA,mA

B


can be seen to also be diagonal because every nonzero ele-
ment of A is at position [i, i] (1 ≤ i ≤ m), every nonzero
element of B is at position [j, j] (1 ≤ j ≤ p), and every
nonzero element ofC is at position [i(p−1)+j, i(p−1)+j].
Or more simply, every diagonal block of C is a diagonal
matrix and therefore C must be a diagonal matrix.

With these basic properties in mind, we have the pre-
requisites to prove the UC inverse property. First consider
the base case,

A−U1 ⊗A−U2 = (A1 ⊗A2)
−U (20)

Now take a decomposition of matrix A, where for nota-
tional clarity we now use D and E instead of DA and EA:

A = D · S · E (21)

and the UC generalized inverse of A is defined as:

A−U = E−1 · S−P ·D−1 (22)

Bo Zhang, Jeffrey Uhlmann
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 5 Volume 5, 2020



Applying this to the left hand side of equation 20 gives

A−U1 ⊗A−U2

= (E−11 · S−P1 ·D−11 )⊗ (E−12 · S−P2 ·D−12 ) (23)

= (E−11 ⊗ E−12 )(S−P1 ⊗ S−P2 )(D−11 ⊗D
−1
2 )(24)

= (E1 ⊗ E2)
−1(S−P1 ⊗ S−P2 )(D1 ⊗D2)

−1 (25)

Using the fact that S−P1 ⊗ S−P2 = (S1 ⊗ S2)
−P gives

A−U1 ⊗A−U2 = (E1 ⊗ E2)
−1(S1 ⊗ S2)

−P (D1 ⊗D2)
−1

(26)
and the right-hand side of equation 20 is

(A1 ⊗A2)
−U = [(D1 · S1 · E1)⊗ (D2 · S2 · E2)]

−U(27)

= [(D1 ⊗D2)(S1 ⊗ S2)(E1 ⊗ E2)]
−U (28)

where D1 ⊗ D2 and E1 ⊗ E2 are diagonal matrices. In
order to apply equation 22, we need to prove the rows and
columns of S1 ⊗ S2 satisfy that the product is ±1. Let S1

and S2 be represented as

S1 =


a1,1 a1,2 · · · a1,n1

a2,1 a2,2 · · · a2,n1

...
...

. . .
...

am1,1 am1,2 · · · am1,n1



S2 =


b1,1 b1,2 · · · b1,n2

b2,1 b2,2 · · · b2,n2

...
...

. . .
...

bm2,1 bm2,2 · · · bm2,n2


where for any 1 ≤ i1 ≤ m1, 1 ≤ j1 ≤ n1, 1 ≤ i2 ≤ m2,
1 ≤ j2 ≤ m2, the matrix elements of S1 and S2 have the
following property:

∏
ai1,k = ±1 (ai1,k 6= 0) (29)∏
ak,j1 = ±1 (ak,j1 6= 0) (30)∏
bi2,k = ±1 (bi2,k 6= 0) (31)∏
bk,j2 = ±1 (bk,j2 6= 0) (32)

For every row i1(m2 − 1) + i2 of

S1 ⊗ S2 =


a1,1S2 a1,2S2 · · · a1,n1

S2

a2,1S2 a2,2S2 · · · a2,n1
S2

...
...

. . .
...

am1,1S2 am1,2S2 · · · am1,n1
S2


the product of its nonzero elements is (when ai1,k1

6=
0, bi2,k2

6= 0) ∏
(ai1,k1(

∏
bi2,k2)) (33)

=
∏

(ai1,k1
(±1)) (34)

=
∏

(ai1,k1
)
∏

(±1) (35)

=
∏

(±1) (36)

= ±1. (37)

The same holds analogously for every column of S1 ⊗ S2,
so equation 22 can be applied to equation 28 to obtain

[(D1 ⊗D2)(S1 ⊗ S2)(E1 ⊗ E2)]
−U

= (E1 ⊗ E2)
−1(S1 ⊗ S2)

−P (D1 ⊗D2)
−1 (38)

and from equation 26 the following theorem can be
concluded:

Theorem 1: A−U1 ⊗A−U2 = (A1 ⊗A2)
−U .

We now show that Theorem 1 can be used as the base
case for a mathematical induction proof of the general case
involving matrices A1...An. Given

(A1⊗A2⊗· · ·⊗An)
−U = A−U1 ⊗A−U2 ⊗· · ·⊗A−Un (39)

it is required to show

(A1⊗A2⊗ · · ·⊗An+1)
−U = A−U1 ⊗A−U2 ⊗ · · ·⊗A−Un+1

(40)
To simplify the equation, let B = A1 ⊗ A2 ⊗ · · · ⊗ An.
Then

(A1 ⊗A2 ⊗ · · · ⊗An+1)
−U = (B ⊗An+1)

−U (41)

A−U1 ⊗A−U2 ⊗ · · · ⊗A−Un+1 = B−U ⊗A−Un+1. (42)

Applying Theorem 1 while Letting A1 = B and A2 =
An+1 we obtain

(B ⊗An+1)
−U = B−U ⊗A−Un+1 (43)

from which we can expand to obtain the desired final result:

Theorem 2:
(A1⊗A2⊗ · · ·⊗An+1)

−U = A−U1 ⊗A−U2 ⊗ · · ·⊗A−Un+1

Theorems 1 and 2 complete the set of UC inverse prop-
erties necessary to allow it to be used in place of the MP
inverse in mechanical and robotic systems whenever unit
consistency is required.

4 Discussion
It has previously been demonstrated that the UC inverse
does in fact permit unit consistency to be rigorously pre-
served in a practical system, thus corroborating theoreti-
cal predictions. In many practical systems, however, there
is a mix of consistency conditions that must be satisfied
for different subsets of state variables. Most commonly,
some variables demand unit consistency, i.e., system be-
havior should be invariant with respect to the choice of
units on those variables, while other variables demand rota-
tional consistency, i.e., system behavior should be invariant
with respect to rotations of the Cartesian coordinate frame
in which they are jointly defined.
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In this paper, we demonstrated in a practical example
that invariant system behavior can be guaranteed in accor-
dance with theory in the case when different subsets of state
variables must satisfy different consistency conditions. It is
important to emphasize that although we examined a spe-
cific case involving a mix of unit-consistent and rotation-
consistent state variables, the general approach is agnostic
to the particular consistency conditions that are enforced,
i.e., we could have chosen two different conditions or in-
cluded different conditions for additional subsets of state
variables and the same invariant behavior should be ex-
pected.

We also provided a formal proof that the unit-
consistency properties of the UC inverse are preserved un-
der applications of the Kronecker product. With this we be-
lieve the theory of consistent inverses is now largely com-
plete.
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