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Abstract: The aim of this paper is to develop a new approach for a solution of the continuous-time model matching
problem with a static state feedback in the sensH of optimality criterion. The main contribution is to reformu-

late the? ., model matching problem in linear matrix inequality settings, to present the solvability conditions and
to give a design procedure for a one degree of freedom static state feedback with integral control law. The results
are applied to an example system.
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1 Introduction continuous-timeH.. MMP can completely be solved
by the LMI-based numerical optimization.

The model matching problem is one of the most

familiar problems in the control theory [16].

The continuous-timeH ., model matching problem The paper is organized in the following way: In
(MMP) is to find a controller transfer matri®(s) Section 2, a special formulation for the continuous-
which is stable and causal, thatfi§s)cR#H .., which time H.. MMP by a 1 DOF static state feedback with
minimizes theH ., norm of G,,,(s) — G(s) R(s) where integral control is presented in LMIs. In Section 3,
G (s) andG(s) are the model and the system trans- the main result is given by a theorem which provides
fer matrices, respectively. Moreové,, (s) andG(s) have the existence conditions of the solution. In

are stable and proper transfer matrices. That is to say, Section 4, the problem is examined for the strictly
the closed-loop performand&(s) R(s) approximates proper case. In Section 5, the 1 DOF static state
the desired performandg,, (s) such that, feedback with integral control is constructed by using
the synthesis theorem. A numerical example and
the conclusions are finally given in Section 6 and 7,
respectively.

Yot = 08 Gns) — GL)R(3) |

o
In the literature, there are some results on He
MMP: [6, 8, 9]. Moreover, the solutions of the
continuous- and discrete-timi ., MMP via linear R The set of real numbers.
matrix inequality (LMI) optimization are given in

[1, 2, 3, 4, 13]. However, in hone of them, one degree RPX™
of freedom static state feedback with integral control
structure is used for feedback configuration.

In this study, a special formulation is developed to
solve the continuous-tim# ., MMP by a one degree . ) . i
of freedom (1 DOF) static state feedback with integral ~ Onxm ~ The matrix which has xm dimension,
control. One degree of freedom controller means that and all elements are zero.
there is only one controller block in the closed system,

[14]. This formulation enables us to use the methods KerM The null space of the linear operatdf.
which are presented for the solution of the continuous-

time H, optimal control problem (OCP) and so the ImM  The range of the linear operatdf.

Notations

The set ofn xm real matrices.

I, Identity matrix ofn xn dimension.
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NT The transpose of the matriX.
P>0 The matrixP is positive definite.
Amaz(A)  The maximal eigenvalue of the matrik
omaz(A)  The maximal singular value of the

matrix A which is defined

Omax(A) = \/ Amax (AT A).
|G(s)ll, TheH. norm of the transfer matrix

G(s) is defined as

[G(3)loo = SUP Omaz|G(jw)]-

w€|[0,00]

2 TheContinuoustimeH,, MMP by
a 1 DOF Static State Feedback

(t)
(1)
q(t)

with Integral Control in LMI Op- +
timization
In order to solve the continuous-tinié., MMP via 2(t) =
LMI approach, the problem should be reformulated
as the standard continuous-tini¢,, OCP. First of +
all, I will take any state-space equations of the given
systemG(s) and the model systed,, (s) as follows: o) =

G(s) x(t) Az(t) + Bu(t) (1)
ys(t) Cx(t) + Du(t) (2) as follows:
Gin(s) i) = Fo(t)+Gu(t) (3) 4
Ym(t) Hq(t) + Jw(t) (4) -
where z(t)eR"™s, q(t)eR™; v(t), w(t), ys(t) and
ym(t)ER™. The control inputu(t) is generated by
a static state feedback controller:
u(t) = Kx(t).

In Figure 1, the block diagram of a continuous-time
H~ MMP by a static state feedback with integral
control is given. In this formulation the steady-state
value of the outpuy,(t) will follow a step function
input with zero error. In this paper, a 1 DOF control
structure is proposed, [14].

ISSN: 2367-8917 114

Figure 1. The block diagram of model matching
system with 1 DOF static state feedback in the
integral control.

The P(s) shown in Figure 1 can be given as,

A B 0 x(t)
-C -D 0 :| Z(t)
0 0 F q(t)
[0 B
I {w(t)+ | —D |u(t) (5)
| G 0
(t)
[ -C —D H || &(t)
q(t)
Jw(t) — Du(t) (6)
x(t)
[ I 00 ] Z(t) @)
q(t)

A B
-C -D

-D

Onm Xm

Dy =J
Dy =—D.

0
0
F

Ci=[-C —-D H |

C12 = [ Ins Onsxm Onsxnm ]
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As a result, the continuous-tim#., MMP by a 1
DOF static state feedback with integral control is
equivalent to the continuous-tinyé., OCP. Figure 2
shows this idea:

w(t) ——— P(S)
u(t) y(®)

X(t)

K

Figure 2. The block diagram of the general form of
Ho OCP with a static controller.

The closed-loop transfer matrix from(t) to z(t)

is
Tow(s) = Do+ Ca(sI — Ag) "By (15)
where
Ag = A+ BKC (16)
By = B (17)
Cy = Ci1+ DyKCs (18)
Dd == Dl- (19)

If the matrix K which makes stable the matrix-
BK, can be found out, it is said that the matrix pair
(A, B) is stabilizable.

The following lemma can be given for the internal
stability of the closed-loop system:

Lemmal For the system irf5), (6) and (7), there is
a matrix K such that the matrid,; = A + Bo Ky
is Hurwitz if and only if the matrix pair

([—AC —%]’[—BDD

is stabilizable and the matrikx’ is Hurwitz.

Proof: WhenA, By, Cy and K are used in4,;, the
following relation is obtained:

(20)

A B 0
Ay = | -C =D 0
L 0 0 F
[ B
+ | -D|K[I 0 0] (21)
L 0
[ A+BK B 0
= | -C-DK -D 0 (22)
I 0 0 F
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Therefore, the matrid,; is Hurwitz if and only if the
matrix

A+ BK B
| -C-DK -D | (23)
and the matrixt' are Hurwitz. The matrix
A+ BK B
| -C-DK -D | (24)
can be rewritten as
A+ BK B B A B
-C-DK -D o -C -D
B
+ [ D } K[I 0].
If we take
L=K [ I 0 ] (25)
, since the matri¥< can always be determined by
K=1L { I } (26)
0
, the matrix
A+ BK B
[ —-C—-DK -D ] (27)

is asymptotically stable if and only if the matrix pair

([—AC —%]’[—BDD

is stabilizable. [151

(28)

For a synthesis theorem on the LMI-based solu-
tion of the continuous-timé{,, MMP with integral
control, let us give the following lemmas. They will
be used to prove the theorem which will be presented
later. The first lemma is well known dhe Bounded
Real Lemma and can be used to turn the continuous-
time H,, OCP into an LMI:

Lemma?2 Consider a continuous-time transfer mat-
rix T'(s) of (not necessarily minimal) realization

T(s)=D+C(sI — A)7'B. (29)

The following statements are equivalent:
i)

|D+C(sI —A)'B| <~
and the matrixA is Hurwitz,
ii) there is a solutionX > 0 to the LMI:

ATX +XA XB C7
BTX —~vI DT
C D —I

(30)

< 0. (31)
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Proof: See [7].1

Lemma 3 SupposeP, Q and H are matrices and the
matrix H is symmetric. The matricedp and Ng
are full rank matrices satisfyingm Np = KerP and
ImNg = Ker@. Then there is a matri¥ such that,

H+PrjTQ+QTJpP <0 (32)
if and only if the inequalities
NFHNp < 0

and NLHHNg <0 (33)

are both satisfied.

Proof: See [10].H

Lemma4 The block matrix

P M
{ uT N ] <0 (34)
if and only if
N <0 and P—MNMT <.

(35)
In the sequelP — MN~'MT will be referred to as
the Schur complement of N.

Proof: See [5].1

3 Main Result

A synthesis theorem can be presented on the LMI-
based solution of the problem now:

Theorem 5 A 1 DOF static state feedback plus in-
tegral controller K eR™*"s exists for the continuous-
timeH., MMP if and only if there is a matrix

X Xy
X = [ X X, } >0 (36)
such that,
BT -DT 0
( Ony s >X2+< 0 FT >X3+
(In GT)Xs
(-D H)
-D 0
X3< 0 F>+X2T(B Oy )
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T
w(e) (ar)
Y o <0 (37)
m
J -1,
N, 01"
0 I,
A B 0 A B o \7T
(70 -D o0 |x;'+x;'| -¢ -D o>
0 0o F 0 0o F
(-¢ -D H)X}'
( Omxns Im GT
F) )]
x;'| -p Im
cl T G s}
7—yli J |: 0o I, :| <0

(38)
whereN,. is a full rank matrix with

ImNe. = Ker | BT =D 0Opxn, —DT .
(39)
Proof: From The Bounded Real Lemm&,cR"*"s

is a 1 DOF static state feedback controller in Figure 2
if and only if the LMI

AZ;XCZ + XclAcl Xcchl Cg;
Bl X, —I

D;
Ccl D cl - ’YI

<0 (40)

holds for someX,; > 0 in R(s+nm+m)x(nstnmtm)
Using the expressiond;, B, Cy and D, in (16),
(17), (18) and (19), this LMI can also be written as:

Hx, + Py, KQ+QTK"Px, <0 (41)
where

ATX 4+ XgA XuBy CF

Hy, = BIXa =, D (#2)
Cl Dl _’Y[m

Q - [ C(2 Onsxm Onsxm ] (43)

Px, = [BQTXcl O, D2T ] (44)

| can use Lemma 3 to eliminate the matéx in the

LMI (41). Therefore, the LMI (41) holds for som&
if and only if

Npy Hx,Npy, <0 and NgHx,Ng <0

(45)
where
ImNp, , KerPx,, (46)
ImNg = KerQ (47)
Xg > 0. (48)
Volume 1, 2016
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Then, the first inequality in (45) can be rewritten as or equivalently

NLTx  Np where the matrixVp denotes any basis

of KerP and

pP=[B] 0, DI]. (49)
| can take as
Xg 0 0
Px,=P| 0 I, O (50)
0 0 Iy
hence
xX;' 0 o0
Npy = |0 I, 0 |Np. (51)
‘ 0 0 In
Consequently,
Np, Hx,Npy, <0 (52)
is equivalent to
Ng{ [ 8 ] 08 }}
0 0 I 0 Im
Np=NAETx Np <0 (53)
where
-1 —1 4T —1~T
AXCZ + Xcl A By Xcl Cl
Tx, = BY —~I, DT
i x;! Dy =l
(54)
Meanwhile, from (49) follows that bases &fer P are
Vi 0
Np=| 0 I, (55)
Vo 0
where
_ W
i (56)
is any basis of the null space pfBI DI ]. So the
condition
NpTx, Np <0 (57)
can be reduced to
Vi 01T Ax; +xAT By
0 I, BT —~Im
Vo 0 1 X Dy
xtct Vi 0
DT 0 I, | <0 (58)
-1, Vo 0O

ISSN: 2367-8917

-1 14T v—1
Nc 0 T AXcl +)f(1:l A Xcl C”1T
Vo] | et
m
By Dy
By
Dy []g IO ]<o (59)
_71m "

Similarly, in (45) the condition
NyHx, Ng <0 (60)

is equivalent to

N o 17 [ AT Xa+ XaA XaBr  Cf
[ 00 I ] B X4 —~I,, DT
" Cy Dy Iy
N, 0
) [ 0 I, ] <0 (61)
where
ImN, = Ker[ Co Op,xm ] (62)

Hence the matrixX,; satisfies the LMI (41) if and
only if the matrix X ; satisfies the LMIs (59) and (61).
To complete the proof, it sufficies to use (8), (9) and
(10) into the LMI (61):

ImN, = Ker[Cy Opxm |
= Ker [ In, Opxm Onoxnn Ongxm |
and
Opoxm 0 0
| I 0 0
No=1, L. 0 (63)
0 0 I,

ts
(—c -p m)
Ongxm -cT
Xal| I -pT
G T
—vIm JT
J —vIm
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Onexm O 0
I, 0 0
0 Lo | <0 (64)
0 0 In

and the first condition (37) is obtained as,

BT -DT 0
< O, >X2+< 0 FT >X3+

(In. GT)Xs
(-p H)

I, -DT
wle) ()
DY JT < 0. (65)

J -1,

Finally, the condition (66) can easily be derived when

(8), (9) and (10) are used in the LMI (59):

T
N, 0
0 I,

A B 0 B o0 \7T
<7c -D o0 |x'+x;'| -¢ -D o)
0 0o F 0 0o F
(-¢ -D H)X]'

(( Omxn. Tm &7

-cT O xm
() () o
7T G <0
7"/1771 J 0 [m
JT —vIm
(66)

4 The Strictly Proper Model System
Case

Since the system is generally strictly proper in the real
life, D = 0 is taken. Moreover the model system can

generally be chosen as strictly proper, thatis= 0.

Therefore (37) and (66) LMI's can be reduced to more

simple form:

Theorem 6 A 1 DOF static state feedback plus in-
tegral controller K eR™*"s exists for the continuous-
timeH., MMP if and only if there is a matrix

X1 Xy

|0
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such that,
BT 0 0 0 0
(0 )5+ (0 )2 (1)
1 I GT
+X2 ( B Onsxnm )+;X3< G GTG >X3
1/0 0
+§<0HTH><O (68)
A B 0
w, 01" —Cc 0 0 |x;'
0 I 0 0 F
(-C 0 H)X,'
A B o0\’ 00 0
+X' | -co0 0 | #3210 1T G
0 0 F 0 G GGT
_oT
o 0 We 0
T { 0 I} <0 (69)
_’YIm
wherell/,. is a full rank matrix with
ImWC:Ker[BT 0 Omxn,, ] (70)

Proof: Let us write the LMI (37) forD = 0 andJ =

0:
BT
( Oy s >X2 * (
T

I, G
(OH

0 )
) X3
)

0 0
X3 < 0 F > +X2T( B Onsxnm )

I, 0
() )]
—vIp, 0 '
0 -1,

When the Schur complement argument is used, above
LMI can be reduced following form:

BT 0 0 0 0
()5 (5 )20 (5 7 )
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I GT

T 1

)X

170 0
+;<O HT.H><O' (72)
On the other hand, if J=0 is written in (66),
N 017
0 I,
(A B o) ( B o)T
-c 0 o |xj'+x;'| -c o o
o o0 F 0o F
(-c o H)X;
( Omxns Im GT )
-cT Ongxm
) (ET ) [N 0
T a
7'~/Ii 0 0 _[m <
0 —¥Im
(73)
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A B 0
w, 01" —-c 0 o0 | x5!
0 I 0 0 F
(-c o H)X;'
A B 0\ 00 0
+Xg' -c0 0 | #3210 1T G
0o 0 F 0 G GGT
—_cT
xX;! 0 We 0
T [0 I]<0. (78)

is written. When the Schur complement argument is 5 Controller Construction

used, above LMI can be reduced following form:

A B 0
-C 0 0 |x;!
T cl
Ne - 0 0 F
(-C 0 H )X,
A B 0o\" 00 0
+X;' -C 0 o0 +2l 0 1 G"
0 0 F 0 G GGT
_oT
-1
Xa o || V<o (74)
From the equation (39)
ImN.=Ker [ BT 0 Omxn, 0]  (75)
or
W. 0
v ] (76)
where
ImWe=Ker [ BT 0 Opxn, | (77)

are written. That is, if the equation (77) is used, the
LMI (69) is obtained:

ISSN: 2367-8917 119

Although Theorem 5 is about the solvability condi-
tions of the continuous-timé{,, MMP by the 1 DOF
static state feedback with integral control, it also pro-
vides a controller construction procedure. Moreover
The MATLAB LMI Control Toolbox [11] can be used
to solve LMIs. The controller construction procedure
can be summarized as follows:

Step 1. Find a solutionX,; > 0 to the LMiIs
(37) and (66) fory,,; which is the minimal ofy.

Step 2. Obtain a 1 DOF static state feedback
control law K eR™*"s in the LMI (41).

In the following section, Theorem 6 and the

controller construction algorithm will used to design
a controller to achieve model matching.

6 Numerical Example

Consider the second-order unstable system

s+0.5
(s—=1)(s+0.2)

G(s) =

The model system is taken as
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The state-space equations(®fs) are obtained as 0.5123  0.1992 —0.1094
0.1992 0.5126 —0.1407

a(t) ] 0 17[ =t —0.1094 —0.1407  0.5294
Za(t) - 0.2 0.8 xa(t) —0.1501 —-0.1587 —0.1310
0 —0.1501
* [ 1 ]”(t) (79) 01587 | _
21 (t) —0.1310
ys(t) = [05 1] [ (1) ] . (80) 0.9079
The state-space equations(@f, (s) are obtained as
q(t) = —q(t) +w(t) (81)
ym(t) = q(t). (82) K =] -18655 —4.1419 ].
The matrixF' is Hurwitz. Since the matrix pair
A B B B :
-C -D|'| =D |)
0 10 0
02 08 1 |,]1 (83)
—05 -1 0 0
gl 8
is controllable, it is stabilizable. Therefore because
of Lemma 1, there is a solution for the continuous- st
time H.. MMP by a 1 DOF static state feedback with _ .
integral control. The state-space equation$¢f) in P e
Figure 2 can be given as
#1(t) 0 10 07[x() -
Ba(t) | _ 02 08 1 0 (1)
z(t) N -05 -1 0 0 Z(t) Figure 3. The impulse responses(efs) : ...,
q(t) | 0 00 -1 q(t) Gm(s) : ———andT(s): —.—
[0 0
0 1
+ 1 w(t) + 0 u(t) (84)
[ 1 0
z(t) A
_ 705 — (1) e
zt) = [-05 -1 0 1] i(t) (85) 2
q(t) R S D N N N
r1(t) L PR/ N N N UG NN SN S SO SO
_ 1 0 0 O ‘Tg(t) ; 0 2 4 5 5 10 12 14 16 18 20
q(?)

When | search for a controllety,,;, the matrix X
and the 1 DOF static state feedback controller are ob-
tained as follows:
Figure 4. The step responses®f,(s) : — — —,
Yopt = 1.144 T(s) : —.— and the error function.
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Magnitude [dB]

100
10°

300

200F

Phase [deg]

0
Frecuency [rad/sec]

Figure 5. The Bode diagrams 6f(s) : ...,
Gm(s): ———andT(s): —.—

T(s) is the closed-loop transfer matrix, i.€i(s)
with a 1 DOF static state feedback plus integral cont-
roller as it is seen in Figure 1. Figure 3 and Figure 4
illustrate the impulse responses and the unit step res-
ponses ofG(s), Gy,(s) andT'(s). In Figure 5, the
Bode diagrams of+(s), G,,(s) andT'(s) are shown.
They are matched ovey,,;. As the figures indicate,
the controlled system follows the dynamics of the tar-
get system.

7 Conclusions

In this paper, the continuous-tin¥é., model match-
ing problem by the one degree of freedom static state
feedback with an integral controller is investigated. In
the previous studies, th& ., model matching prob-
lem was not solved by one degree of freedom static
state feedback plus integral control which makes zero
to the steady-state error.

State feedback control with the integral block is
well known, [12]. But in this approach there is no
zero assignment. System zeros affect the response of
a system a little also. The model matching approach
contains poles and zeros assignments. Moreover lots
of control problem (The disturbance rejection, robust
stability etc...) can be solved by using the LMI the-
ory, [7]. In these problems, the solutions are LMIs.
If the disturbance rejection and the model matching
problem are wanted to solve simultaneously, the mat-
rix X > 0 must be found out for all LMI conditions.
Therefore it is important to find the LMI conditions
of solution of the continuous-tim#& ., model match-
ing problem by the one degree of freedom static state
feedback with an integral controller.
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Before the problem is not solved, a block diagram
in Figure 1 which is reduced the problem#f,, op-
timal control problem is proposed and then a synthe-
sis theorem is found out. According to the numerical
example, the model matching is really done and the
steady-state error is zero. However, the model match-
ing performance can be improved, if two LMIs in The-
orem 5 have to be simplified in future.
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