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Abstract: - The Ordered Weighted Averaging (OWA) operator was introduced by R.R. Yager [58] to provide a 
method for aggregating inputs that lie between the max and min operators. In this article several variants of the 
generalizations of the fuzzy-probabilistic OWA operator - POWA (introduced by J.M. Merigo [27,28]) are 
presented in the environment of fuzzy uncertainty, where  different monotone measures (fuzzy measure) are 
used as an uncertainty measure. The considered monotone measures are: possibility measure, Sugeno 
−λ additive measure, monotone measure associated with Belief Structure and capacity of order two. New 

aggregation operators are introduced: AsPOWA and SA-AsPOWA. Some properties of new aggregation 
operators are proved. Concrete faces of new operators are presented with respect to different monotone 
measures and mean operators. Concrete operators are induced by the Monotone Expectation (Choquet integral) 
or Fuzzy Expected Value (Sugeno integral) and the Associated Probability Class (APC) of a monotone 
measure. For the new operators the information measures – Orness, Entropy, Divergence and Balance are 
introduced as some extensions of the definitions presented in [28]. 
 
 
Key-Words: - mean aggregation operators, fuzzy aggregations, fuzzy measure, capacity of order, associated 
probabilites, most typical value, Finite Sugeno Averaging, Finite Choquet  Averaging, body of evidence, 
possibility measure,  fuzzy numbers, fuzzy decision making. 
 
1 Introduction 
Our research is concerned with quantitative-
information analysis of the complex uncertainty and 
its use for modeling of more precise decisions with 
minimal decision risks from the point of view of 
systems approach. The main objects of our attention 
are 1) the analysis of Information Structures of 
experts knowledge, their uncertainty measure and 
imprecision variable, which was constructed in the 
Part I of this work; 2) the construction of 
instruments of aggregation operators, which 
condense both characteristics of incomplete 
information - an uncertainty measure and an 
imprecision variable in the scalar ranking values of 
possible alternatives in the decision making system. 
Some aspects of this problem are considered in 
current Part of our research. 

In Section 2 some preliminary concepts are 
presented. Probability representations – 
Associated Probability Class (APC) of a 
monotone measure [5,37,39,42,44] is considered 
for different classes of a monotone measure. 
Concepts of the Most Typical Value (MTV) 

[18,19,41,42] of a compatibility function 
(membership function) of some imprecise variable 
with respect to some monotone measure is 
presented. The Fuzzy Expected value (FEV) [9] 
and Monotone Expectation (ME) [5] are 
interpreted as important MTVs of a compatibility 
function. The probability representations of ME 
and FEV are presented by the APC of a monotone 
measure. Also in this Subsection the associated 
probabilities representations are considered for 
the Choquet capacity of order two [7], possibility 
measure [11], Sugeno −λ additive measure [45] 
and a monotone measure associated with 
Dempster-Shafer Belief Structure [45]. 

In Section 3 new generalizations of the POWA 
operator (definition 4, Part I) are presented with 
respect to different monotone measures (insert of the 
probability measure) and different mean operators. 
New versions of the POWA operator are defined. 
AsPOWA operator is induced by the ME and SA-
AsPOWA operator is induced by the FEV. In 
Subsection 3.3 the generalized variants of information 
measures – Orness, Entropy, Divergence and Balance 
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are introduced for the new aggregation operators. 
Some properties of new operators are proved. 

 
2 Associated probabilities of a 

monotone measure 
When trying to functionally describe insufficient 
expert data, in many real situations the property of 
additivity remains unrevealed for a measurable 
representation of a set and this creates an additional 
restriction. Hence, to study such data, it is 
frequently better to use monotone measures instead 
of additive ones. 

We introduce the definition of a monotone 
measure (fuzzy measure) [45] adapted to the case of 
a finite referential. 

DEFINITION 1: Let { }msssS ,...,, 21=  be a finite 
set and g  be a set function [ ]1,02: ⇒Sg . We say 
g  is a monotone measure on S  if it satisfies 

( )
( ) ( ) .,,,)(

;1)(;0)(
BgAgthenBAifSBAii

Sggi
≤⊆⊆∀

==∅
 

A monotone measure is a normalized and 
monotone set function. It can be considered as an 
extension of the probability concept, where additivity 
is replaced by the weaker condition of monotonicity. 
Non-additive but monotone measures were first used 
in the fuzzy analysis in the 1980s [45] and is well 
investigated ([8, 15, 21-23, 37-39, 44, 45, 54-56, 62] 
and others). 

A fuzzy integral is a functional which assigns 
some number or a compatibility value to each fuzzy 
subset when the monotone measure is taken as an 
uncertainty measure. As known ([10, 15, 18, 19, 25, 
26, 37, 38, 45, 63] and others), the concept of a 
fuzzy integral condenses the information provided 
by a compatibility (or membership) function of a 
fuzzy set and a monotone measure. Having the 
monotone measure determined, we can estimate a 
fuzzy subset by the most typical compatibility value 
- most typical value (MTV) ([18, 19 ,41-45] and 
others) or a fuzzy average. As already known, fuzzy 
averages (MTVs) differ both in form and content 
from probabilistic–statistical averages and other 
numerical characteristics such as mode and median 
and others. Nevertheless, in some cases ‘non-fuzzy’ 
(objective) and ‘fuzzy’ (subjective) averages 
coincide ([18, 19, 41-45] and others). For a given set 
of fuzzy subsets with compatibility function values 
from the interval [0; 1], the fuzzy average 
determines the most typical representative 
compatibility value. From the point of our future 
presentations in the role of MTV we consider only 
two fuzzy statistics (integrals):  

1. Monotone Expectation – ME (or Choquet 
Integral) and  

2. Fuzzy Expected Value – FEV (or Sugeno 
Integral). So, we consider some aspects of a 
monotone measure in fuzzy statistics. 

DEFINITION 2: Assume  { }msssS ,...,, 21=  is a set 
on which we have a monotone measure g  and a 
function  +⇒ 0: RSa  such that 

miasa ii ,...,2,1,0)( =≥≡ .  
Then  
a) The aggregation  

,),...,,(

),...,,(

1
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∑
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Where 
{ }( ) { }( ),.....,,.....,, )1()1()()1( −−= jiijiij ssgssgw  

{ }( ) ,0)0( ≡isg  is called a Finite Choquet  
Averaging (FCA) or Monotone Expectation (ME) 
operator. In the proceeding )(⋅i  is index function 
such that )( jia  is the jth largest of the { }m

iia 1= . 
b) The aggregation  
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),...,(),...,(
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where }),...,,({ˆ )()2()1( jiiij sssgw =  , 
{ }imi
aa

,1max max
=

=   is called a Finite Sugeno 

Averaging (FSA) or a Fuzzy Expected Value 
(FEV) operator.

 
The ME always exists and is finite for each 

monotone measure g  and some compatibility 
variable a . It is obvious that ( )aMEg  is a 
generalization of the mathematical expectation 

)(aEP  and the ME of a non-negative function a  
with respect to a monotone measure g  coincides 
with the mathematical expectation of a  with 
respect to a probability measure that depends 
only on g  and the ordering of the values of a . 

Following the definition 2a the maximum 
number of probability distributions in ME (formula 
1) coincides with the number of possible orderings 
or permutations in a set with m elements, that is, 

!m . Thus, it makes sense to associate the !m  
probabilities to each monotone measure, provided 
that they are deduced from this monotone measure 
through the different possible orderings. 

In general, the possible orderings of the elements 
of S  are given by the permutations of a set with  m  
elements, which form the group mS . 
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DEFINITION 3 [5]:  The probability functions σP  
defined by 
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for each ( ) ( ) ( )( ) mSm ∈σσσ=σ ,...,2,1 , are called 
the associated probabilities and the Associated 
Probability Class (APC) - SP ∈σσ}{  of the monotone  
measure g .  

An interesting case is when the monotone 
measure is a probability. It is easy to prove that in 
this case, all associated probabilities are equal. 

PROPOSITION 1 [5]: A monotone measure g  is a 
probability measure )( pg =  if and only if its m! 
associated probabilities coincide. 

The concept of duality of monotone measures is 
very important, since it permits one to obtain 
alternative representations of a piece of information. 
Monotone measures  ∗g  and ∗g  are dual if 

SAAgAg ⊂∀−= ∗
∗ ),(1)(  . So, we will consider a 

monotone measure and its dual measure to contain 
the same information, but codified in a different 
way. The most remarkable case where different 
monotone measures provide the same !m  
probabilities, but ordered in a different way, is the 
case of dual monotone measures. Before exposing it 
in the following proposition, we need a definition: 

DEFINITION 4:  We will say that two 
permutations mS∈σσ ∗,  are dual if 

( ) ( ) miimi ,...,1,1 =+−σ=σ∗ . 
PROPOSITION 2 [5]:  A necessary and sufficient 

condition for two monotone measures ∗g  and ∗g  to 
be dual is to have the same m! associated 
probabilities corresponding to dual permutations, 
that is, *

* ∗σσ = PP , if σ  and ∗σ  are dual, where ∗P  

and ∗P  are associated probabilities for the 
measures ∗g  and ∗g   respectively. 

An especially interesting class of monotone 
measures is the capacities of order two [7], because 
they cover a great number of monotone measures. 

DEFINITION 5:  Let ( )*
* , gg  be a pair of dual 

monotone measures:  
*g  is a lower capacity of order two if and only if 

( ) ( ) ( ) ( );.,, *** BgAgBAgBAgSBA +≥∩+∪⊆∀ ∗

   
*g  is an upper capacity of order two if and only if 

( ) ( ) ( ) ( )..,, **** BgAgBAgBAgSBA +≤∩+∪⊆∀
 

The most used classes of monotone measures such 
as belief and plausibility measures [35], necessity and 
possibility ones [11], λ -measures [45] and 
probabilities are capacities of order two. 

PROPOSITION 3 [5]:  Let ( )*
*, gg  be a pair of dual 

monotone measures. Then *g  is a lower capacity of 
order two ( *g  is an upper capacity of order two, 
respectively) if and only if 

( ) ( ) ,min* XAAPAg
mS

⊆∀= σ∈σ  
 ( ( ) ( ) ,max* XAAPAg

mS
⊆∀= σ∈σ

 ).                (4) 

So the main characteristic of a capacity of order 
two is that it only depends on the probabilities 
associated to such a measure, but does not depend 
on the permutations that generate them: we can 
regenerate the initial monotone measure by only 
knowing its associated probabilities, without the 
necessity to know the corresponding permutations. 
This characteristic makes the use of capacities of 
order two by means of associated probabilities 
especially easy. 

Starting from this property, the following result 
is evident and valid for every monotone measure: 

PROPOSITION 4 [5]: If mSP ∈σσ , , are the 
associated probabilities to a monotone measure g , 
then for every +→ 0: RXa  , it holds 

( ) ( ) ( )aEaMEaE PSgPS mm σσ ∈σ∈σ
≤≤ maxmin .                    (5) 

PROPOSITION 5 [39]: A necessary and sufficient 
condition for a pair of dual fuzzy measures ( )∗gg ,*   
to be lower and upper capacities of order two, 
respectively, is that +→∀ 0: RXa , 

( ) ( ) ( ) ( )aEaMEaEaME PSgPSg
mm σ∗σ∗ ∈σ∈σ

== max,min .    (6) 

Let ( )m
a

m
a

m SSS ⊂)()(  be the subgroup of all 
permutations such that )(a

mS∈σ∀ ,  
( ) ( ) ( ))()2()1( ... msasasa σσσ ≥≥≥ .             (7) 

Following Proposition 2 and Definitions 2-4 
there exist some connections of  mathematical 
expectations with respect to dual associated 
probability ( ):; )(a

mSPP ∈σσ
∗

σ∗  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )aEsasP

sasPaEaME
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where σ∗P  and ∗
σP are associated probabilities for 

*g  and ∗g  monotone measures, respectively; σ  and 

∗σ  are dual permutations and a  is symmetric. 
 
 

2.1. Probability representation of the FEV 
It clearly follows that (definition 2b) the FEV 
somehow ‘averages’ the values of the compatibility 
function a  not in the sense of a statistical average 
but by cutting subsets of the α  level, whose values 
of  monotone measure g are either sufficiently 
‘high’ or sufficiently ‘low’. The FEV gives a 
concrete value of the compatibility function a , this 
value being the most typical characteristic of all 
possible values with respect to the monotone 
measure g , obtained by cutting off the ‘upper’ and 
‘lower’ strips on the graph of 
( ) }))(/({ α≥=α sasgHg . Thus, the incomplete 

information carried by an imprecision variable a  
and an uncertain measure g  is condensed in the 
FEV, which is the MTV of all compatibility levels 
of a . Following definition 2b for all permutation 
such that )(a

mS∈σ  the FEV can be written by the 
associated probabilities of a lower capacity of order 
two ∗g  as 

)}();(max{minmin)( )(
max)(,1max

σ
σ′∗σ∈σ′=

=
∗ iiSmjg APasaaaFEV

m

                                                                             (9) 
where { } misssA ii ,..,1,,....,, )()2()1(

)( == σσσ
σ . 

Let ( )*
* , gg  be a pair of a dual lower and upper 

capacities of order two. Using propositions 2, 3 and 
formula (9) the FEV can be written, )(a

mS∈σ∀ : 
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2.2. Dempster–Shafer Belief Structure 
and Its Associated Probabilities 
The Theory of Evidence (Dempster–Shafer Belief 
Structure) ( [11, 15, 22, 23, 25, 32, 37, 43, 56,59,62] 
and others) is a powerful tool which enables one to 
build:  
1. Models of decisions and their risks’ measures;  
2. Aggregation operators in an uncertain environment and so 

on. 

The Theory of Evidence is based on two dual 
monotone measures: Belief measures and 
Plausibility measures. These classes of monotone 
measures are subclasses of classes of dual lower and 
upper capacities of order two. This is easily 
provable after introduction of Belief and Plausibility 
measures ([22, 23] and others). Belief and 
Plausibility measures can be characterized by the set 
function: 

[0;1]2:m S ⇒ ,                                                (11) 
which is required to satisfy two conditions: 

1.m(B)(b)
0,)m((a)

2B

=
=∅

∑
∈ S

 

This function is called a Basic Probability 
Assignment (BPA). For each set SB 2∈ , the value 
( )Bm  expresses the proportion that all available and 

relevant evidence supporting the claim that a 
particular element of S , whose characterization in 
terms of relevant attributes is deficient, belongs to 
the set B . This value ( )Bm , pertains solely to one 
set – B ; it does not imply any additional claims 
regarding subsets of  B . If there is some additional 
evidence supporting the claim that the element 
belongs to a subset of B , say BB ⊆1 , it must be 
expressed by another value ( )1Bm  [23]. 

Let m  be a PBA on S . The plausibility measure 
Pl  associated to m  is given by 

SA 2,m(B) Pl(A)
ØBA :SB

∈∀= ∑
≠⊂ 

    

and the Belief measure Bel  associated to m  is 
given by 

SA 2,m(B)=Bel(A)
AB:B

∈∀∑
⊂

.     

Inverse procedures are also possible. Given, for 
example, a Belief measure Bel , the corresponding 
BPA is determined for all SA 2∈  by formula 

( )∑
⊆AB:B

B\A Bel(B)1-=m(A) ,                (12) 

where  BA \  is the cardinality of the set 
difference of A and B. If the Belief measure is also 
additive that is 

( )
SBABAif

BBelABelBABel
2,,

),()(
∈∅=

+=




,                 (13) 

then we obtain the classical probability measure [23]. 
Given a BPA, every set SA 2∈  for which 
( ) 0>Bm  is called a focal element. The pair 

mFS ,  where SF  denotes the set of all focal 
elements induced by m is called a Body of 
Evidence. Because Bel  is a lower capacity of order 

G. Sirbiladze et al.
International Journal of Control Systems and Robotics 

http://www.iaras.org/iaras/journals/ijcsr

ISSN: 2367-8917 76 Volume 1, 2016



two, then using proposition 3 and formulas (29) and 
(30) we receive probability representation of the 
BPA, m

S SA ∈σ∈∀ ,2 : 

( )

( ) ( ),min1-=         m(A)

,m(B)

AB:FB

)(B\A

}..,{B:FB
)(

)(

S

Ø})({
)(),1(S

∑

∑
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σ∈σ
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σσ

Ρ

=Ρ

≠σ∩
σσ

B

s

Bel

S

ss
i

Bel

m

iSB
i

               
(14) 
where  { }

mS
BelP ∈σσ

)( are the associated probabilities of  
the monotone measure Bel . 
 
 
2.3. Possibility Measure and Its 
Associated Probabilities 
When the focal elements of a body of evidence 

mFS ,  are required to be nested, 
{ }

ljjj AAAF ⊂⊂⊂= ...
21

, the associated belief and 
plausibility measures are called consonant [23]. The 
special branch of the evidence theory that deals only 
with bodies of evidence whose focal elements are 
nested is referred to as the possibility theory [11]. 

Special counterparts of Bel  measures and Pl  
measures in the possibility theory are called 
necessity ( Nec ) measures and possibility ( Pos ) 
measures, respectively: 

PROPOSITION 6 [23]: Given a consonant body of 
evidence mFS , , the associated consonant belief 
(necessity) and plausibility (possibility) measures 
possess the following properties: 

( )
( ) .2,)}();(max{

,2,)}();(min{
S

S

BAallforBPosAPosBAPos
BAallforBNecANecBANec
∈=

∈=


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                                                                            (15) 
PROPOSITION 7 [23]: Every possibility measure 

Pos  on S2  can be uniquely determined by its 
possibility distribution function [ ]1,0: ⇒π S ; 

1)(max =π
∈

s
Ss

 via the formula: 

).(max)(,2 sAPosA
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S π=∈∀
∈

                            (16) 

Assume the finite universe { }msssS ...,,, 21=
 
is 

given and let }...{
21 ljjjS AAAF ⊂⊂⊂=  be some 

consonant body of evidence.  
Let  
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Let { }
mS

PosP ∈σσ
)( be the associated probabilities 

class of a possibility measure Pos . Then, we have 
the following connection between { }iπ , { }

ij
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Since Pos  is a capacity of order two, using 
proposition 5 we receive: 

{ }( ) ( ) ,,..,2,1,}{max )( missPos i
Pos

Sii
m
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2.4.  Monotone Measures Associated with 
a Belief Structure and Its Associated 
Probabilities 
Let m  be a BPA with a body of evidence 

{ }qS AAAF ,...,, 21= . For each focal element 

,,..,1, qjAj =  let 0
j

W  be a weighting vector of 

dimension jA  whose components )(0 iw
j  

( ))(),...,1( 000
jAwwW

jjj
≡   satisfy the conditions 

[ ]1,0)(0 ∈iw
j

 , 1)(
1

0 =∑=

j

j

A

i
iw .  We shall call these 

the allocation vectors. In [56], it was shown that a 
set function [ ]1,02: →Sg  defined by  

( ) ( ) ( ) S
q

j

AA

i
j AiwAmAg

j

j
2,....

1 1

0 ∈∀





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
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
⋅=∑ ∑

=

∩
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         (23) 

is a monotone measure associated with the belief 
structure. Thus, by selecting a collection 

{ }0000 ,...,,
21 q

WWWW =
  of allocation vectors, we can 
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define a unique monotone measure associated with a 
belief structure. For example: if all the 0

j
W  are such 

that 1)1(0 =
j

w , then the resulting monotone measure 

is the plausibility measure Pl . If all 0
j

W
 are 

selected such that 1)(0 =jAw
j

, then this results in the 

belief measure Bel . 
We have the following important proposition 

concerning all associated monotone measures with a 
belief structure. 

PROPOSITION 8 [56]: If g  is any monotone 
measure generated from a collection of allocation 
vectors, then 

(a)  ( ) ( ) S2A  )( ∈∀≤≤ APlAgABel ; 
(b)  The Shapley Entropy of generated 

monotone measures coincide 
( ) ( ) ( )PlEgEBelE ShapleyShapleyShapley == . 

I.e. generated monotone measures have the same 
information but codified in a different way. 

Now, we shall compute the associated 
probabilities of a monotone measure g  associated 
with the belief structure: miSm ,...,2,1, =∀∈σ∀ . 

 
( ) { }( ) { }( )

( ) ( )
{ }

( )
{ }

{ }( )
{ }

.,...,)(

,...,,...,

0:
)()1(

0

1

,...,

1

0
,...,

1

0

)1()1()()1()(

)(

)1()1()()1(

∑

∑ ∑∑

≠∩∈
σσ

=

∩

=ν

∩

=ν

−σσσσσσ

σ

−σσσσ

∩=

=











ν−ν=

=−=

ijSj
j

ij

j

ij

j

sAFA
ijj

q

j

ssAssA

j

iii

ssAwAm

wwAm

ssgssgsP

  

(24) 

 
 
2.5. Sugeno λ -additive Monotone 
Measure and Its Associated Probabilities 

DEFINITION 6 [45]: A monotone measure 
[ ] ( )11,02: −>λ⇒λ

Sg  is called a λ -additive 
monotone measure if for any ∅=∈ BABA S ,2, , 

( ) ( ) ( ) ( ) ( ) .BgAgBgAgBAg λλλλλ ⋅λ++=                
(25) 

It is easy to verify that for any SA 2∈  
( ) ( )













−λ+
λ

= ∏
∈

λ
As

i
i

gAg 111 ,                (26) 

where { }( ) 1;,...,1,0 −>λ=≡< misgg ii

 
is the 

parameter with following normalization condition: 

( ) .1111
=













−λ+
λ ∏

∈Ss
i

i

g
           

    (27) 

Note, that ( )00 =λg  is a probability measure if 
.1=∑

∈Ss
i

i

g  

It is easy to prove that the λ -additive monotone 
measure λg  is a capacity of order two and 

)1/(
*

λ+λ−λ = gg .   
Due to (26), (27) and (3), we can write the class 

of associated probabilities for the λ -additive 
monotone measure λg  for any mS∈σ

 
as  

( ) { }( ) { }( )( ),1
1

1
)()()( ∏

−

=
σλσλσσ λ+=Ρ

i

j
jii sgsgs

   
          (28) 

or, more exactly, as 

( ) { }( ) { }( )( ),1
1)(

1
)(∏

−σ

=
σλλσ λ+=Ρ

i

j
jii sgsgs

        
        (29) 

where )(;,,...,2,1 σ∈σ= iSmi m  is the location of 

is  in the permutation σ  (if  1)( =σi , then 

)1
0

1∏ =
≡

j
. 

 
 
3. Associated Probabilities’ 

Aggregations in the POWA 
Operator 

Different approaches were developed by the authors, 
which constructed aggregation operators with respect 
to a monotone measure, where I1-I6 and other levels 
of Information Structure (definition 7, Part I) were 
considered ([1-4, 6, 9, 10, 13, 14, 16, 17, 20, 21, 24-34, 
36-44, 46-55, 57-61, 63] and others). But for the 
POWA or FPOWA-type operators (definitions 4 and 
5, Part I) Information Structures on the levels I5 and I6 
(or weighted OWA operators constructed on the basis 
of a monotone measure) were not investigated. So, we 
leave the Information Structures I1-I4 and go to the 
levels of I5 and I6. In this paper we consider the level 
I5 and we will consider the level I6 in the Part III of 
this work. 

It is important that in the aggregation operators 
POWA and FPOWA the both nature of incomplete 
information: 1. An uncertain measure (probability 
distribution { }ip  ) and 2. An imprecision variable 
(random variable ( a ) or fuzzy variable ( a~ )) are 
condensed in the outcome values, which gives us 
more credibility to use these aggregation operators 
in applications. 

In this Section we define new generalization of 
the POWA operator where more general measure of 
uncertainty – monotone measure (fuzzy measure) is 
used instead of probability measure in the role of 
uncertainty measure. 
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3.1. AsPOWA operators induced by the 
ME 
Let on the states of nature { }msssS ...,,, 21=  be 
given some monotone measure [ ]1,02: ⇒Sg  
instead of probability measure 

{ } ( ).,...,,, 21 iim sppppP Ρ==  There exist  many 
aggregations in the decision making systems when 
we use monotone measure g as a measure of fuzzy 
uncertainty ([10, 15, 18, 19, 24-26, 36, 37, 39, 40-
43] and others)  the definition of which was given in 
Section 2. In Section 2 the FEV and ME were 
defined along with their probability representations 
by associated probability class (APC) { }

mS∈σσΡ , 
where the number of probability distributions on S  
is equal to !mk =  . We have k  values of 
mathematical expectations for random or fuzzy-
random variable a - ( ){ } ,

mS
a

∈σΡσ
Ε  where 

( ) ( ) .,
1
∑
=

σΡ ∈σ=Ε
σ

m

i
mii SsPaa                         (30) 

So, we will focus on the use of !m  mathematical 
expectations in the POWA operator, instead of one 
expectation ( ) ∑=ΕΡ ii paa ,  as a more usual 
extension of this operator.  

Let !,: 1 mkRRM k =⇒  be some deterministic 
mean aggregation function with symmetricity, 
boundedness, monotonicity and idempodency 
properties (see the definition in the Section 2, Part 
I). Let +⇒ 0: RSa  be some variable. 

DEFINITION 7: An associated POWA operator - 
AsPOWA of dimension m is a mapping  

,: 1RRAsPOWA m ⇒ that has an associated 
objective weighted vector W  of dimension m  such 

that [ ]1,0∈jw  and ,1
1

=∑
=

m

i
jw  some  uncertainty 

measure - monotone measure  [ ]1,02: ⇒Sg  with 
associated probability class { }

mS∈σσΡ , and is defined 
according the following formula: 

( )

( )

( ) ( ) ( )( ),...,,,)1(

)1(

...,,,

21
1

1

1
21

aEaEaEMbw

SsaM

bwaaaAsPOWA

kPPP

m

j
jj

m

m

i
ii

m

j
jjm

σσσ
⋅β−+β=

=







∈σΡ⋅β−+

+β=

∑

∑

∑

=

=
σ

=

   
                                                           (31) 

where jb  is the  jth largest of the  .,...,1},{ miai =    

It is easy to prove that in general cases of 
operator M  the AsPOWA operator is induced by 
the ME:  

PROPOSITION 9:  Let M  be the Min  operator, 
then AsPOWA operator may be written as: 

( )

( ) ,min)1(

...,,,min

11

21









∈σΡ⋅β−+β=

=

∑∑
=

σ∈σ
=

m

m

i
iiS

m

j
jj

m

Ssabw

aaaAsPOWA

m  

                    
(32) 

and if monotone measure g  is a lower capacity of 
order two, then in the AsPOWAmin  operator the 
second addend coincides with gME  :  

( )
( ) ( )mgm

m

aaaMEaaaOWA
aaaAsPOWA

...,,,)1(...,,,
...,,,min

2121

21

⋅β−+⋅β=
=

 

                  (33) 
PROPOSITION 10: Let M be the Max  operator, 

then AsPOWA operator may be written as: 
( )

( ) ,max)1(

...,,,max

11

21









Ρ⋅β−+β=

=

∑∑
=

σ∈σ
=

m

i
iiS

m

j
jj

m

sabw

aaaAsPOWA

m       
      (34) 

and if monotone measure g  is an upper capacity of 
order two, then in the AsPOWAmax  operator the 
second addend coincides with gME  :  

( )
( ) ( ) ....,,,)1(...,,,

...,,,max

2121

21

mgm

m

aaaMEaaaOWA
aaaAsPOWA

⋅β−+⋅β=
=

 

               
(35) 

These proofs are easy if we use the results of 
proposition 5 (formula (6)). 

PROPOSITION 11: Let M  be any mean 
aggregation operator and in AsPOWA operator 
monotone measure g is a probability measure. Then 
AsPOWA and POWA operators coincide. 

( ) ( ) ....,,,...,,, 2121 mm aaaPOWAaaaAsPOWA =  (36) 
Proof: As known the associated probabilities of 

probability measure coincide  (see proposition 1).  
Using the property of idempotency of operator   
M ( )( ),,...,,

21 PPPP EEEEM
m
≡   

because ppi EEkipp
i
==≡ ;,...,1,  and   

,),...,,( pppp EEEEM =  then AsPOWA removes to 
the POWA (formula (9), Part I).  

PROPOSITION 12:  If *g  and  ∗g  are dual 
monotone measures on S2 , then AsPOWA operators 
constructed on basis  *g  and  *g  coincide: 

Proof: Using symmetricity of operator M and 
results of proposition 2 it is easy to prove this 
proposition: consider  AsPOWA  operator for  the 
lower monotone measure  *g  
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( ) ( ) ( )( )
( ) ( ) ( )
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,...,,)1(
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21*

21

21

m
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σσσ
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β−+β=

=β−+β=

=

∗
σ

∗
σ

∗
σ

∗∗∗

∑

∑

where { }k

ii
P

1* =σ  is  the associated probability class for 

the measure  *g   and { }k
ii

P
1

*

=σ
  is   the associated 

probability class for the measure  ∗g . 
 

Now we consider different variants of the 
AsPOWA operator induced by the ME with respect 
to different classes of monotone measures. 
Following the Section 2 associated probabilities’ 
formulas were presented for different classes of 
monotone measures. For example: a) possibility 
measure (Subsection 2.3); b) monotone measure 
associated with a belief structure (Subsection 2.4); 
c) Sugeno λ -additive monotone measure 
(Subsection 2.5). Therefore there exist many 
combinatorial possibilities for the analytical 
construction   of concrete faces of the AsPOWA 
operator for concrete classes of a monotone measure 
and concrete operator M induced by the ME. But 
this procedure is omitted here. We will consider 
some of them: 

1) Consider AsPOWAmax for the Sugeno λ -
additive monotone measure λg . Using  formulas (34) 
and (28), we receive: 

( )





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                                                                             (37) 
2) Analogously we may construct  the face of  

AsPOWAmin: 
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
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                (38) 
 
 
 

3)  Following Subsection 2.4 we consider the 
AsPOWAmin and AsPOWAmax  operators for the 
monotone measure associated with the belief structure.     
Using formulas (32),(33) and (24) we construct new 
variants of the AsPOWA operator: 

( )
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 (39)
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(40) 
 
 

3.2. AsPOWA operators induced by the 
FEV 
In this Subsection we define new generalizations of 
the POWA operator induced by the Sugeno 
Averaging Operator - Fuzzy Expected Value (FEV) 
with respect to probability measure - P . 
Analogously definition 7 (formula (31)) but 
difference is that Mathematical Expectation operator 

(.)pE  is changed by the ( ).PFEV . 
DEFINITION 8: A Sugeno Averaging POWA 

operator SA-POWA of dimension m  is a mapping  
+⇒− 0: RRPOWASA m

  that has an associated 
weighting vector W  of dimension m  such that 

[ ]1,0∈jw  and  1
1

=∑
=

m

j
jw  according to the following 

formula: 
( )

( )

{ } [ ]{ },,minmaxmax)1(

...,,,)1(

...,,,

)(,1,1
1

)(

21
1
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P
jjimjlml
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j
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∑

∑

                                                                           (41) 
where )( jij ab =  is the  j-th largest of the 

( ){ } misaa ii ,...,2,1,0 =≥= ; on S  there                            
exists probability distribution ( ){ }ii sPp =  with 

,1
1

=∑
=

m

j
ip 10 ≤≤ ip ; 
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)( max

=
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On the basis of the definitions 2b and 8 
analogously to the definition 7 we may generalize 
the POWA operator induced by the FEV with 
respect to some monotone measure g . 

DEFINITION 9: A Sugeno Averaging AsPOWA 
operator SA-AsPOWA of dimension m  is mapping  

+⇒− 0: RRAsPOWASA m , that has an associated 
objective weighted vector W of dimension m such 

that [ ]1,0∈jw  and  1
1

=∑
=

m

j
jw  ; some monotone  

measure  [ ]1,02: →Sg  with associated probability 
class   { }

mSP ∈σσ ,  according the following formula: 
,    
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                                                                       (42) 
where  
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Now we consider SA-AsPOWA operators induced 
by the FEV with respect to MaxM =  and 

MinM =  averaging operators:  
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                (45) 

It is easy to prove the propositions analogously 
to propositions 9-12.  But these propositions are 
omitted here.  

 
 
 

3.3.  Information Measures of the 
AsPOWA and SA-AsPOWA Operators 

Analogously to [28] (see Section 3, Part I) now 
we extend the definitions of the information 
measures for the AsPOWA and SA-AsPOWA 
operators: 

DEFINITION 10:  The Orness measure of the 
AsPOWA operator is the extension of the formula 
(13), Part I: 
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        (46) 

For AsPOWAmax we receive: 
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but for AsPOWAmin we have: 
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Constructing the Orness measure of the SA-
AsPOWA  operator induced by the  FEV we receive 
the analogous extension. 

DEFINITION 11:  The Orness measure of the SA-
AsPOWA operator is the extension of the formula 
(13),Part I: 
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For example, for the AsPOWAmax operator we 

have: 
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and  for AsPOWAmin : 
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DEFINITION 12:  The entropy (the dispersion) H of 
the AsPOWA  operator of the  amount  of information 
is defined as: 
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For example, if we have AsPOWAmax operator, 
then 
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and for AsPOWAmin: 
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DEFINITION  13:  The divergence measure Div 
has the following face: 
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where )(Wα   is an Orness measure of the OWA 
operator 
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and )(Pα   is an Orness measure of associated  
probabilities’ aggregations: 
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Analogously to definition 13 we may construct 
the concrete analytical forms of the measure Div for 
AsPOWAmax and AsOWAmin and other operators 
with respect to different monotone measures (Here 
these formulas are omitted). 

DEFINITION 14: The Balance parameter of the 
AsPOWA operator has the following extension 
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The Bal of the AsPOWAmax and AsPOWAmin 

operators and the H, Div, Bal parameters of the SA-
AsPOWA operator may be written analogously 
definitions 10-14, but are omitted here. 

 
 

4. Conclusions 
New generalizations  of the POWA operator were 
presented with respect to monotone measure’s 
associated probability class (APC) and induced by 
the Choquet or Sugeno integrals (finite cases). There 
exist many combinatorial variants to construct faces 
or expressions of generalized operators: AsPOWA, 
and SA-AsPOWA for concrete mean operators 
(Mean, Max, Min and so on) and concrete monotone 
measures (Choquet capacity of order two, monotone 
measures associated with belief structure, possibility 
measure and Sugeno −λ additive measure). Some 
properties of new operators and their information 
measures  (Orness, Enropy, Divergence and 
Balance) are proved. But only some variants 
(AsPOWAmax, AsPOWAmin and others) are 
presented, the list of which may be longer that it is 
presented in the paper. So, other presentations of 
new operators and properties of information 
measures will be considered in our future research. 
The new generalizations of the FPOWA operator in 
the fuzzy environment with respect to monotone 
measures will be considered in the Part III of this 
work, where a practical example will be constructed 
for the illustration of the properties of generalized 
operators. 
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