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Abstract: - The Ordered Weighted Averaging (OWA) operator was introduced by R.R. Yager [34] to provide a 
method for aggregating inputs that lie between the max and min operators. In this article we continue to present 
some extensions of OWA-type aggregation operators. Several variants of the generalizations of the fuzzy-
probabilistic OWA operator  - FPOWA (introduced by J.M. Merigo [13,14]) are presented in the environment 
of fuzzy uncertainty, where  different monotone measures (fuzzy measure) are used as uncertainty measures. 
The considered monotone measures are: possibility measure, Sugeno −λ additive measure, monotone measure 
associated with Belief Structure and Choquet capacity of order two. New aggregation operators are introduced: 
AsFPOWA and SA-AsFPOWA. Some properties of new aggregation operators and their information measures 
are proved. Concrete faces of new operators are presented with respect to different monotone measures and 
mean operators. Concrete operators are induced by the Monotone Expectation (Choquet integral) or Fuzzy 
Expected Value (Sugeno integral) and the Associated Probability Class (APC) of a monotone measure. New 
aggregation operators belong to the Information Structure I6 (see Part I, section 3). For the illustration of new 
constructions of AsFPOWA and SA-AsFPOWA operators an example of a fuzzy decision making problem 
regarding the political management with possibility uncertainty is considered. Several aggregation operators 
(“classic” and new operators) are used for the comparing of the results of decision making. 
 
 
Key-Words: - mean aggregation operators, fuzzy aggregations, fuzzy measure, fuzzy numbers, fuzzy decision 
making.  
 
1 Introduction 
In this paper we continue the research concerned 
with quantitative-information analysis of the 
complex uncertainty and its use for modeling of 
more precise decisions with minimal decision 
risks from the point of view of systems approach. 
We continue the construction of new 
generalizations of OWA-type operators in fuzzy-
probabilistic uncertainty [13,14], which condense 
both characteristics of incomplete information - 
an uncertainty measure and an imprecision 
variable in the scalar ranking values of possible 
alternatives in the decision making system. In the 
Part I of this work the definition of the OWA 
operator ([15,17,25-30,34-36] and others) and 
some of its extensions – POWA and FPOWA 
operators were presented. In this work our focus 
is directed to the construction of new 
generalizations of the FPOWA operator described 
in the Section 1 of Part I (definition 5).  

In Section 2 new generalizations of the FPOWA 
operator are presented with respect to different 
monotone measures (instead of the probability 
measure) and different mean operators. New 
versions of the FPOWA operator are defined: 
AsFPOWA operators are induced by the Monotone 
Expectation (ME) ([1,2,5,10,11,20-23] and others) 
and SA-AsFPOWA operators are induced by the 
Fuzzy Expected Value (FEV) 
([3,5,11,12,18,19,21,23,24] and others). All 
generalizations are constructed with respect to 
different monotone measures ([1-12,18-24,31-33] 
and others). Some properties of new operators and 
their information measures [13,14] are proved.  

For the illustration of the applicability of the new 
generalizations of the FPOWA operator an example 
of the fuzzy decision making problem regarding 
political management is considered (Section 3), 
where we study a country that is planning its fiscal 
policy for the next year analogously to the example 
considered by J.M. Merigo in [14]. But we use the 
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possibility distribution (possibility uncertainty) on 
the states of nature of decision making system 
instead of probability distribution (probability 
uncertainty) as considered in [14]. We think our 
approach is more natural and applicable then the 
case presented in [14]. In this example several 
aggregation operators are used for the comparing of 
the results in decision making:  

1. SEV (Shapely Expected Value) operator, 
introduced be R.R. Yager [29];  

2. A new operator SEV-FOWA as a weighted 
combination of SEV and FOWA operators;  

3. New operators – AsFPOWAmin, 
AsFPOWAmean, AsFPOWAmax, SA-
AsFPOWAmin, SA-AsFPOWAmean and Sa-
AsFPOWAmax operators introduced in Section 2. 
The resulting table (see table 8) is presented for 
ordering of the policies. The values of Orness 
parameter are calculated for all presented 
aggregation operators. 
 
 
2 Associated probabilities’ 
Aggregations in The FPOWA 
Operator 

In this Section we construct new aggregations in 
the FPOWA operator (definition 5, Part I) by 
monotone measure’s associated probabilities 
(definition 3, Part II) when the imprecision variable 
is presented by the fuzzy triangular numbers, FTNs, 
(definition 2, Part I). So, we consider the 
Information Structure I6 (definition 7, Part I).  

Let on the states of nature  { }msssS ,...,, 21=
  

of 
General Decision Making System (definition 7, Part 
I) be given some monotone measure [ ]1,02: ⇒Sg  
as a uncertainty measure of incomplete information 
and on S  defined some payoffs (utilities and so on) 
which are presented by  triangular fuzzy numbers as 
expert reflections on possible alternatives. I.e. for 
every alternative and for every state of nature is  
there exists  ( )ii saa ~~ =  - positive triangular fuzzy 
number as some payoff.  So vector { }maaa ~,...,~,~

21  is 
imprecision values of expert reflections on states of 
nature with respect to alternatives. 

Using the arithmetic operations on the triangular 
fuzzy numbers [6,8], presented in section 1, Part I, 
we may define new aggregations in the FPOWA 
operator with respect to monotone measures’ 
associated probabilities. 

 
 
 

2.1.    AsFPOWA operators induced by the 
ME 
Let ( )!: mkM k =Ψ⇒Ψ ++  be some deterministic 
mean aggregation function with symmetricity, 
boundedness, monotonicity and idempotency 
properties ([29] and Section 1, Part I), where 

+Ψ denotes the set of all positive TNF. 
DEFINITION 1:  An associated FPOWA operator 

AsFPOWA of  dimension m is mapping 
++ Ψ⇒Ψ mAsFPOWA : , that has an associated 

objective weighted vector W of dimension  m  such 

that )1,0(∈jw  and  1
1

=∑
=

m

j
jw , and some 

uncertainty measure – monotone measure 
[ ]1,02: ⇒Sg  with associated probability class  

{ }
mSP ∈σσ  and is defined according to the following 

formula: 
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where jb~  is the  jth largest of the miai ,...,1},~{ = . 

 Now we consider concrete AsFPOWA operators for 
concrete mean functions  M  and induced by the ME. 

DEFINITION 2:   
1) Let M  be the  Min -operator  dimension of 

k=m! then 
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2) Let M  be the Max -operator dimension of 
k=m! then 
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3) Let M  be the   averaging operator  

dimension of  k=m!, ,1)...,,,(
1
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4) Let M  be the α -averaging operator 

dimension of k=m!, ,1)...,,,(
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The propositions analogous to propositions 9-12, 
Part II, are true (we omitted this propositions here).  

Now we define concrete AsFPOWA operators 
for concrete monotone measures analogously to 
Section 3, Part II. Consider AsFPOWAmax for 
Sugeno λ -additive monotone measure  - λg . 
Analogously to (37), Part II, we have: 
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Analogously we may construct the face of the 

AsFPOWAmin: 
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Analogously to Section 3, Part II (formulas (38)-(39)) we may construct AsFPOWAmin and 

AsFPOWAmax operators induced by the belief structure’s associated monotone measure (omitted here). We 
also may define some other combinations of different monotone measures and averaging operator M . So, there 
exist many cases of Information Structures on the level I6 for the constructions of the AsFPOWA operator. For 
example - αnAsFPOWAmea
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and others. 
 
Note the information measures of the  

AsFPOWA  operator  - Orness,  Entropy,  Div and 
Bal ([13,14,26] and others) are defined analogously 
to Subsection 3.3, Part II (omitted here). We may 
add the proposition concerning the dual monotone 
measures *g  and *g  [1,20,23] which is general for 
the AsPOWA ( see definition 7, Part II) and 
AsFPOWA operators. 

PROPOSITION 1: Let *g  and *g  be dual monotone 
measures on [ ]1,02 ⇒S ; let AsPOWA*  and AsPOWA* 
(or AsFPOWA* and AsFPOWA*) be AsFPOWA (or 
AsFPOWA) operators constructed on the basis of  the 
measures *g  and ∗g  respectively. Then corresponding 
information measures coincide: 

;;; *
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*
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proofs are analogous. 
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In this proof we use the property of symmetry of the 
function M ; the fact, that Associated  Probability 
Classes of *g  and ∗g  coincide { } { }

mm SS PP
∈σσ∈σσ
∗∗

≡ *
*  

(see proposition 2, Part II) and *
)1()(* +−σσ ∗

≡ jmj PP  , where 

σ  and ∗σ  are dual permutations  (Section 2, Part II). 
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2.2.    AsFPOWA operators induced by the 
FEV 
Now we define new generalizations of the FPOWA 
operator induced by the ( )PFEV . The values of 
imprecision of the incomplete information on S are 
presented by the fuzzy variable  

( ) ).,..,2,1~~(
,:~,~
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ii =Ψ∈=
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DEFINITION 3: A Sugeno Averaging FPOWA 
operator SA-FPOWA  of dimension m  is mapping  

++ Ψ⇒Ψ− mFPOWASA : , that has an associated 
weighting vector W of dimension m  such that 

[ ]1,0∈jw
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On the basis of definition 8, Part II, and 
analogously to definition 1 we present a definition 
of the AsFPOWA operator induced by the FEV with 
respect to some monotone measure [ ]1,02: ⇒Sg . 

DEFINITION 4: A Sugeno Averaging AsFPOWA 
operator SA-AsFPOWA of dimension m  is mapping  

++ Ψ⇒Ψ− mAsFPOWASA : , that has an 
associated objective weighted vector W of 

dimension m  such that  [ ]1,0∈jw  and 1
1

=∑
=

m

j
jw ; 

some uncertain measure – monotone measure 
[ ]1,02: ⇒Sg  with associated probability  class 

{ }
mSP ∈σσ  

defined according  the following formula: 
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M  is some averaging operator.   
Analogously to Subjection 3.2, Part II (formulas 

44-45) we may define new SA-AsFPOWA  
operators induced  by the FEV with respect to 
concrete monotone measures: Sugeno λ -additive 
measure, possibility measure, believe structure’s 
associated monotone measure and others (but these 
procedures are omitted here). 

 
 

3. Example 
Analogously to [14] we analyze an illustrative 
example on the use of new AsFPOWA and SA-
AsFPOWA operators in a fuzzy decision-making 
problem regarding political management. We study 
a country that is planning its fiscal policy for the 
next year. 

Assume that government of a country has to 
decide on the type of optimal fiscal policy for the 
next year. They consider five alternatives: 
d1: “Development a strong expansive fiscal policy”; 
d2: “Development an expansive fiscal policy”; 
d3: “Do not make any changes in the fiscal policy”; 
d4: “Development of a contractive fiscal policy”; 
d5: “Development a strong contractive fiscal 
policy”. 

In order to analyze these fiscal policies, the 
government has brought together a group of experts. 
This group considers that the key factors are the 
economic situations of the world (external) and 
country (internal) economy for the next period. They 
consider 3 possible states of nature that in whole could 
occur in the future. 
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s1: “Bad economic situation”; 
s2: “Regular economic situation”; 
s3: “Good economic situation”. 
As a result the group of experts gives us their 

opinions and results. The results depending on the 
state of nature is  and alternative  kd  that the 
government selects are presented in the Table 1: 

 
Table 1: Expert’s valuations in TFNs 

 

D
S  

1s  2s  3s  

1d  (60,70,80) (40,50,60) (50,60,70) 

2d  (30,40,50) (60,70,80) (70,80,90) 

3d  (50,60,70) (50,60,70) (60,70,80) 

4d  (70,80,90) (40,50,60) (40,50,60) 

5d  (60,70,80) (70,80,90) (50,60,70) 
 

Following the expert’s knowledge on the world 
economy for the next period, experts decided that 
the objective weights (as an external factor) of states 
of nature must be ( )2,0;3,0;5,0=W , while for the 
economy of the country for the next period the 
occurrence of presented states of nature is defined 
by some possibilities (as an internal factor). So, 
there exist some possibilities (internal levels), as an 
uncertainty measure, of the occurrence of states of 
nature in the country. This decision making model 
(Information Structure I6) is more detailed than the 
model (Information Structure I4) presented in [14]. 
In another words in decision model we cannot 
define the objective probabilities )( ii sPp =  for the 
future events, but we can define subjective 
possibilities )( ii sPos=π based on the experts’ 
knowledge ([4,8,20] and Section 2, Part II). Based 
on some fuzzy terms of internal factor – country 
economy experts define the possibility levels of 
states of nature:   

.5,0)(
;1)(

;7,0)(

33

22

11

=π≡
=π≡
=π≡

sposs
sposs
sposs

 

So, we have the Information Structure I6 of 
general decision making system (definition 7, Part 
I), where [ ]1,02:(.): ⇒= SPosg , 

SAAPos iAsi
⊆∀π=

∈
,max)( ; 

(a monotone measure is a possibility measure).  
 
 
 

In this model as in [14] 3,0≡β . Decision 
procedure is equivalent to the detalization of GDMS 
as the Information Structure I6 (but in [14] the 
author had the IS as  I4). So, for every decision d  
payoffs’ values are the column from Table 2; 

)2,0;3,0;5,0(;: == WPosg ; 6II = ; 
AsFPOWAF =  or AsFPOWASAF −=  and 

others. Im  is the quadruple structure  (definition 7, 
Part I). For ranking of alternatives { }51,..,dd we 
must calculate its AsFOWA or other operators. For 
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It is clear that k=m!=3!=6 and for calculation of 

the AsFPOWA operator we firstly define                                             
the associated probability class { }

3SP ∈σσ  for the 
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The results are presented in the Table 2: 
 

Table 2: Associated Probability Class - 
3

}{ SP ∈σσ  
 

( ) ( ) ( )( )3,2,1 σσσ=
=σ

 ( )1σP  ( )2σP  ( )3σP  

( ) 13,2,1 σ=  7,01 =P  3,02 =P  03 =P  
( ) 22,3,1 σ=  7,01 =P  03 =P  3,02 =P  
( ) 33,1,2 σ=  12 =P  01 =P  03 =P  
( ) 41,3,2 σ=  12 =P  03 =P  01 =P  
( ) 52,1,3 σ=  5,03 =P  2,01 =P  3,02 =P  
( ) 61,2,3 σ=  5,03 =P  5,02 =P  01 =P  

 
Following the Table 2 we calculate Mathematical 

Expectations - ( ){ }
3SPE

∈σ
⋅

σ
 (Table 3) and Fuzzy 

Expected Values -
mSPFEV ∈σσ

(.)){ (Table 4). 
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Table 3: Mathematical Expectations - ( ){ }

3SPE
∈σ

⋅
σ  

( )⋅
σPE

     
σ  

1σ  2σ  3σ  4σ  5σ  6σ  

( )1dEPσ
 (54,64,74) (54,64,74) (40,50,60) (40,50,60) (49,59,69) (45,55,65) 

( )2dEPσ
 (39,49,59) (39,49,59) (60,70,80) (60,70,80) (59,69,79) (65,75,85) 

( )3dEPσ
 (50,60,70) (50,60,70) (50,60,70) (50,60,70) (55,65,75) (55,65,75) 

( )4dEPσ
 (61,71,81) (61,71,81) (40,50,60) (40,50,60) (46,56,66) (40,50,60) 

( )5dEPσ
 (63,73,83) (63,73,83) (70,80,90) (70,80,90) (58,68,78) (60,70,80) 

 
Table 4: Fuzzy Expected Values - 

mSPFEV ∈σσ
(.)){  

( )⋅
σPE

       
σ  

1σ  2σ  3σ  4σ  5σ  6σ  

( )1dEPσ
 (70,70,70) (70,70,70) (50,60,70) (50,60,70) (40,50,60) (40,50,60) 

( )2dEPσ
 (30,40,50) (30,40,50) (60,70,80) (60,70,80) (60,70,80) (60,70,80) 

( )3dEPσ
 (50,60,70) (50,60,70) (50,60,70) (50,60,70) (50,60,70) (50,60,70) 

( )4dEPσ
 (40,50,60) (40,50,60) (40,50,60) (40,50,60) (40,50,60) (40,50,60) 

( )5dEPσ
 (60,70,80) (60,70,80) (70,80,90) (70,80,90) (40,50,60) (40,50,60) 

 
Now we may calculate the values of different variants of the AsFPOWA and SA-AsFPOWA operators with 

respect to different averaging operators M (Tables 5 and 6): 

Table 5: Aggregation results 
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d1 (53,63,73) (46,57,68) (48,59,70) (44,54,64) (54,64,74) (49,59,69) 

d2 (59,69,73) (53,64,75) (55,66,77) (45,55,65) (64,74,84) (57,66,75) 

d3 (55,65,75) (51,62,73) (52,63,74) (52,62,72) (56,66,76) (53,63,73) 

d4 (63,73,83) (47,58,69) (52,63,74) (45,55,65) (60,70,80) (51,61,71) 

d5 (63,73,83) (63,74,85) (63,74,85) (60,70,80) (68,78,88) (64,74,84) 
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Table 6: Aggregation results 

 
For possibility distribution  { }m

ii 1=π  and payoff vector 
( )maaa ~...,,~~

1=  R.R. Yager in [29] defined the 
aggregation mean operator - Shapely Expected Value 
(SEV) for possibility uncertainty:   

( ) ∑
=

π
σσ=

m

i
iim PaaaSEV

1
)()(1

~...,,~ ,                      (11) 

where { }m

iiP
1)( =

π
σ  is the probability distribution on 

( )mssS ...,,1=  induced by possibility distribution 
{ }m

ii 1=π : 

∑
σ

=

−σσπ
σ −+

π−π
=

)(

1

)1()(
)( 1
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jj
i jm
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and ( ){ })(,...,1 mσσ=σ
 
is some permutation from 

mS  form which .1...0 )()1()0( =π≤≤π≤π= σσσ m  
On 

the other hand this values are Shapley Indexes of 
a possibility measure with a possibility 
distribution { }m

ii 1=π .  
 

It was proved [29] that the ( )⋅SEV  coincides with 
the ME for possibility measure: 

( ) ( )

( )∫ α=α≥=

==
1

0

11

,...,1~

~...,,~~...,,~

dmiaPoss

aaMEaaSEV

i

mPossm

.
 

On the basis of definition SEV we connect the 
SEV operator to the OWA operator as weighted 
sum. So we consider new generalization of the 
FOWA operator in Information Structure I6:  
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Calculating numerical values of the FOWA 
([13,14] and definition 3, Part I), SEV, SEV-
FOWA, AsFPOWAmin, AsFPOWAmax, 
AsFPOWAmean, SA-AsFPOWAmin,        SA-
AsFPOWAmax, SA-AsFPOWAmean operators we 
constructed the Decision Comparing Matrix (Table 
8). Firstly we calculated Shapely Indexes - 
{ } 3,1, =π jPi   for the possibility measure (Table 7). 

 
Table 7:  Shapley Indexes of the possibility 
distribution. 
 

π
iP  15/4  30/17  6/1  

is  1s  2s  3s  

 
According to the information received in this 

Section, we can rank the alternatives from the most 
prefered to the less prefered. The results are shown 
in table 8.  
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d1 (44,54,64) (65,68,71) (55,61,69) 

d2 (37,47,57) (58,68,77) (51,61,70) 

d3 (51,61,71) (51,61,71) (51,61,71) 

d4 (44,54,64) (44,54,64) (44,54,64) 

d5 (44,54,64) (65,75,85) (56,66,76) 
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Table 8: Ordering of the policies 
 

N Aggreg. Operator Ordering Information 
Structure 

1 FOWA 13245 ddddd =  I2 

2 SEV 14325 ddddd =  I6 (without weights) 

3 SEV-FOWA 13425 ddddd  =  I6 

4 AsFPOWAmin 14235 ddddd  =  I6 

5 AsFPOWAmax 13425 ddddd   I6 

6 AsFPOWAmean 14325 ddddd   I6 

7 SA-AsFPOWAmin 21453 ddddd  ==  I6 

8 SA-AsFPOWAmax 43125 ddddd   I6 

9 SA-AsFPOWAmean 41235 ddddd   I6 
 
We also calculated values of the Orness parameter of the aggregation operators presented in Table 9. 

 
Table 9: Orness values 
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α  0,65 0,55 0,58 0,37 0,79 0,58 0,68 0,89 0,79 

 
Following Table 9 we see that for the nearer of SA-AsFPOWA operators  is  to  on or, the closer its measure is to 

one, while AsFPOWAmin operator  is to on and, the closer is to zero. Calculations of other information measures are 
omitted here. More on these measures of new aggregation operators we will present in our future papers. 
 
 

4 Conclusions 
New generalizations of the FPOWA operator were 
presented with respect to monotone measure’s 
associated probability class (APC) and induced by the 
Choquet and Sugeno integrals (finite cases). There 
exist many combinatorial variants to construct faces or 
expressions of generalized operators: AsFPOWA and 
SA-AsFPOWA for concrete mean operators (Mean, 
Max, Min and so on) and concrete monotone measures 
(Choquet capacity of order two, monotone measure 
associated with belief structure, possibility measure 
and Sugeno −λ additive measure). Some properties of 

new operators and their information measures  
(Orness, Enropy, Divergence and Balance) are proved. 
But only some variants (AsFPOWAmax, 
AsFPOWAmin and others) are presented, the list of 
which may be longer than it is presented in the paper. 
So, other presentations of new operators and  
properties of information measures will be considered 
in our future research. An example was constructed for 
the illustration of the properties of generalized 
operators in the problems of political management. 
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