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Abstract: - The problem of identifying nonlinear systems is proposed in the presence of hard nonlinearity. The
nonlinear systems considered in this paper is structured by Hammerstein systems. The identification is studied
in presence of possibly infinite-order linear dynamics and static nonlinearity. Hammerstein models consist of a
series connection including a nonlinear element and a linear subsystem. The Identification problem is addressed
in the presence of hard nonlinearity.
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1 Introduction
The problem of system identification based on
different variants of the Hammerstein model has
been given a great deal of interest, especially on the
last decade, and several solutions are now available.
The Hammerstein model is a series connection of a
memoryless nonlinearity and a linear dynamic bloc
(Fig.1). Black-box nonlinear system identification is
a very wide research area [1]. The considerable
diversity of nonlinear systems has led to a large
variety of identification problems and a proliferation
of identification approaches and methods.
In this paper, the problem of identifying
Hammerstein systems is addressed. Hard
nonlinearities of known type have been considered
in [2]-[4].
Unlike many previous works e.g. [3], the model
structure of the linear subsystem is entirely
unknown. Furthermore, the system nonlinearity is of
arbitrary-shape and can be noninvertible. In most
previous works devoted to Hammerstein system
identification, the nonlinear element is supposed to
be continuous. Moreover, this latter is generally
assumed to be a (truncated) polynomial or Fourier
series in the variable e.g. [5].
Multi-stage methods, involving two or several
stages, have been proposed in most previous works.
Then, their consistency was ensured if the inputs are
Gaussian and the nonlinearity is odd. Deterministic
parameter identification methods consist in
reformulating the problem as an optimisation task,
generally coped with using various relaxation

techniques. Then, local convergence properties
ensured in presence of PE inputs.
In this paper, the problem of identifying
Hammerstein systems is addressed, for simplicity, in
the continuous-time. Unlike many previous works,
the model structure of the linear subsystem is
entirely unknown. Furthermore, the system
nonlinearity is of hard (Figs. 2a-b) type and is not
required to be invertible.
The present strategy is allowed to interest a wide
range of the system nonlinearity (Figs. 2a-b). The
identification problem amounts to determining an
accurate estimate of the (nonparametric) frequency
response )( jG , for a set of frequencies )( 1 m 
, and the nonlinearity. The present identification
method is a two-stage: the system nonlinearity is
identified first, using simple constant inputs, and
based upon in the second stage to identify the linear
subsystem.
In frequency methods, the linear subsystem
frequency response and the nonlinearity map are
determined in two or several stages [4].
The paper is organized as follows: the identification
problem is formulated in Section 2; the nonlinear
operator identification is coped with in Section 3;
the linear subsystem frequency response
determination is investigated in Section 4.
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2 Problem Formulation
Standard Hammerstein systems consist of a
memoryless nonlinear element (.)f followed in
series by a linear dynamic subsystem )(sG (Fig.1).
This model is analytically described by the
following equations:

 ( ) ( )x t f u t (1)

( ) ( )* ( )w t g t x t (2)

( ) ( ) ( ) ( )* ( ) ( )y t w t t g t x t t     (3)

where  )()( 1 sGLtg  is the inverse Laplace
transform of )(sG ; the symbol * refers to the
convolution operation; ( )x t is the internal signal;

( )w t is the undisturbed output.
The only measurable signals are the system input
u(t) and output y(t). The equation error ξ(t) is a zero-
mean stationary sequence of independent random
variables; it accounts for external noise, it is
supposed to be ergodic (so that arithmetic averages
can be substituted to probabilistic means whenever
this is necessary).
Because the system identification is carried out in
open loop (Fig.1), the linear block G(s) must satisfy
the stability asymptotically. Except for this
assumption, the linear subsystem is arbitrary,

particularly it may be arbitrary and unknown
structure. The system nonlinearity f(.) is of
arbitrary-shape and is allowed to be noninvertible.
We aim at designing an identification scheme that is
able to provide a model estimate  ˆ ˆ(.), ( )kf G j that
represents well the system when. Since ( )w t and

( )x t are not measurable, the system identification
should be fully based upon measurements of the
input v(t) and the output system y(t). Therefore, the
considered identification problem does not have a
unique solution: if the model  ( ), ( )f u G s
represents a solution then, any model of the form
 ( ) / , ( )f u k kG s is also a solution (where k is any
nonzero real). This naturally leads to the question:
what particular model should we focus on? This
question will be answered later. Such a lack of
uniqueness, will be exploited (in Section 3) to cope
with the uncertainty on the amplitude of the internal
signals ( )x t and ( )w t .

3 Nonlinearity System Identification
In this section, we aim establish an identification
scheme that is able to provide an accurately estimate
of the system nonlinearity f(.). In Section 2 it was
shown that, if k is any nonzero real, so any model of
the form  ( ) / , ( )f u k kG s is representative of the
system.
Therefore, without reducing the problem generality,
one can assume 1)0( G . Accordingly, the system
to be identified is described by the transfer function:

)0(
)()(

G
sGsG  (4a)

and the nonlinearity:

( ) (0) ( )f u G f u (4b)

It is readily seen that, this model to be identified (i.e.
(.)f and )(sG ) is the only that satisfies the

property: (0) 1G  (i.e. the linear subsystem is of
unit static gain). To avoid multiplication of
notations, the model of interest will still be denoted
 (.), ( )f G s but the description (1)-(3) is completed

with the property (0) 1G  .
Then, the considered system is excited by simple
constant inputs:

jUtu )( for nj 1 (5)
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where the number n is arbitrarily chosen by the user,
preferably sufficiently large. On the other hand, the
internal signal x(t) is constant (i.e. jt Xtx  )( ).
Then, it follows from (1), (4a-b) and (5) that, in the
steady-state:

( )j jX f U for nj 1 (6)

Then, it is readily seen using the assumption of
asymptotic stability of the linear subsystem, (2),
(4a-b) and (6), that the undisturbed output is also
constant, in the steady-state, i.e. ( ) jtw t W .
This latter can be expressed as:

( )j jW f U for nj 1 (7)

Then, the system output is constant up to noise (in
the steady-state). Finally, we can conclude using (7)
that Wj (for nj 1 ) only depends on the system
nonlinearity f(.) and the input signal. Therefore,
using the fact )(t is zero-mean, it follows from (2)
and (7) that, the estimate of the steady-state
undisturbed output Wj ( 1 )j n  can be easily
recovered using the following estimator:

1

1ˆ ( ) ( )
M

j
l

W M y l
M 

  for nj 1 (8)

where M is any sufficiently large integer.
Specifically, Wj can be recovered by averaging y(t)
on a sufficiently large interval. Then, a set of points

, ( ) ,( ) ( )j j j jU f U U W (with nj 1 )
belonging to nonlinearity f(.) can be determined.
Finally, an accurate estimate ˆ (.)Mf of f(.) can be
easily obtained.

4 Linear Subsystem Identification
The aim in this section is to establish an estimator of
the linear subsystem. The complex gain ( )G j is
characterized by the modulus gain ( )G j and the

phase  ( ) ( ) arg ( )G j G j      .
The identification problem under study is dealt
using a method based on the frequency approach.
Firstly, by successively connecting the estimated
points   ˆ, ( ) ; 1j M jU f U j n  , a set of segments of

f(.) is obtained (Figs.2a-b). For reasons of
identifiability, at least one segment must have a
non-zero slope. Let q designates any segment have a

non-zero slope. Then, the nonlinear system
described in section 1 is excited with a given sine
input:

0( ) sin( )u t u U t  (9)

where the frequency 0  is kept constant, u0 is
the offset and U the amplitude of sine signal. The
choice of couple of parameters  ,ou U will be
made after.
Note that, the internal signal x(t) is periodic with
period 2 /  .
On the other hand, it is supposed first that the
parameters  ,ou U in (9) are chosen such that u(t)
spans only one segment of f(.) having a nonzero
slope.
Further, if u(t) spans only the segment q, the
following result can be easily obtained:

0( ) ( ) sin( )x t S u t P Su SU t P     (10)

where  ,S P is the couple parameters of segment q
(Figs.2a-b). Precisely, S is the slope of segment q
and P is the value of x(t) when ( ) 0u t  . S and P
can be determined using the experimental data of
nonlinearity estimator.
Accordingly, one immediately gets from (2) and
(10) that, the undisturbed output w(t) is also sine
signal (in the steady-state) and can be expressed as:

 0( ) ( ) sin ( )w t Su P SU G j t       (11)

Finally, one immediately gets from (3) and (11)
that:

 0( ) ( ) sin ( ) ( )y t Su P SU G j t t         (12)

This result shows that, the system output in the
steady-state is sine signal up to noise.
On the other hand, a judicious choice of the couple
 ,ou U in (9) can be performed using the
experimental data of nonlinearity estimator,
established in section 3. Based upon the curve of the
nonlinearity f(.), let choose any segment q of f(.)
with nonzero slope. Then, the identified system is
submitted to the sine input (9) within the selected
segment. The choice of the amplitude U and the
offset u0 in (9) is done in such a way that, u(t) spans
only one segment.
If this condition is satisfied, then the system output
y(t) is a sine signal (up to noise) after a transient
period. The amplitude U and u0 can be adjusted until
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the output becomes sine signal (up to noise).
Then, the choice of U and 0u in (9) can be
performed using practical experiences.
These results imply that, the complex frequency
gains of the linear subsystem (i.e. the modulus gain

( )G j and the phase ( )  ) can be recovered if the
undisturbed output w(t) is accessible to
measurement. At this stage, w(t) is not measurable.
Fortunately, an accurate estimator of w(t) exists,
thanks to the (steady-state) periodicity of w(t) and
the ergodicity of the noise ( )t . The estimator,
denoted ˆ ( )Nw t , is obtained by performing a -T

periodic averaging with 2 /T   [6]:

1

1 2ˆ ( ) ( )
N

N
k

w t y t k
N




  for 






20t (13a)

2ˆ ˆ( ) ( )N Nw t k w t


  for 1, 2,k   (13b)

where N is any sufficiently large integer. The
estimator (13a-b) is uniformly consistent i.e. ˆ ( )Nw t
converges (w.p.1 as N   ) to )(, twU  , whatever t.
Finally, using the amplitude and the argument of the
sine signal (11), the gain modulus and the phase of
the linear subsystem can be easily obtained using
(11) and (13a-b).

5 Conclusion
The problem of system identification is addressed
for Hammerstein systems where the system
nonlinearity is of arbitrary-shape hard type and can
be noninvertible. The considered linear subsystem is
not necessarily parametric and can be of infinite
order.
The identification scheme is performed using two
separate stages. First, the system nonlinearity is
identified using simple constant inputs. In the
second stage, the linear subsystem is determined
with sine inputs.
To the author knowledge, unlike many of previous
study, the present method has solved the
identification problem for a large class of
Hammerstein systems. Furthermore, the proposed
approach involves easily generated excitation
signals.
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