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Abstract: Artificial Intelligence (AI) methods can be used in engineering problem to predict results without the 
need of long design or optimization processes. In this study, the dynamic analyses of base isolated seismic 
structures are used in the training of an artificial neural network (ANN) model. The maximum acceleration and 
displacement of the structure are predicted according to the base isolation period, base isolation damping ratio 
and pulse period of directivity pulse used in the analyses. The machine learning process was done in three 
different cases according to number of analysis results used in training. According to the result, the developed 
ANN model is effective in predicting the behavior of base isolated structures if enough numbers of analyses 
results were used in machine learning. The ANN model can be used in optimization in future studies.   
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1 Introduction 
In dynamic analyses of structures, numerical 
integration methods must be used. This process is 
long because of iterations done according to time 
interval which effect the precision of the results. 
Especially when searching an optimum design, the 
process may be too long.   
To skip the long decision process on optimum 
design, using of artificial intelligence (AI) and 
machine learning (ML) techniques may be a useful 
tool. A set of analysis results can be used in 
machine learning to get information about different 
analysis results which are not used in machine 
learning.  
One of the AI techniques is multilayer artificial 
neural networks (ANN). In the documented 
methods, ANN has been used with metaheuristic 
algorithms. Examples include the optimum design 
problems such as determination of optimal lot sizes 
that can ensure minimum of total cost under demand 
and price uncertainness [1], optimal temperature and 
airflow distribution to provide control of energy [2], 
determination of values of optimal machining 
parameters [3] and predicting DAX stock prices by 
using quarterly cycles of eight years [4].  
Examples include civil engineering applications 
such as development of a model for determining the 
prediction of 14 days previous salinity amount [5], 
predicting unconfined compressive strength of 
granite and limestone rock samples [6], evaluation 
of slope stability [7], estimation of the tender price 
amounts for bridge construction projects [8], 
performance-based optimal seismic design [9], 
predicting self-compacting concrete properties [10] 

and determination of structural failure of multistory 
reinforced concrete buildings [11]. 
In this study, a set of dynamic analysis results of 
base isolated structures has been used in machine 
learning to generate an ANN model for estimating 
dynamic analysis results of base isolated systems.  
The developed model was trained by using 
impulsive motions seen in near-fault ground motion 
records. The directivity pulse model of Makris [12] 
was used. The peak ground velocity of the pulses is 
taken as 200 cm/s.   
Feed-forward networks and back-propagation 
training algorithm are chosen. The ANN model can 
predict the analyses results such as maximum 
displacement and acceleration according to base 
isolation period, base isolation damping ratio and 
pulse period. The ANN model is generated for 
future use in the optimum design of base isolated 
structures.   
 
 
 2 Seismically Isolated Benchmark 
Building 
In this study, a one-story seismically isolated 
benchmark building given in Figure 1 is used. The 
superstructure is a three-dimensional shear building 
which is supported on a base isolation system. The 
plan of the building is symmetric which has four 5m 
bays in each direction [13].  The mass of each floor 
and the story stiffnesses are assumed to be same, 
providing a fundamental fixed-base superstructure 
period of 0.1s. The modal damping ratio of the 
superstructure has been set at 5% for all modes. 
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Figure 1 Seismically isolated benchmark building model 

Especially in isolation systems where low-damping 
rubber bearings are used, these supports show linear 
behavior until they reach 100% shear strains. The 
low-damping rubber bearings have effective viscous 
damping ranging from 2-3% and are usually used in 
conjunction with viscous dampers providing 
additional damping [14]. The behavior of a linear 
seismic isolation system is defined by the Kelvin-
Voight model consisting of a linear spring in 
parallel with linear damping.  
Considering the isolation system stiffness KI, 
isolation system period (TI) can be calculated by Eq. 
(1), in which W is the total weight of the seismically 
isolated building and g is the gravitational 
acceleration. 
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By considering the angular frequency (ωI=2π/TI), 
the isolation system damping ratio (ζI) can be 
obtained by using Eq. (2). Here, CI is the viscous 
damping coefficient of the isolation system and M is 
the total mass of the isolation system. 
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3 Generation of ANN model 
In numerical applications, 21 different isolator 
periods have been handled in the dynamic analysis 
process. Each isolator has periods are ranging with 
0.1 s intervals between 2-4 seconds. Different 
damping ratios are considered and these are 
increasing from 0.1 to 0.3 in rate of 0.01 and the 
training has subjected to three different pulse 
periods such as 2, 3 and 4 s. Displacement and 
acceleration values were trained with feed-forward 
neural networks for all combinations. 
ANN structure which was used during training, is 
generated with three input nodes; isolator period 
(Teff), isolator damping ratio (βeff) and pulse period 
(TPs), and two output nodes; displacement and 
acceleration, which are selected variables from 
dynamic analyses, and ten hidden nodes.  
 
 
4 Results and Conclusions 
A part of ANN predicts, error values and error 
metrics, which are obtained for training data are 
shown in Table 1. Some of the values are presented 
in the table since 1323 data are used in training. The 
average error is 2.9096% for the prediction of used 
in the machine learning. All displacement values are 
given in meter and all acceleration values are given 
meter per square second.   

 

TABLE I. PREDICTION RESULTS AND ERROR VALUES FOR TRAINING DATA 

ANN Error Metric Values ANN Error Metric Values 

Displacement  Error 
Absolute 
error 

Square 
error 

Absolute 
percentage 
error (%) Acceleration Error 

Absolute 
error 

Square 
error 

Absolute 
percentage 
error (%) 

1.2783 0.0067 0.0067 0.000045 0.5220 12.4821 0.4779 0.4779 0.228410 3.6877 

1.2371 -0.0041 0.0041 0.000016 0.3290 12.1454 0.3446 0.3446 0.118782 2.7594 

1.1974 -0.0134 0.0134 0.000180 1.1321 11.8166 0.2334 0.2334 0.054489 1.9372 

1.1597 -0.0217 0.0217 0.000473 1.9107 11.5022 0.1378 0.1378 0.018986 1.1837 

1.1244 -0.0284 0.0284 0.000808 2.5933 11.2081 0.0419 0.0419 0.001758 0.3727 

1.0917 -0.0197 0.0197 0.000388 1.8385 10.9389 0.1211 0.1211 0.014654 1.0945 

1.0618 -0.0128 0.0128 0.000164 1.2197 10.6983 0.1917 0.1917 0.036748 1.7603 

1.0348 -0.0068 0.0068 0.000046 0.6602 10.4881 0.2319 0.2319 0.053788 2.1635 

1.0107 -0.0047 0.0047 0.000022 0.4683 10.3085 0.2515 0.2515 0.063232 2.3812 

Average  0.0359  0.004016 2.9096   0.1035 0.0040 2.9096 

RMSE  0.0634   RMSE   0.2016   
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After training process, according to three different 
cases, outputs and predict errors are obtained with 
ANN for new isolator combinations with pulse 
periods. The results compared with the analysis 
results are given in tables such as Table 2 for case 1 

(all data are trained), Table 3 for case 2 (Teff  values 
equal to 2.1, 2.8, 3.3 and 3.9 s are excluding in 
training.) and Table 4 for case 3 (Teff  values equal 
to 2.4 and 3.6 s are excluding training.).  

 

TABLE II. PREDICTION RESULTS FOR NEW ISOLATOR COMBINATIONS (CASE I) 

Teff   βeff  TPs  

ANN Error Metric Values ANN Error Metric Values 

Displ. Error MAE MAPE MSE Acc.  Error MAE MAPE MSE 

2 0.21 2 0.9553 -0.01 0.01 0.98 0.0001 9.9323 0.20 1.95 0.0391 0.20 

2.2 0.1 3 1.3167 0.00 0.00 0.10 0.0000 10.6556 0.34 3.13 0.1186 0.34 

2.9 0.25 4 1.0950 -0.01 0.01 0.46 0.0000 5.5215 0.06 1.05 0.0034 0.06 

3.1 0.3 4 1.1503 -0.04 0.04 3.63 0.0016 5.1141 0.01 0.12 0.0000 0.01 

2.5 0.28 2 1.0558 -0.04 0.04 3.91 0.0016 7.5203 0.10 1.31 0.0099 0.10 

4 0.15 3 2.0370 -0.04 0.04 1.85 0.0014 5.2976 0.03 0.52 0.0008 0.03 

2 0.19 2.5 0.9027 0.02 0.02 2.52 0.0005 9.4782 0.37 3.77 0.1382 0.37 

2.8 0.27 3.2 1.0741 0.06 0.06 5.54 0.0040 6.0389 0.32 5.05 0.1031 0.32 

2.4 0.16 2.2 1.2130 0.05 0.05 3.73 0.0022 9.0538 0.06 0.62 0.0032 0.06 

3.7 0.12 3.8 2.1044 0.10 0.10 4.35 0.0091 6.3499 0.25 3.79 0.0625 0.25 

4.3 0.21 2 1.2612 -0.03 0.03 2.54 0.0010 3.4093 0.12 3.63 0.0142 0.12 

1.8 0.22 3 0.6338 -0.04 0.04 7.60 0.0020 7.3997 0.14 1.86 0.0197 0.14 

2.2 0.05 4 0.9278 0.01 0.01 1.08 0.0001 6.9785 0.70 9.13 0.4920 0.70 

3.8 0.4 2 0.9817 0.02 0.02 1.83 0.0003 4.2006 0.27 6.03 0.0726 0.27 

3.4 0.18 2.5 1.5338 0.06 0.06 3.53 0.0032 5.8129 0.14 2.30 0.0188 0.14 

2.5 0.26 3.2 0.9082 0.07 0.07 6.76 0.0043 6.5724 0.14 2.12 0.0203 0.14 

2.1 0.15 2 1.1170 0.01 0.01 0.97 0.0001 10.5583 0.02 0.20 0.0005 0.02 

2.8 0.18 3 1.3965 -0.01 0.01 0.47 0.0000 7.2780 0.12 1.69 0.0156 0.12 

3.3 0.25 4 1.3655 -0.01 0.01 0.93 0.0002 5.3439 0.01 0.13 0.0000 0.01 

3.9 0.28 3 1.5347 0.03 0.03 1.87 0.0009 4.8824 0.02 0.46 0.0005 0.02 

   Average  0.03 2.73 0.0016 Average  0.17 2.44 0.0567 

   RMSE  0.0404   RMSE  0.2380   
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TABLE III. PREDICTION RESULTS FOR NEW ISOLATOR COMBINATIONS (CASE II) 

Teff   βeff  TPs  

ANN Error Metric Values ANN Error Metric Values 

Displ. Error MAE MAPE MSE Acc.  Error MAE MAPE MSE 

2 0.21 2 0.9553 -0.04 0.04 4.05 0.0015 9.9323 -0.10 0.10 0.98 0.0098 

2.2 0.1 3 1.3167 0.03 0.03 2.11 0.0008 10.6556 0.09 0.09 0.80 0.0077 

2.9 0.25 4 1.0950 -0.02 0.02 1.95 0.0005 5.5215 -0.02 0.02 0.42 0.0005 

3.1 0.3 4 1.1503 -0.04 0.04 4.01 0.0020 5.1141 0.02 0.02 0.44 0.0005 

2.5 0.28 2 1.0558 -0.03 0.03 2.98 0.0009 7.5203 -0.07 0.07 0.89 0.0046 

4 0.15 3 2.0370 0.02 0.02 0.85 0.0003 5.2976 0.05 0.05 0.88 0.0022 

2 0.19 2.5 0.9027 -0.10 0.10 10.39 0.0093 9.4782 -0.73 0.73 7.41 0.5331 

2.8 0.27 3.2 1.0741 -0.07 0.07 5.82 0.0044 6.0389 -0.44 0.44 6.96 0.1960 

2.4 0.16 2.2 1.2130 0.01 0.01 0.48 0.0000 9.0538 0.16 0.16 1.74 0.0252 

3.7 0.12 3.8 2.1044 0.02 0.02 0.95 0.0004 6.3499 0.31 0.31 4.73 0.0974 

4.3 0.21 2 1.2612 0.39 0.39 32.06 0.1555 3.4093 2.35 2.35 71.34 5.5083 

1.8 0.22 3 0.6338 0.16 0.16 26.99 0.0253 7.3997 0.36 0.36 4.74 0.1277 

2.2 0.05 4 0.9278 -0.40 0.40 42.34 0.1577 6.9785 0.10 0.10 1.34 0.0106 

3.8 0.4 2 0.9817 -0.10 0.10 10.15 0.0103 4.2006 -0.04 0.04 0.82 0.0013 

3.4 0.18 2.5 1.5338 -0.05 0.05 2.88 0.0021 5.8129 -0.37 0.37 6.15 0.1337 

2.5 0.26 3.2 0.9082 0.00 0.00 0.37 0.0000 6.5724 0.10 0.10 1.44 0.0093 

2.1 0.15 2 1.1170 -0.03 0.03 2.24 0.0006 10.5583 -0.08 0.08 0.78 0.0067 

2.8 0.18 3 1.3965 0.06 0.06 4.22 0.0034 7.2780 0.50 0.50 6.79 0.2529 

3.3 0.25 4 1.3655 0.02 0.02 1.59 0.0005 5.3439 0.13 0.13 2.52 0.0181 

3.9 0.28 3 1.5347 -0.04 0.04 2.40 0.0014 4.8824 -0.08 0.08 1.63 0.0062 

   Average  0.08 7.94 0.0188 Average  0.30 6.14 0.3476 

   RMSE  0.1373   RMSE  0.5896   

 
The results include the predicted results for 
displacement and acceleration and error values with 
error metrics; mean absolute error (MAE), mean 
absolute percentage error (MAPE), mean squared 
error (MSE) and root mean squared error (RMSE) 
comparing to dynamic analyses results. Some of 

these combinations are not used in the training 
process of ANN model. 
For Case 1, the maximum error for the displacement 
is only 0.06 m. The average of all predicted values 
is 0.03 m. The maximum error for the accelerations 
is 0.7 m/s2 and the average error is 0.17 m/s2. As 
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expected, the error amount is generally low for the 
predicted values which are also used in the training. 
The ANN model generated according to Case 1 is 
effective in predicting the maximum structural 
responses.   
In case 2, 4 of the isolation periods are not used. 
This case is done in order to see the effectiveness of 

the ANN model for less machine learning. For Case 
2, the average errors increase to 0.08 m and 0.3 m/s2 
for displacement and acceleration, respectively. For 
Case 3, more increases of average values are seen. 
These average values are acceptable, but some of 
the predicted results have big error.

TABLE IV. PREDICTION RESULTS FOR NEW ISOLATOR COMBINATIONS (CASE III) 

Teff   βeff  TPs  

ANN Error Metric Values ANN Error Metric Values 

Displ. Error MAE MAPE MSE Acc.  Error MAE MAPE MSE 

2 0.21 2 0.9553 0.01 0.01 1.56 0.0002 9.9323 -0.06 0.06 0.59 0.0036 

2.2 0.1 3 1.3167 0.00 0.00 0.01 0.0000 10.6556 0.03 0.03 0.26 0.0008 

2.9 0.25 4 1.0950 0.05 0.05 4.54 0.0025 5.5215 -0.03 0.03 0.45 0.0006 

3.1 0.3 4 1.1503 -0.03 0.03 2.74 0.0009 5.1141 0.16 0.16 3.11 0.0253 

2.5 0.28 2 1.0558 -0.02 0.02 2.13 0.0005 7.5203 -0.01 0.01 0.13 0.0001 

4 0.15 3 2.0370 0.01 0.01 0.29 0.0000 5.2976 0.03 0.03 0.65 0.0012 

2 0.19 2.5 0.9027 -0.38 0.38 41.49 0.1476 9.4782 -0.73 0.73 7.40 0.5317 

2.8 0.27 3.2 1.0741 0.21 0.21 18.48 0.0441 6.0389 0.46 0.46 7.27 0.2137 

2.4 0.16 2.2 1.2130 -0.28 0.28 21.86 0.0758 9.0538 -0.79 0.79 8.65 0.6216 

3.7 0.12 3.8 2.1044 -0.58 0.58 26.42 0.3378 6.3499 -1.40 1.40 21.25 1.9663 

4.3 0.21 2 1.2612 -0.11 0.11 9.28 0.0130 3.4093 -0.12 0.12 3.67 0.0146 

1.8 0.22 3 0.6338 0.00 0.00 0.06 0.0000 7.3997 0.14 0.14 1.87 0.0198 

2.2 0.05 4 0.9278 0.05 0.05 5.54 0.0027 6.9785 -0.08 0.08 1.09 0.0070 

3.8 0.4 2 0.9817 0.06 0.06 5.82 0.0034 4.2006 0.16 0.16 3.60 0.0259 

3.4 0.18 2.5 1.5338 -0.15 0.15 9.64 0.0235 5.8129 -0.35 0.35 5.88 0.1225 

2.5 0.26 3.2 0.9082 0.18 0.18 18.84 0.0337 6.5724 0.26 0.26 3.88 0.0679 

2.1 0.15 2 1.1170 0.06 0.06 5.11 0.0033 10.5583 0.05 0.05 0.43 0.0021 

2.8 0.18 3 1.3965 0.04 0.04 2.61 0.0013 7.2780 0.32 0.32 4.37 0.1046 

3.3 0.25 4 1.3655 -0.02 0.02 1.36 0.0003 5.3439 0.03 0.03 0.63 0.0011 

3.9 0.28 3 1.5347 -0.03 0.03 2.21 0.0012 4.8824 -0.08 0.08 1.69 0.0068 

   Average  0.11 9.00 0.0346 Average  0.27 3.84 0.1869 

   RMSE  0.1860   RMSE  0.4323   
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As a conclusion, the ANN model generated for the 
problem can be used, but the required number is 
training must be done as Case 1. The predicted 
results are not precise, but these results may be 
useful to know the behavior of structural responses 
for the change of the base isolator parameters. In 
future, the ANN model can be used in optimum 
design. Adding the analysis results for more pulse 
periods may increase the efficiency of the ANN 
model. 
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