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Abstract: - In this paper, the robust trajectory tracking control problem for a dynamical model of a mobile robot 
with three omnidirectional wheels is considered. The motion of the robot is carried out by means of three 
independent electric motors. Based on the Lyapunov vector function method, a new discrete controller is 
presented which takes into account the presence of sliding friction forces and parametric variations. The 
estimations of the region of initial deviations and the unknown part of the inertia matrix are obtained. 
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1 Introduction 

Mobile robots with omnidirectional wheels have an 
advantage over the mobile robots with differential 
drive wheels. This is a high maneuverability of a 
mobile robot which is ensured by the design features 
of the wheels, on which the rollers are fixed with the 
axes of rotation lying in the plane of the wheels. 
Due to the presence of omni-wheels, it is possible to 
move the robot in any direction without a prior turn. 
In [1–4] the kinematic and dynamic models 
describing the motions of a robot with omni-wheels 
were constructed as well as the stabilization 
problem of stationary motions was considered.  In 
[5, 6] the control problems for kinematic models of 
robots were considered.   The robust controller 
applied to dynamic models should ensure that the 
robot follows a given trajectory and the closed-loop 
system of the error dynamics is asymptotically 
stable in the context of incomplete information 
about the mass-inertial parameters of the system and 
the action of sliding friction forces along the surface 
of the wheels.  In [7, 8] a nonlinear model of a four-
wheeled mobile robot was constructed taking into 
account the action of dry and viscous friction forces, 
and a predictive model controller was proposed. In 
[9] in order to solve the trajectory tracking control 
problem of a four-wheeled robot, a controller was 
obtained for a dynamic model taking into account a 
sliding friction based on the method of calculated 
torque also called the feedback linearization 
method. Such a controller contains the torques of all 
forces acting on the system, the term which is the 
product of the system’s inertia matrix and program 
acceleration, and the PD controller, which makes it 

possible to obtain a linear asymptotically stable 
stationary error dynamic system. Note that the use 
of this method also requires the complete 
information on the parameters of the dynamic model 
of the system.  

The topical issues are the development of 
methods and algorithms for controlling mobile 
robots with omni-wheels based on dynamic models 
with unknown mass-inertial characteristics, taking 
into account the existing sliding friction forces. 
These methods and algorithms should be robust, i.e. 
they have to provide a solution to the control 
problem for a whole class of dynamic robot models 
whose parameters satisfy the specified conditions. 
In [10] an adaptive control law was constructed 
based on the backstepping design procedure using 
the Lyapunov scalar function which solves the 
trajectory tracking control problem of the three-
wheeled mobile robot with unknown mass-inertial 
parameters under the acting of sliding friction 
forces. Note that the relay controller obtained in 
[10] has a complicated structure and requires the on-
line calculations of the estimates of unknown 
parameters.   

In this paper, a discrete controller is constructed 
that ensures the stabilization of the non-stationary 
program motion of a mobile robot with three omni-
wheels under the condition that the sliding friction 
forces act and the platform mass is inaccurately 
known. Based on the comparison method with the 
Lyapunov vector function, constraints on the system 
parameters and the estimation of the region of initial 
deviations are obtained.  The results of numerical 
simulation confirming the theoretical calculations 
are presented. 
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2 Problem Formulation 
Consider a model of a robot with three omni-
wheels, moving on a horizontal surface under the 
action of the moments developed by three DC 
motors installed in the axles of the wheels (Fig. 1).  
Independent control of the rotation of each of the 
three wheels leads to the fact that inevitably there is 
a sliding friction along the surface of the movement 
of the wheels, which must be taken into account 
when building a dynamic model of the robot. When 
the omni-wheel moves the sliding friction arises 
both in the direction along the wheel surface and 
perpendicular to it due to the slipping of the rollers. 

 

 
 

Fig. 1: The model of an omni-wheeled mobile 
robot 

Equations (1) with inaccurately known mass-
inertial parameters can be written in the following 
form: 
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where T
1 2 3( , , )u u u u is the vector of control 

torques;  m , I , and dm are the known components 
of the mass-inertial parameters of the system,  
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0m  is the mass of the robot; zI is the momentum of 
inertia of the robot relative to the vertical axis 

passing through the center of mass; R  is the wheel 
radius; L  is the distance from the center of mass of 
the robot to the center of the wheel; n  is the gear 
ratio; 0J  is the total momentum of inertia of the 
actuator, gearbox, and wheel relative to the rotor 
axis of the electric motor; aR  is the resistance in the 

motor circuit;  2k  is the motor torque constant; 3k  is 

the constant of electromotive force;  μ T  is the 
coefficient of sliding friction arising in the direction 
of the plane of the wheel; μ F  is the coefficient of 
sliding friction arising in the direction perpendicular 
to the wheel plane due to the rotation of the rollers; 

m  and I  are the unknown components of the 
mass of the platform and its momentum of inertia, 
respectively satisfying the inequalities: 0| |m m   , 

0| |I I   , where 0m m  , 0I I  .  

 Let there exist three functions 

0 0 0ξ ( ), η ( ), ψ ( )t t t   bounded and twice continuously 

differentiable for all 0t  , and let the positive 
constants 1

maxξ , 1
maxη ,  1

maxψ , 2
maxξ , 2

maxη , and  2
maxψ  

exist such that for all 0t   the following 
inequalities hold: 
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Consider the formulation of the trajectory 
tracking control problem. Let the reference 
trajectory be given by  

0 0 0ξ ξ ( ), η η ( ), ψ ψ ( )t t t                 (3) 

We introduce the errors:  

1 0 2 0 3 0ξ ξ ( ), η η ( ), ψ ψ ( )x t x t x t       (4) 

The problem consists in both the finding the 
feedback controller 

1 1 1 2 3 1 2 3
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and the indicating the constraints on the system 
parameters and trajectories under which the 
relations are satisfied 

lim ( ) 0, 1,2,3,i
t

x t i


    

if the initial values 1 0 2 0 3 0( ), ( ), ( )x t x t x t  and 

1 0 2 0 3 0( ), ( ), ( )x t x t x t& & &  belong to some given 
neighborhood of the zero point 

1 2 3 1 2 3 0x x x x x x     & & & . 
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3 Problem Solution 

To solve the trajectory tracking control problem, we 
consider the following controller with a relay 
function: 

 
 
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where ν 0, μ 0 ( 1,2), σ 0 ( 1,2,3)i ji j          are 

some positive reals. 

Theorem 1.  Let some positive reals 1δ 0 ,  2δ 0 , 

ν 1, μ 0 ( 1,2)i i     , σ 1,2,3)j j =   exist such 

that the following inequalities hold: 
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 Then, the controller (7) solves the trajectory 
tracking control problem of the system (2), i.e. the 
closed-loop system is asymptotically stable, if the 
set of the initial errors 

1 2 3 1 2 3(0), (0), (0), (0), (0), (0)x x x x x x& & &       (11) 

satisfies the following inequalities: 
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Proof.  Let introduce the variables: 
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Then, the system (2) can be written as follows: 
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Choose the Lyapunov vector function 
candidate 1 2 3 1 2 3V V( , , , , , )x x x z z z ,  1 2V ( , )TV V  
such as follows  
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The right-hand time derivative of the Lyapunov 
vector function candidate (15) satisfies the 
following inequalities: 
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Consider the behavior of the Lyapunov vector 
function along the solution of system (14), 
satisfying the initial condition (12), which, given the 
notation (13), has the form: 
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If inequalities (8) - (10) are fulfilled, then we 
obtain the estimate:  
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From the inequalities (17) it follows that there is 
a time moment * 0t   such that for all *t t  the 
following inequalities hold   
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From inequalities (18), we obtain an 
exponentially stable comparison system 

1 1 2 2
1 2

1 ν 1 ν
,

μ μ
u u u u

 
  & &  

Then, using the comparison theorem on 
asymptotic stability [11, 12], we obtain that  

1 20, 0V V    as t  . Using (15), we obtain 
that the errors (4) asymptotically tend to zero, i.e. 

1 2 30, 0, 0x x x      as t  . In other words, 
the controller (7) solves the trajectory tracking 
control problem of the system (2) if the set of initial 
deviations (11) satisfies the condition (12). This 
completes the proof. 

Remark 1. In order to apply Theorem 1 to solve the 
trajectory tracking control problem of the mobile 
robot one has to verify the algebraic conditions (8) - 
(10) which do not require the calculations of the 
eigenvalues of the matrices that sufficiently reduces 
the computation time. In addition, the conditions (8) 
- (10) have a robust nature, since they allow the 
trajectory tracking for a large class of mobile robots 
whose parameters satisfy the given conditions. 
 
 

4 Numerical Simulation 
  

The controller (7) was applied in the numerical 
simulation of the motion of the robot with the 
parameters [9]: 
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The unknown parts of the mass-inertia 
parameters are bounded by the following values: 

  25 , 0,1m kg I kg m        

The reference trajectory is chosen as 
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     

  
 (26)  

where  
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Note that equations (26) correspond to the 
uniform motion of the center of mass of the robot 
along a given circle with a uniform rotation of the 
platform around this center. 

Using the conditions of Theorem 1, the following 
control parameters are chosen 

1 2

1 2 3

μ 3,5 s,μ 2 s, ν 1

σ 30 N, σ 30 N m, σ 5 N

      
        

 

The initial errors are chosen as follows 
1 2δ 1m, δ 1rad     . 

 
Figure 2 shows the graphs of the reference 

trajectory of the center of mass of the robot as well 
as the actual one.  
 

 
 
Fig. 2: The model of an omni-wheeled mobile 

robot 
 

From Fig. 2 one can see that the center of mass 
of the robot asymptotically approaches to the 
reference trajectory (26). 
 

5 Conclusion 
The paper addresses the trajectory tracking control 
problem of a dynamic model of mobile robot with 
three omni-wheels controlled by three independent 
electric motors. Using the Lyapunov vector function 
method we have obtained the relay robust feedback 
tracking controller that provides a solution to the 
problem under the action of sliding friction forces 
and with incompletely known mass-inertial 
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parameters of the robot. The advantage of the 
obtained controller is the simplicity of its practical 
implementation in comparison with adaptive control 
laws. 
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