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Abstract: - The Ordered Weighted Averaging (OWA) operator was introduced by R.R. Yager [58] to provide a
method for aggregating inputs that lie between the max and min operators. In this article several variants of the
generalizations of the fuzzy-probabilistic OWA operator - POWA (introduced by J.M. Merigo [27,28]) are
presented in the environment of fuzzy uncertainty, where different monotone measures (fuzzy measure) are
used as an uncertainty measure. The considered monotone measures are: possibility measure, Sugeno
A —additive measure, monotone measure associated with Belief Structure and capacity of order two. New
aggregation operators are introduced: AsPOWA and SA-AsPOWA. Some properties of new aggregation
operators are proved. Concrete faces of new operators are presented with respect to different monotone
measures and mean operators. Concrete operators are induced by the Monotone Expectation (Choquet integral)
or Fuzzy Expected Value (Sugeno integral) and the Associated Probability Class (APC) of a monotone
measure. For the new operators the information measures — Orness, Entropy, Divergence and Balance are
introduced as some extensions of the definitions presented in [28].

Key-Words: - mean aggregation operators, fuzzy aggregations, fuzzy measure, capacity of order, associated
probabilites, most typical value, Finite Sugeno Averaging, Finite Choquet Averaging, body of evidence,
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1 Introduction [18,19,41,42] of a compatibility function
Our research is concerned with quantitative- (membership function) of some imprecise variable
information analysis of the complex uncertainty and with respect to some monotone measure is
its use for modeling of more precise decisions with presented. The Fuzzy Expected value (FEV) [9]
minimal decision risks from the point of view of and Monotone Expectation (ME) [5] are
systems approach. The main objects of our attention interpreted as important MTVs of a compatibility
are 1) the analysis of Information Structures of function. The probability representations of ME
experts knowledge, their uncertainty measure and and FEV are presented by the APC of a monotone
imprecision variable, which was constructed in the measure. Also in this Subsection the associated
Part | of this work; 2) the construction of probabilities representations are considered for
instruments  of aggregation operators, which the Choquet capacity of order two [7], possibility
condense both characteristics of incomplete measure [11], Sugeno % —additive measure [45]
information - an uncertainty measure and an and a monotone measure associated with
imprecision variable in the scalar ranking values of Dempster-Shafer Belief Structure [45].
possible alternatives in the decision making system. In Section 3 new generalizations of the POWA
Some aspects of this problem are considered in operator (definition 4, Part I) are presented with
current Part of our research. respect to different monotone measures (insert of the
In Section 2 some preliminary concepts are probability measure) and different mean operators.
presented. Probability representations  — New versions of the POWA operator are defined.

Associated Probability Class (APC) of a AsPOWA operator is induced by the ME and SA-

monotone measure [5,37,39,42,44] is considered AsPOWA operator is induced by the FEV. In
for different classes of a monotone measure. Subsection 3.3 the genera“ZEd variants of information

Concepts of the Most Typical Value (MTV) measures — Orness, Entropy, Divergence and Balance
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are introduced for the new aggregation operators.
Some properties of new operators are proved.

2 Associated probabilities of a

monotone measure
When trying to functionally describe insufficient
expert data, in many real situations the property of
additivity remains unrevealed for a measurable
representation of a set and this creates an additional
restriction. Hence, to study such data, it is
frequently better to use monotone measures instead
of additive ones.

We introduce the definition of a monotone
measure (fuzzy measure) [45] adapted to the case of
a finite referential.

DEFINITION 1: Let S=1{s,s,,..,s,} be a finite

set and g be a set function g:2° = [0,1]. We say

g is a monotone measure on S if it satisfies

() 9@)=0; g(s)=1

(i) VABCS,if AcB, then g(A)<g(B).

A monotone measure is a normalized and
monotone set function. It can be considered as an
extension of the probability concept, where additivity
is replaced by the weaker condition of monotonicity.
Non-additive but monotone measures were first used
in the fuzzy analysis in the 1980s [45] and is well
investigated ([8, 15, 21-23, 37-39, 44, 45, 54-56, 62]
and others).

A fuzzy integral is a functional which assigns
some number or a compatibility value to each fuzzy
subset when the monotone measure is taken as an
uncertainty measure. As known ([10, 15, 18, 19, 25,
26, 37, 38, 45, 63] and others), the concept of a
fuzzy integral condenses the information provided
by a compatibility (or membership) function of a
fuzzy set and a monotone measure. Having the
monotone measure determined, we can estimate a
fuzzy subset by the most typical compatibility value
- most typical value (MTV) ([18, 19 ,41-45] and
others) or a fuzzy average. As already known, fuzzy
averages (MTVs) differ both in form and content
from probabilistic—statistical averages and other
numerical characteristics such as mode and median
and others. Nevertheless, in some cases ‘non-fuzzy’
(objective) and ‘fuzzy’ (subjective) averages
coincide ([18, 19, 41-45] and others). For a given set
of fuzzy subsets with compatibility function values
from the interval [0; 1], the fuzzy average
determines the most typical representative
compatibility value. From the point of our future
presentations in the role of MTV we consider only
two fuzzy statistics (integrals):
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1. Monotone Expectation — ME (or Choquet
Integral) and

2. Fuzzy Expected Value — FEV (or Sugeno
Integral). So, we consider some aspects of a
monotone measure in fuzzy statistics.

DEFINITION 2: Assume S={s,,s,,...,S, | is a set

on which we have a monotone measure g and a

function a:S=R; such that
a(s)=a>0,i=12,...,m.
Then
a) The aggregation
ME, (a,8,,..,a,) =
(1)

= FCA(a,, a,,..,a,) = ijai(n '

j=1
Where |
Wi = 9({%)' ----- ’Si(n})_ 9({5“1)' -----  Sicjy j)
g({si(o)})so, is called a Finite Choquet
Averaging (FCA) or Monotone Expectation (ME)
operator. In the proceeding i(-) is index function
such that a,,, is the jth largest of the {a, |7,

b) The aggregation
FEV,(a,...,a,) =FSA(a,,..,a,) =

= 8y MaAX mm{ai(j)/amax ; Wj},

2
Wj = g({si(l)'Si(z)""'si(j)}) )
is called a Finite Sugeno

where

amax = n'_]?({al}
Averaging (FSA) or a Fuzzy Expected Value
(FEV) operator.
The ME always exists and is finite for each

monotone measure g and some compatibility

variable a. It is obvious that ME (a) is a

generalization of the mathematical expectation
E.(a) and the ME of a non-negative function a

with respect to a monotone measure g coincides

with the mathematical expectation of a with
respect to a probability measure that depends
only on g and the ordering of the values of a.

Following the definition 2a the maximum
number of probability distributions in ME (formula
1) coincides with the number of possible orderings
or permutations in a set with melements, that is,
m!. Thus, it makes sense to associate the m!
probabilities to each monotone measure, provided
that they are deduced from this monotone measure
through the different possible orderings.

In general, the possible orderings of the elements
of S are given by the permutations of a set with m
elements, which form the group S, .
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DeFINITION 3 [5]: The probability functions P,
defined by
R (Sctl) ) =9 ({Sca, })

P, (Sc(i) ) = g({sc(l) e So(i) })_ g({SG(D e Soiy })

P, (Sc(m) ) =1-g ({Sca) e So(moy) })
(3)

for each o=(c(1),5(2)...,c(m))eS,, are called
the associated probabilities and the Associated
Probability Class (APC) -{P.}..; of the monotone
measure g .

An interesting case is when the monotone
measure is a probability. It is easy to prove that in
this case, all associated probabilities are equal.

PROPOSITION 1 [5]: A monotone measure g isa
probability measure (g = p) if and only if its m!
associated probabilities coincide.

The concept of duality of monotone measures is
very important, since it permits one to obtain
alternative representations of a piece of information.

Monotone measures g, and g° are dual if

0.(A)=1-g"(A),VAcS . So, we will consider a

monotone measure and its dual measure to contain
the same information, but codified in a different
way. The most remarkable case where different
monotone measures provide the same m!
probabilities, but ordered in a different way, is the
case of dual monotone measures. Before exposing it
in the following proposition, we need a definition:
DEFINITION 4: We will say that two

permutations 0,6 €S, are dual if
c'(i)=c(m-i+1), i=1..,m.

PROPOSITION 2 [5]: A necessary and sufficient
condition for two monotone measures g, and g” to

be dual is to have the same m! associated
probabilities corresponding to dual permutations,

that is, P, = PG if o and " are dual, where P,

and P° are associated probabilities for the
measures g, and g* respectively.

An especially interesting class of monotone
measures is the capacities of order two [7], because
they cover a great number of monotone measures.

DEFINITION 5: Let (g*,g*) be a pair of dual

monotone measures:
g. is a lower capacity of order two if and only if

VABCcS, g.(AUB)+g.(AnB)>g.(A)+.9.(B)
g" is an upper capacity of order two if and only if

ceS

VABcS, g'(AUB)+g'(AnB)<g’(A)+.g°(B)
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The most used classes of monotone measures such
as belief and plausibility measures [35], necessity and
possibility ones [11], A -measures [45] and
probabilities are capacities of order two.

PROPOSITION 3 [5]: Let (g*, g*) be a pair of dual
monotone measures. Then g, is a lower capacity of
order two (g. is an upper capacity of order two,

respectively) if and only if
g.(A)=minP,(A) VAC X,

(4)

So the main characteristic of a capacity of order
two is that it only depends on the probabilities
associated to such a measure, but does not depend
on the permutations that generate them: we can
regenerate the initial monotone measure by only
knowing its associated probabilities, without the
necessity to know the corresponding permutations.
This characteristic makes the use of capacities of
order two by means of associated probabilities
especially easy.

Starting from this property, the following result
is evident and valid for every monotone measure:

PROPOSITION 4 [5]: If P,c€S,, are the

associated probabilities to a monotone measure g,

(g"(A)= max P.(A) VAC X, ).

then for every a:X —>R; , it holds
minE, (a)< ME, (a)< maxE, (a). (5)

PROPOSITION 5 [39]: A necessary and sufficient
condition for a pair of dual fuzzy measures (g*, g*)
to be lower and upper capacities of order two,
respectively, is that Va:X ->R;,
ME, (a)= minE, (a) ME_.(a)= max E,, (a). (6)

Let S® (sn@csm) be the subgroup of all
permutations such that Vo e S,

a(sc(l))z ‘3‘(56(2))Z w2 a(sc(m) ) (7)

Following Proposition 2 and Definitions 2-4

there exist some connections of mathematical
expectations with respect to dual associated

probability P,_; P*c(cs € Srff)):

ME, (a)= Ee., (a)= Zi: P, (Sc(i) )a(sc(i) )
MEg* (a) = Ep; (a) = i Pc* (Sc(i) )a(sc(i) ) =, (8)

i=1
m

= Z Pe. (Sc*(m—iﬁ) )a(scs*(m—iﬂ) ) =B, (a)

I
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where P_ and P."are associated probabilities for

g. and g* monotone measures, respectively; ¢ and
o, are dual permutations and a is symmetric.

2.1.  Probability representation of the FEV
It clearly follows that (definition 2b) the FEV
somehow ‘averages’ the values of the compatibility
function a not in the sense of a statistical average
but by cutting subsets of the o level, whose values
of monotone measure g are either sufficiently
‘high> or sufficiently ‘low’. The FEV gives a
concrete value of the compatibility function a, this
value being the most typical characteristic of all
possible values with respect to the monotone
measure g, obtained by cutting off the ‘upper’ and
‘lower’ strips on the graph of
g(H,)=g({s/a(s)>a}). Thus, the incomplete
information carried by an imprecision variable a
and an uncertain measure g is condensed in the
FEV, which is the MTV of all compatibility levels
of a. Following definition 2b for all permutation

such that ceS®™ the FEV can be written by the

associated probabilities of a lower capacity of order
two g, as

FEV,, (a)=a, mln m|n max{a(sc(l)/amax) P (Ai(c))}

(9)

where A = {sc(l),sc(z),....,sc(i)}, i=1.,m.

Let (g*, g*) be a pair of a dual lower and upper
capacities of order two. Using propositions 2, 3 and
formula (9) the FEV can be written, Vo e S®:

FEV, (a)=a,,

7m(SE

FEV.(a)=a

IITICSE

= 8, MAX MaX mln{a(s )/ 8o P (A7)}

i=L,m o'eS,

(10)

2.2. Dempster-Shafer Belief Structure

and Its Associated Probabilities

The Theory of Evidence (Dempster—Shafer Belief

Structure) ([11, 15, 22, 23, 25, 32, 37, 43, 56,59,62]

and others) is a powerful tool which enables one to

build:

1. Models of decisions and their risks’ measures;

2. Aggregation operators in an uncertain environment and so
on.
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The Theory of Evidence is based on two dual
monotone  measures:  Belief  measures and
Plausibility measures. These classes of monotone
measures are subclasses of classes of dual lower and
upper capacities of order two. This is easily
provable after introduction of Belief and Plausibility
measures ([22, 23] and others). Belief and
Plausibility measures can be characterized by the set
function:
m:2° =[0;1],
which is required to satisfy two conditions:

@ m@)=0,

(b) > m@)=1.

Be2®

This function is called a Basic Probability
Assignment (BPA). For each set Be2°, the value
m(B) expresses the proportion that all available and
relevant evidence supporting the claim that a
particular element of S, whose characterization in
terms of relevant attributes is deficient, belongs to
the set B. This value m(B), pertains solely to one
set —B; it does not imply any additional claims
regarding subsets of B. If there is some additional
evidence supporting the claim that the element
belongs to a subset of B, say B, < B, it must be
expressed by another value m(B,) [23].

Let m be a PBA on S. The plausibility measure
Pl associated to m is given by
PIA)= > m(B), VAe2®

BcS: ANB=@

(11)

and the Belief measure Bel associated to m is
given by
Bel(A)= D> m(B), VAe2°.

B:BcA

Inverse procedures are also possible. Given, for
example, a Belief measure Bel, the corresponding

BPA is determined for all A< 2°® by formula
m(A) = " (-1)**Bel(B),
B:BcA

|A\B| is the cardinality of the set

difference of A and B. If the Belief measure is also
additive that is

Bel(AU B) = Bel(A) + Bel(B),

if ANB=g, ABe2®
then we obtain the classical probability measure [23].

Given a BPA, every set Ae2® for which
m(B)>0 is called a focal element. The pair
(F;, m) where F; denotes the set of all focal

elements induced by mis called a Body of
Evidence. Because Bel is a lower capacity of order

(12)

where

, (13)
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two, then using proposition 3 and formulas (29) and
(30) we receive probability representation of the

BPA, VAe2®, ceSs,:

P(EBeI)(SGU)): Z m(B),
BeFs:B{s5 (1), 5o (i)}
B{Ss(i)}*@
m(A) = z (_ 1)\A\B\ mgn PéBeI)(B)'
Befg:BcA osm
(14)

where {PG‘Be"}GESm are the associated probabilities of
the monotone measure Bel .

2.3.  Possibility Measure and Its
Associated Probabilities
When the focal elements of a body of evidence

(Fg, m) are required to be nested,
F= {AJ.1 c Ai2 c..C AjI } the associated belief and

plausibility measures are called consonant [23]. The
special branch of the evidence theory that deals only
with bodies of evidence whose focal elements are
nested is referred to as the possibility theory [11].

Special counterparts of Bel measures and Pl
measures in the possibility theory are called
necessity (Nec) measures and possibility (Pos)
measures, respectively:

PROPOSITION 6 [23]: Given a consonant body of
evidence (F;, m), the associated consonant belief

(necessity) and plausibility (possibility) measures
possess the following properties:

Nec(AN B)=min{Nec(A); Nec(B)} for all A Be2°,
Pos(AU B)= max{Pos(A); Pos(B)} for all A B e 2°.

(15)
PROPOSITION 7 [23]: Every possibility measure
Pos on 2° can be uniquely determined by its

possibility  distribution  function w:S = [0,1];
max n(s) =1 via the formula:
vV Ae2®, Pos(A) = max n(s). (16)

Assume the finite universe S=1{ss,,...,s,} is
given and let F; ={A, c A c..c A} be some

consonant body of evidence.
Let

m, zm(Ajl ) i=1..1

mo=ns) T 2w, i=1..,mnr =1
Then, we have the | -tuple

m=<mh, mjz,...,mh> (17)

and m-tuple
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TE=<TEl, TEZ,...,ﬂ:m>. (18)
It is easy to show that
m = ijv, i=12,..,m
visieAj, <Fs (19)

m o=m, -m,_, 7w, =0, i=12,.1
i Ji Jiv I

Let {Pcfp‘”)}%sm be the associated probabilities

class of a possibility measure Pos. Then, we have
the following connection between {r,}, {m. | and

Ji
{P }Gesm VoeS§,

(o]

P (5.9 = POSI18 911810 )= PO 910081 ) =
=maxn(s,,,) — Max n(s,,) =
v=L,i v=li-1

2 m, —max  ym, =

q:sd<v)equ eFg q:ss(v)equ eFg

S1o2m, -

q:sc(i)equer

=Mmax

v=l,i

0, otherwise
>om,, if o(i) < (i)
q:sc(ir)equer

(20)
Since Pos is a capacity of order two, using
proposition 5 we receive:
m, = Pos({s,f) =max P™({s},), i=12...,m,
(21)
mii =Ty T, T

- rllgj( PP ({sji })— rllzsiz( p(F) ({sjm}), i=12..,1
(22)

2.4, Monotone Measures Associated with
a Belief Structure and Its Associated
Probabilities

Let m be a BPA with a body of evidence
FS:{Al,AZ,...,Aq}. For each focal element

A, j=1..q, let WjO be a weighting vector of
A G
(\NJOE<W?(1),...,W?(|Aj|)>) satisfy the conditions
w(i)ef0,1] Z‘i:‘w‘j’(i)zl. We shall call these

the allocation vectors. In [56], it was shown that a
set function g:2° — [0,1] defined by

g(A)=Z[m(AJ)-

j=1

dimension whose  components

\Aij\

zwf(i)],....VAezs

i=1

(23)
is @ monotone measure associated with the belief

structure. Thus, by selecting a collection
W= Mlo,WZO,...,WqO} of allocation vectors, we can
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define a unigue monotone measure associated with a
belief structure. For example: if all the Wj0 are such

thatw‘jJ (1) =1, then the resulting monotone measure
is the plausibility measure PI. If all Wj0 are

selected such that w? (‘Aj ‘) =1, then this results in the

belief measure Bel.

We have the following important proposition
concerning all associated monotone measures with a
belief structure.

PROPOSITION 8 [56]: If g is any monotone

measure generated from a collection of allocation
vectors, then

(a) Bel(A) < g(A)<PI(A) VA € 2°;
(b) The Shapley Entropy of generated
monotone measures coincide

Eshapley (Bel ) = Eshapley (g) = EShapIey (PI ) )

I.e. generated monotone measures have the same
information but codified in a different way.

Now, we shall compute the associated
probabilities of a monotone measure g associated

with the belief structure: VoeS ,Vi=12,..,m.

P, (8.)) = 9018,y Su )= 9080y o0 Sy §)=

q ‘Ajm{sc(l) ..... Sc(i)}‘ ‘Ajr\{scu) ..... Sc(i—l)H

=Zm(Aj dwv)-  Ywv)|= (29
j=1 v=l v=1

= Z%m(Aj)w‘]?(]Aj N {30(1),---,56@)}0-

AjeFs:Ajisa(i) 20

2.5.  Sugeno A -additive Monotone

Measure and Its Associated Probabilities
DEFINITION 6 [45]: A monotone measure

9,:2°=[0,1] (\>-1) is called a »-additive
monotone measure if for any A,Be2°, ANB=0,
gx(AU B): gx(A)"' gx(B)"')‘gx(A)' gx(B)'
(25)

It is easy to verify that for any Ae 2°

o.(3-H[Ter0)1,

sieA

(26)

where 0<g, =g({s,}) i=1..,m A >-1 is the
parameter with following normalization condition:

%{H(l+kgi)—l}=l.

sjeS

(27)

ISSN: 2367-8917

78

International Journal of Control Systems and Robotics
http://www.iaras.org/iaras/journals/ijcsr

Note, that g, (A =0) is a probability measure if
Zgi =1.
sjeS

It is easy to prove that the A -additive monotone
measure g, is a capacity of order two and

g; = 0@y -
Due to (26), (27) and (3), we can write the class
of associated probabilities for the X -additive

monotone measure g, forany ce S, as
i-1

P, (so(n ) =0, ({scm })1__1[ (1"‘ g, ({Sc(j) })) (28)
or, more exac_:tly, as
P,(5)=, (s )] [ 0+20, (5., ) 29)

j=1
where i=12,...m, oS, ; i(o) is the location of
s, in the permutation o (if i(c)=1, then

H(;:l =1).

Probabilities’
the POWA

3. Associated
Aggregations  in
Operator

Different approaches were developed by the authors,

which constructed aggregation operators with respect

to a monotone measure, where 11-16 and other levels
of Information Structure (definition 7, Part 1) were

considered ([1-4, 6, 9, 10, 13, 14, 16, 17, 20, 21, 24-34,

36-44, 46-55, 57-61, 63] and others). But for the

POWA or FPOWA-type operators (definitions 4 and

5, Part 1) Information Structures on the levels 15 and 16

(or weighted OWA operators constructed on the basis

of a monotone measure) were not investigated. So, we

leave the Information Structures 11-14 and go to the
levels of 15 and 16. In this paper we consider the level

I5 and we will consider the level 16 in the Part 111 of

this work.

It is important that in the aggregation operators
POWA and FPOWA the both nature of incomplete
information: 1. An uncertain measure (probability
distribution {p,} ) and 2. An imprecision variable

(random variable (a) or fuzzy variable (a)) are
condensed in the outcome values, which gives us
more credibility to use these aggregation operators
in applications.

In this Section we define new generalization of
the POWA operator where more general measure of
uncertainty — monotone measure (fuzzy measure) is
used instead of probability measure in the role of
uncertainty measure.

Volume 1, 2016



G. Sirbiladze et al.

3.1
ME
Let on the states of nature S ={sl,sz,.. S

AsPOWA operators induced by the

.S, | be
given some monotone measure g:2° =[0,1]
instead of probability measure
P={p,, P, P, 1 P; =P(s,) There exist many
aggregations in the decision making systems when
we use monotone measure g as a measure of fuzzy
uncertainty ([10, 15, 18, 19, 24-26, 36, 37, 39, 40-
43] and others) the definition of which was given in
Section 2. In Section 2 the FEV and ME were
defined along with their probability representations
by associated probability class (APC) {P.}

where the number of probability distributions on S
is equal to k=m! . We have k values of

mathematical expectations for random or fuzzy-

)
oeSp,

random  variable a- i, (a)j _, where
E, ()= aP,(s) oes, (30)
i=1

So, we will focus on the use of m! mathematical
expectations in the POWA operator, instead of one

expectation E,(a)=>ap,, as a more usual
extension of this operator.
Let M :R* = R, k =m! be some deterministic

mean aggregation function with symmetricity,
boundedness, monotonicity and idempodency
properties (see the definition in the Section 2, Part

). Let a:S = R, be some variable.

DEFINITION 7: An associated POWA operator -
AsPOWA of dimension m is a mapping
AsPOWA:R™ = R',that has an associated
objective weighted vector W of dimension m such
that w; €[0,1] and > w; =1, some uncertainty

i=1
measure - monotone measure g :2° = [0,1] with
associated probability class {P,} . , and is defined

'
ceSy,

according the following formula:

AsPOWA(a,, a,,...,a, )= [3iwjbj +
i1

+(1—B)-M{izm1:aiPU(si)/ce smjz

_ By wp, + A~ B)-ME, (@) E, @) E, ()]

(31)
where b, isthe jth largest of the {a;},i=1...,m.

2
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It is easy to prove that in general cases of
operator M the AsPOWA operator is induced by
the ME:

PROPOSITION 9: Let M be the Min operator,
then ASPOWA operator may be written as:
AsPOWAmIn(a,,a,,....a, )=

= Bzmlebj +@1-B)- ngn(zm:aiPﬁ(si )/G € Sm) ,

(32)
and if monotone measure g is a lower capacity of
order two, then in the ASPOWAmin operator the
second addend coincides with ME, :

AsPOWAmIn(a,, a,,...,a, )=

=B-OWA(a,,a,,...a,)+ (L-PB)-ME,(a, a,,...a,)
(33)
PROPOSITION 10: Let M be the Max operator,
then ASPOWA operator may be written as:
AsPOWAmax(a,, a,,...,a, )=

=B wb, +(@1-p)- T?X(Z aP_(s, )J ,
=l "\ i
and if monotone measure g is an upper capacity of

order two, then in the ASPOWAmax operator the
second addend coincides with ME, :

AsPOWAmax(a,, a,,...,a, )=

=B-OWA(a,,a,,...a,)+(1-B)-ME (a,a,,...a,).
(35)

These proofs are easy if we use the results of
proposition 5 (formula (6)).

PROPOSITION 11: Let M be any mean
aggregation operator and in AsPOWA operator
monotone measure g is a probability measure. Then
AsPOWA and POWA operators coincide.
AsPOWA(a,,a,,...,a, )= POWA(a,,a,,....a, ). (36)

Proof: As known the associated probabilities of
probability measure coincide (see proposition 1).
Using the property of idempotency of operator
M (M(E,,E, ... Eys )=Es),
because p,=p,i=1..k  E, =E, and
M(E,,E,,..E))=E,, then ASPOWA removes to
the POWA (formula (9), Part 1).

PROPOSITION 12: If g. and g° are dual
monotone measures on 2°, then ASPOWA operators
constructed on basis g. and g” coincide:

Proof: Using symmetricity of operator M and
results of proposition 2 it is easy to prove this
proposition: consider AsPOWA operator for the
lower monotone measure g.

(34)
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AsPOWA.(a,,a,,...,4,,

=anj:wjbi +(1-B)M (a)):

=p3 wp, + @-PM(E,. (@)E, (@)...E, (2)=

) =
E.. @)E._(@). E,

* o

c2 ok

= AsPOWA'(a,, a,,...,a,) ,
where {P }.kl is the associated probability class for

-
Oi

the measure g. and {P*}k is

oi Ji=1l

the associated

probability class for the measure g*

Now we consider different variants of the
AsPOWA operator induced by the ME with respect
to different classes of monotone measures.
Following the Section 2 associated probabilities’
formulas were presented for different classes of
monotone measures. For example: a) possibility
measure (Subsection 2.3); b) monotone measure
associated with a belief structure (Subsection 2.4);

c) Sugeno A-additive monotone  measure
(Subsection 2.5). Therefore there exist many
combinatorial possibilities for the analytical

construction  of concrete faces of the ASPOWA
operator for concrete classes of a monotone measure
and concrete operator M induced by the ME. But
this procedure is omitted here. We will consider
some of them:

1) Consider AsPOWAmax for the Sugeno A -
additive monotone measure g, . Using formulas (34)
and (28), we receive:

AsPOWAmax(a,,a,,...,a, )=

=[3-Zm:bjwj +@-B)-

i-1

. ng{i{gx ({Sa(i)})) : H (1+1g, ({Sc(j)})):| : ac(i)}

(37)
2) Analogously we may construct the face of
AsPOWAmMInN:

AsPOWAmMiIn(a,,a,,....a, )= B-Zm:bjwj +
=

m

I EXCINY | CEEPNTERD

+(1=B)-miny 45

QD

(i)
(38)
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3) Following Subsection 2.4 we consider the
AsPOWAmIn and AsPOWAmax operators for the
monotone measure associated with the belief structure.
Using formulas (32),(33) and (24) we construct new
variants of the AsPOWA operator:

AsPOWAmax(a,,a,,...,a, )= B-Zm:bjwj +(1-B)-
j=1

= m(Fj )‘N? } }
-max "8y
7 {;Le%:ﬁzﬂf‘gg(u%@q FN {Scm e+ So i) }|) v
(39)
AsPOWAmin(al,az,...,am)zB-Zm:bjwj +(1-B)-

il S ol bl 5l |

i-1 1Moy 122

(40)

3.2.
FEV
In this Subsection we define new generalizations of
the POWA operator induced by the Sugeno
Averaging Operator - Fuzzy Expected Value (FEV)
with respect to probability measure - P.
Analogously definition 7 (formula (31)) but
difference is that Mathematical Expectation operator
E,(.) is changed by the FEV, ().

DEFINITION 8: A Sugeno Averaging POWA
operator SA-POWA of dimension m is a mapping
SA-POWA:R"=R; that has an associated

weighting vector W of dimension m such that

AsPOWA operators induced by the

w; €[0,1] and > w; =1 according to the following
1

formula:

SA—-POWA(a,,a,,...,a, )=

B bw, +A-B)- FEV, (8,8, )=

A m
:B’;Wjam) +(1—[3)-T%{al}r}l%({mm[a{m,wf ]}
(41)
where b, =a,, is the j-th largest of the
{a,=a(s,)>0}, i=12,..,m; on S  there

exists probability distribution {p, = P(s,)} with

D p =1 0<p <1;
j=1
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W} =Pl 251 J)= ZP.(.) and
a,
B = ma;]{)a,}

1=1,m

On the basis of the definitions 2b and 8
analogously to the definition 7 we may generalize
the POWA operator induced by the FEV with
respect to some monotone measure g .

DEFINITION 9: A Sugeno Averaging AsPOWA
operator SA-AsPOWA of dimension m is mapping

SA—AsPOWA:R" = R;, that has an associated
objective weighted vector W of dimension m such

that w; €[0,1] and 2w, =1 ; some monotone

measure g:2° —[0,1] with associated probability
class {P.} . , according the following formula:

,SA—ASPOWA(ai,aZ,...,am)z
FEV, (a.8,,.a,),
=B- Zwl a,,+(1-B)-M| FEV, (a,a,....a,).

FEV,, (ai 8o ly)

(42)
where
FEVPG(al’aZ a) nnflnz({a|}rp?%(mln{alm,wpﬁ},
(43)
and wy" :Pc({si(l)" 5 l(n}) ZP {sipd)
F %0 yges
ai(j) mlax{a,}' G E,.

Now we consider SA-AsPOWA operators induced
by the FEV with respect to M =Max and
M = Min averaging operators:

SA— AsPOWAmax(a,, a,,...,a, )=

m
:B'ijai(j) +
=

+(1-B)- max{a }max[max{mm[a,“),wp‘f]}}

ceSy, j=1m

(44)
SA— ASPOWAMIN(a,. a,,...a, )=
= B ZWJ I(J)
e el
(45)
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It is easy to prove the propositions analogously
to propositions 9-12. But these propositions are
omitted here.

3.3. Information  Measures of the

AsPOWA and SA-AsPOWA Operators
Analogously to [28] (see Section 3, Part I) now
we extend the definitions of the information
measures for the ASPOWA and SA-AsPOWA
operators:
DEFINITION 10: The Orness measure of the
AsPOWA operator is the extension of the formula

(13), Part I:
_g. Ny (Mo
m)‘BZWj[m—1j+

o b
+(1-P)- M{z Gm(m C_ng)j/cesm}

For AsSPOWAmMmMax we receive:

0{611521"1 j B ZW(
+(1—B)‘r2g-x{z c(])(m G(J)ﬂ

but for AsSPOWAmMin we have:
Jj
-1

A N A m m
a(pl, Parees pm)=B-ZW;( -
=1

g 3o, (o)

Constructing the Orness measure of the SA-
AsPOWA operator induced by the FEV we receive
the analogous extension.

DEFINITION 11: The Orness measure of the SA-
AsPOWA operator is the extension of the formula

(13),Part I:
mj:ﬁ.iwj(m

oc(pl,pz,...,p m:ij-ﬁ-

+(1—B)-M{nj§%<min{ — (J) }/ces}

m-1
(49)
For example, for the ASPOWAmax operator we

have:
e Ny (M
mj_B ij(m—1j+

oo
- (J) ]H

+(1-pB)- max[max mm{
m -

(46)

(48)

(50)
ceS j=Lm

and for ASPOWAmMiIn :
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N A N m m_ 1
(i e(=)

+(1-B)- mm{mmmax{ _G(J) JH

ceSpy [ j=lL,m m-—

DEFINITION 12: The entropy (the dispersion) H of
the AsSPOWA operator of the amount of information
is defined as:

H(pl’ (SPYERY pmj:

B'ZWJ' In(w, )+ (52)

+(1-p)- M{ > Py (P G(J))/Ge sm}

For example, if we have AsSPOWAmMmax operator,
then

H(pl’ (SPYRRY pmj:

B';Wj In(w, )+ (53)

+(@A-B)- max{z o(i) (G“))/cesm}

and for AsSPOWAmMin:

H[Pl’ PIRR ij=

ﬁ'Z,WJ In(w, )+ (54)
+(1-P)- m'”{z o(i) (cs(n)/cesm}

DEFINITION 13: The divergence measure Div
has the following face:

OB, P ) - B{Z(E:i —a(\N))Z}+

+ (1_B){M|:i Pc(j) '(mn_’]—c_sg-j)—(l(Pc)j loe Sm:|}

j=1

(51)

(55)

where a(W) is an Orness measure of the OWA
operator

aW) - Zw[ )

and o(P) is an Orness measure of associated

probabilities’ aggregations:

(X(P) Z G(J)(m G(J)j (56)
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Analogously to definition 13 we may construct
the concrete analytical forms of the measure Div for
AsPOWAmax and AsOWAmin and other operators
with respect to different monotone measures (Here
these formulas are omitted).

DEFINITION 14: The Balance parameter of the
AsPOWA operator has the following extension

Bal( P, ... B ) - BZ (m” 21j+

X 1-2
+(1- B)ML G(J)(m+m_1G(J)j/Gesm:|
(57)

The Bal of the AsSPOWAmMax and AsPOWAmMin
operators and the H, Div, Bal parameters of the SA-
AsPOWA operator may be written analogously
definitions 10-14, but are omitted here.

4. Conclusions

New generalizations of the POWA operator were
presented with respect to monotone measure’s
associated probability class (APC) and induced by
the Choquet or Sugeno integrals (finite cases). There
exist many combinatorial variants to construct faces
or expressions of generalized operators: ASPOWA,
and SA-AsPOWA for concrete mean operators
(Mean, Max, Min and so on) and concrete monotone
measures (Choquet capacity of order two, monotone
measures associated with belief structure, possibility
measure and Sugeno A —additive measure). Some
properties of new operators and their information
measures (Orness, Enropy, Divergence and
Balance) are proved. But only some variants
(AsPOWAmMax, AsPOWAmin and others) are
presented, the list of which may be longer that it is
presented in the paper. So, other presentations of
new operators and properties of information
measures will be considered in our future research.
The new generalizations of the FPOWA operator in
the fuzzy environment with respect to monotone
measures will be considered in the Part 11l of this
work, where a practical example will be constructed
for the illustration of the properties of generalized
operators.
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