

Testability Analysis and its Application to Hardware Security
Sreeja Rajendran 1, Mary Lourde R 2

1 ,2 Department of Electrical and Electronics Engineering

Birla Institute of Technology and Science Pilani , Dubai Campus. UAE
1 sreejamanojnair@gmail.com, 2marylr@dubai.bits-pilani.ac.in

Abstract: In recent years, VLSI testing has been gaining abundant prominence in hardware security paradigm. Testing not only
ascertains correctness of circuit designs but also provides feedback to designers to improve existing designs. Hardware attacks at gate
level of abstraction largely target circuit nodes with poor testability metrics. Identification of regions of a logic circuit which are
poorly testable is referred to as Testability Analysis. In this paper we explore the possibilities of extending testability analysis for the
detection of Hardware Trojans (HT). The effect of HT insertion on the system testability metrics is evaluated for c-17 benchmark
circuit and the results are presented. This research also introduce a software tool developed to automatically generate the testability
parameters namely the controllability and observability of each node in the circuit using MATLAB. The developed testability
analysis software tool accept Hardware Description Language (HDL) file as input and generates the controllability and observability
values of each node described by the HDL. These testability parameters can further be utilised to identification and hence
classification of unsecure nodes.

Keywords: Testability Analysis, SCOAP, Trojan Detection, Hardware security

I INTRODUCTION

The entire process of converting a design into a
product passes through several phases. The IC design
house focusses on developing a circuit design which is
efficient both in terms of timing and performance. This
is made possible through partitioning, floor planning,
placement, routing etc. To implement the design, the
design house requires modules (intellectual property)
from third party vendors as well as a fabrication facility
to construct the design on chip. As attention is devoted
to improved performance of the design, determining
the testability of the developed design is seldom done
at the designer’s end. The relevance of testability
analysis of a circuit arises with secure IC design. It is
very important in the event of Hardware Trojan (HT)
attacks. A HT is any unwanted alteration to the design
resulting in a deviation from the desired functionality
at a later point in time. Any of the entities involved in
the VLSI design cycle could be responsible for the
malicious insertions. And therefore it is extremely
important to prepare the system to foil such attempts by
adversaries. For this purpose the designer should
clearly know the regions of the circuit which are likely
to be targeted by intruders. This information can be
obtained by testability analysis of the logic circuit.
Testability analysis is a two-step process which is
performed on gate level circuit description.
Controllability and Observability are the two
parameters that decide the testability of every node in
the circuit. Controllability is a measure of how
effectively we can set a particular signal to logic level
1or 0. On the other hand Observability measures the
difficulty in propagating the logic value at a node to the
output of the circuit. The first step in the process is to

compute the controllability values of all the nodes in
the circuit starting from the primary inputs and
proceeding to the outputs. The computation of
observability values commences from the output node
travelling all the way up to the inputs.

Testability analysis tools based on SCOAP are not
readily available or provided by any major CAD tool
developers in the market. The newly developed
simulation tool provides the following advantages

a. The tool works on the Verilog netlists of the
circuit which is the universal standard and
therefore does not require any additional
formatting.

b. Can compute the testability parameters of
combinational circuits with any level of
complexity.

c. The tool works on MATLAB platform.
d. The computed parameters can be further used

in classification of circuit nodes in to safe and
vulnerable zones and thereby eases the job of
designer engineers and provides them with
vital information regarding the security of the
designed circuit.

e. The tool can also be applied to compute
testability parameters of reverse engineered
circuit netlists which can be an effective
mechanism for Hardware Trojan detection.

The rest of the paper is organised as follows :- Section
2 gives a brief description of the various categories of
hardware attacks followed by the state of the art
hardware detection techniques in section 3. Motivation
behind the work, Flowchart for Implementation of
Algorithm for Automatic Computation of Testability
Parameters, Existing Methods for Testability Analysis,
Algorithm description, Results and Application of

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 1 Volume 5, 2020

Testability Analysis for HT detection is given in the
sections that follow.

II HARDWARE ATTACKS

Any attacks that results in a deviation in the
functionality of a chip from the expected output can be
broadly termed as hardware attacks. These attacks can
result in leakage of information through an implanted
backdoor, damage the chip or even result in Denial of
Service (DoS). Hardware attacks can be launched at
various levels of abstraction like circuit, gate and RTL.
Attacks at the circuit level are initiated through
changes in manufacturing process parameters like
doping, channel width etc. At gate level, logic gates are
added or deleted to launch attacks. Hardware attacks at
RTL level can be introduced by the addition of states to
the finite state machine.

Hardware attacks on ICs can be classified into
three on the basis of their intended actions which is
shown in table1. The first category can be called data
attacks which aims at retrieval of secret data on an IC
(eg. smart cards). Design attacks forms the second
class of attacks. The target of these attacks is to acquire
design information of the chip for the purpose of
counterfeiting (eg. Reverse engineering). The last class
of attacks, referred to as functionality attacks attempts
to alter the functionality of the IC resulting either in
faulty operation or rendering it non-functional.

Table 1. Classification of Hardware Attacks on IC based on
intended actions

DATA ATTACKS
DESIGN
ATTACKS

FUNCTI
ONALIT
Y
ATTACK
S

Invasive
Non-
invasive

Reverse
engineering

Hardware
Trojans
(addition/
deletion of
gates)

Reverse
engineering

Side
channel
attacks

Microprobing
Hardware
Trojans

 The motive behind hardware attacks can be

economic reasons or even for intelligence purposes.
Integrated circuits are the backbone of all safety critical
systems. Launching hardware attacks on such sensitive
systems can result in catastrophic effects. To protect
digital systems from these hardware attacks, designers
should have a vast knowledge about security
vulnerabilities and the measures to overcome them. To
build a secure system, the designers should be aware of
the possible attacks to watch out for and about how to

protect the system from such malign attacks. Analysing
the susceptibility of a design to malicious intrusions is
the key to developing a secure system. Thorough
analysis of a circuit design is essential to determine its
susceptibility to Hardware Trojan insertion. Nodes with
poor testability have been identified as the potential
sites for HT insertion [1, 2, 3] And therefore testability
analysis is an integral step to assess the vulnerability of
circuit designs.

III STATE OF THE ART IN HARDWARE

TROJAN DETECTION

HT detection can be classified into static and
dynamic approaches. Static approach relies on formal
verification methods for the identification of
unused/redundant logic in the genuine circuit. This
approach can be utilized either in design stage or post
fabrication. In [4], the approach is used post fabrication
where in unused filler cells are replaced with functional
standard cells which are connected together. These cells
form a combinational circuit which performs an
arbitrary function. The signature obtained from the
Output Response Analyser will differ if any of these
standard cells have been replaced. Unused Circuit
Identification (UCI) presented in [5] is a hybrid
hardware-software approach to detect the presence of
HTs in design phase. Any unused circuitry in the design
is flagged as suspicious and detached from the genuine
circuit if it does not get activated during any of the
design verification tests. Logic is inserted during
runtime hardware check to ascertain if the circuit
flagged as suspicious is legitimate and thereby raising
an exception. FANCI [6] works along similar lines
where in Boolean functional analysis is used to flag
suspicious nets in the circuit. A functional truth table is
constructed for every gate in the design in order to
determine the control each input exerts over the output
of the gate. An input which weakly affects the output of
a logic gate is termed nearly unused logic, which could
be used by an adversary. The authors in [7] compare the
current signatures of the IC at two different time frames
using a Temporal Self Referencing approach. This
method improves HT detection sensitivity by
eliminating the effect of process variations and
capacitive coupling.

Dynamic approach on the other hand, requires
activation of HTs in order to be able to detect them.
This is made possible by increasing the transition
probabilities of rare nodes (nodes which rarely get
activated) in the circuit. This helps to activate the
Trojans and thereby detect their presence on the chip.
There are various mechanisms for Trojan activation. In
[8] and [9] the authors have developed a gate level
Trojan activation mechanism using dummy scan
flipflops and 2:1 MUX respectively. In Trojan

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 2 Volume 5, 2020

activation method, using dummy scan flipflop,
probability analysis is used to determine the set of rare
nodes whose transition probability falls below a preset
threshold value. Dummy scan flipflops are inserted to
improve the transition probability of such nodes. A 3
input gate has been used to improve the transition
probability of signals in [10]. Statistical approach [11]
[12] [13] is yet another approach for HT activation
which focuses on developing input test vectors which
facilitate multiple excitations of the rare nodes thereby
triggering the Trojans and resulting in their detection.
In other words, statistical approach improves the
coverage of test vectors in detecting HT.

 Statistical learning algorithms have been used to
develop a framework to detect HT insertion during
fabrication [14]. Here a linear system is formulated for
every chip using a sparse gate profiling technique. Next
the process variations for each chip is calibrated using
Bayesian inference. Finally Simultaneous Orthogonal
Matching Pursuit algorithm is used to solve the linear
systems for a batch of chips. HT are detected by
analysing the solutions. The authors in [15] extracted
Trojan features from Trojan inserted benchmark circuits.
These features like low switching logic gates,
Multiplexer Select lines etc. were used to create a score
based threshold to segregate HT inserted netlists from
genuine netlists. Using Random Forest Classifier, the
best set of Trojan features which can effectively detect
Trojan nets is obtained in [16]. Features are extracted
from IC images obtained through Reverse Engineering
in [17]. Here SVM is used to classify the ICs as Trojan-
free and Trojan-inserted. Features are determined by
comparing the physical layouts in RE images with that
of golden IC. In this method images of each layer of a
set of N chips are divided into non overlapping grids.
For each grid in a layer features are extracted. The
trained classifier obtains a decision boundary for each
layer. Based on the decision, grids in a layer are
classified as genuine or malicious.

IV MOTIVATION BEHIND WORK

In recent years significant work related to the detection
and analysis of Hardware Trojans has been carried out.
However, very little emphasis has been given to the
susceptibility assessment of circuit designs. The
authors in [18] have presented the vulnerability
analysis of a circuit at various levels of abstraction.
This helps to quantify the difficulty in detecting the
presence of an HT in the circuit, if inserted. HT attacks
implemented at gate level involves addition or deletion

of gates in the circuit. The size of an HT is negligible
as compared to the size of an IC which is comprised of
millions of gates. And therefore they do not have an
evident impact on the power and timing profiles of the
circuit. Hence they can be wrongly accounted as noise
arising due to process variations or environmental
factors. This is the fundamental challenge in HT
detection.

In order to prevent HT insertion completely,
primary importance needs to be devoted to prepare the
system to thwart malicious insertions. Since testability
analysis is performed at gate level, we restrict the
circuit design analysis to gate level of abstraction. The
gate level description of a circuit is a collection of
Boolean functions implemented using logic gates. A
HT inserted at gate level can be a single gate, a
collection of gates or a combination of gates and flip-
flops, which produce an undesired effect at some point
during the operation of the device. In order to
understand the working mechanisms of gate level HTs,
it is important to know the components of a HT. There
are two basic components for a HT namely Trigger and
Payload. In simple words Trigger is the activating
mechanism and Payload initiates the undesired action.
The Trojan classification [19] shown in figure 1
includes the various digital triggers and payloads.
Combinational and sequential are the two primary
classes of digitally triggered Trojans. A combinational
Trojan is a collection of gates where the trigger section
taps signals from multiple nodes in the genuine circuit
and activates the payload. The signals which are likely
to be chosen would be those signals whose logic levels
change very rarely. A sequential Trojan uses memory
elements in addition to logic gates from the genuine
circuit. This makes detection of the presence of HTs
more complex. And the test vectors applied during the
testing phase might not activate the Trojan circuitry.
Undetected HTs can have adverse effects on the
reliability and expected lifetime of the circuit [20].The
only approach to prepare the digital systems against
malicious intrusions of this kind is through secure
design. This process is twofold. Firstly we need to
identify the nodes in the original circuit which could
fall prey to malicious intrusions. This information can
be obtained only through the process of Testability
Analysis. This reinforces the necessity to analyse the
testability of any digital system to protect it from
unwanted interference. Testability also ensures quality
and reliability of mission critical systems [21]

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 3 Volume 5, 2020

 Fig. 1. Classification of Gate Level Trojans

 Table 2. SCOAP Rules for various logic functions [22]

Logic
gate

Combinational Zero
controllability

Combinational One
controllability

Combinational Observability

AND
min(zero controllability of
inputs) +1

Σ (one controllability of all
inputs) +1

Σ(output observability, one controllability of
other inputs)+1

OR
Σ (zero controllability of all
inputs) +1

min(one controllability of
inputs)+1

Σ(output observability, zero controllability of
other inputs)+1

NOT one controllability of input +1 zero controllability of input +1 output observability+1

NAND
Σ(one controllability of all
inputs)+1

min(zero controllability of all
inputs)+1

Σ(output observability, one controllability of
other inputs)+1

NOR
min(one controllability of
inputs)+1

Σ (zero controllability of all
inputs) +1

Σ(output observability, zero controllability of
other inputs)+1

EXOR
min[CC1(input1)+CC1(input2)
, CC0(input1)+CC0(input2)]+1

min[CC1(input1)+CC0(input2)
, CC0(input1)+CC1(input2)]+1

Input1- Σ(output observability,
min(CC0(input2),CC1(input2))+1
Input2- Σ(output observability,
min(CC0(input1),CC1(input1))+1

EXNOR
min[CC1(input1)+CC0(input2)
, CC0(input1)+CC1(input2)]+1

min[CC1(input1)+CC1(input2)
, CC0(input1)+CC0(input2)]+1

Input1- Σ(output observability,
min(CC0(input2),CC1(input2))+1
Input2- Σ(output observability,
min(CC0(input1),CC1(input1))+1

COMBINATIONAL

ASYNCHRONOUS

HYBRID

SYNCHRONOUS
MEMORY
CONTENT

CIRCUIT
NODES

SEQUENTIAL

PAYLOAD

TROJAN

TRIGGER

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 4 Volume 5, 2020

V. Flowchart for Implementation of Algorithm for Automatic Computation of Testability Parameters

Input verilog netlist

Create naming conventions corresponding to the
specific logic functions

logic function Nwxyz(output, inputs)

AND function
A1200 (output, inputs)

NOR
NO2200(output, inputs) NOT

NOT3100(output, inputs)

Invoke method to compute
CC0/CC1 value according to

SCOAP rules
CC0= min (zero

controllability of inputs) +1
CC1= Σ (one controllability

of all inputs) +1

Invoke method to compute CO
value according to SCOAP rules

CO=Σ(output observability,
one controllability of other

inputs)+1

Invoke method to compute
CC0/CC1 value according to

SCOAP rules
CC0= one controllability of

input +1
 CC1= zero controllability of

input +1

Invoke method to compute
CO value according to

SCOAP rules

Classify the nodes in the logic circuit into primary
inputs, intermediate nodes and primary outputs

For each logic gate obtain the number of associated
primary inputs(x) and intermediate nodes(y)

Ascertain whether the output of the particular logic
gate is a primary output (z)

Invoke method to compute
CC0/CC1 value according to

SCOAP rules
CC0= min (one controllability

of inputs) +1
CC1= Σ (zero controllability

of all inputs) +1

Store the controllability values in
CC0 and CC1 matrices respectively

Invoke method to compute CO
value according to SCOAP rules

CO=Σ(output observability,
zero controllability of other

inputs)+1

Store the observability values in CO
matrix

Number all logic gates in the netlist (N)

OR/NAND/EXOR/
EXNOR

Start

Stop

OR/NAND/EXOR/
EXNOR

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 5 Volume 5, 2020

VI EXISTING METHODS OF TESTABILITY

ANALYSIS

Testing is the classical approach to detect defects
that arise in chips during manufacturing or packaging.
Considering the fact that malicious intrusions are
capable of evading detection and also because testing
methodology has been primarily designed to detect
defective chips, there is a fairly high chance that
security problems go undetected. The process of
assessing the testability of digital systems is defined as
testability analysis. In simple words, testability is a
numerical measure of the impact of a signal value at a
particular node on the output of the circuit. It is captured
using the parameters Controllability and Observability.
In case the signal at a particular node is corrupted due to
malicious interference, these parameters help to
understand the chances that the interference will reflect
in the value at the output signal. In other words, it is
indicative of the probability of discrepancies being
captured during testing phase. There are various
approaches for testability analysis like SCOAP [22] [23],
PREDICT [23], COP [24] etc.

Testability analysis can be topology based or
simulation based. Topology based methods include
SCOAP and Probability based analysis at gate level.
Topology based testability analysis is a static approach.
Goldstein developed SCOAP testability analysis. The
major advantage of SCOAP algorithm is that it has a
linear computational complexity (O(n)). It therefore
provides a speedy estimate of the circuit’s testability.
The computed testability values range from 1 to
infinity.The developed simulation tool is based on
SCOAP.

Probability based analysis works on the signal
probabilities as the name suggests. The probability
values range between 0 and 1. Smaller the value, greater
the difficulty to control or observe the signal. Though it
provides higher level of accuracy of computed values,
the computational complexity is exponentially large.

Simulation based analysis on the other hand
involves the application of test vectors for logic
simulation as well as fault simulation of digital circuits.
In logic simulation, test vectors are applied and
responses are collected like occurrence of 0’s, 1’s,
transition from 0 to 1/ 1 to 0 etc. These data are analysed
to locate areas of poor testability. All the above
mentioned methods can be employed for testability
analysis at gate level of abstraction.

At Register Transfer Level (RTL), behavioural
synthesis has been used for testability analysis. This has
generated testability measures for finite state machines.
This is commonly referred to as RTL level testability
analysis. There are various approaches to perform
testability at RTL level. In [25], a structured graph is
used to represent the RTL circuit where the registers are

represented by vertices and the edges between them are
functional blocks. The maximum level in the structured
graph indicates the difficulty in testing the circuit. In
order to include high level design information about
functional block another approach is suggested in [26].
Here a Directed Acyclic Graph (DAG) is used to
represent the data flow within the functional blocks. The
nodes of the DAG denotes arithmetic, logical or data
transfer operations while the edges represent the signals
involved in the operation. The primary advantage of
RTL is that it improves data path testability at reduced
area overhead.

Following are the highlights of SCOAP method
of testability analysis

a. Provides low computational complexity
b. Can be used to predict the length of test

vectors.
c. Gives a clear picture about the number

of signals that need to be manipulated in
order to control or observe a particular
signal. (all values are positive integers)

d. When addressing hardware attacks, the
overestimated testability metrics
generated by SCOAP can be used as a
precautionary measure to protect the
system against malicious intrusions.

In order to clearly understand the algorithm for
testability analysis, it is important to know the basics of
SCOAP on which the tool works. For a combinational
circuit the numerical values computed for a signal at a
node are

 CC0 - combinational zero controllability
 CC1 - combinational one controllability and
 CO - combinational observability

 As a rule, CC0 and CC1 values of primary inputs to a
circuit are set to 1. At the same time, CO of primary
outputs are set as 0. The computation of the parameters
for various logic gates are given in table 2.

VII ALGORITHM FOR TESTABILITY ANALYSIS

The input for the tool is a Verilog netlist. For
computation purpose, Verilog netlists of ISCAS
benchmark circuits have been used. The Verilog file is
taken as input by the MATLAB program. It is then
converted into a character array. The next step is to
categorize the netlist into arrays of primary inputs,
intermediate nodes and primary outputs which are
named primary, internode and output respectively. Once
the various nodes are classified into the aforementioned
three groups, the next step in the algorithm is to use a
specific naming nomenclature and recreate the netlist in
the new format. As it is evident from table 2,
controllability/observability values of the signal at a
node depends on the controllability values of inputs and
also observability values of outputs. Hence the

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 6 Volume 5, 2020

nomenclature includes the number and category of
inputs and outputs. The nomenclature used in the
development of the tool is as follows

or Nwxyz(output, inputs)
N- name of gate. Eg. OR gate is named O.

w- number of the gate. Eg. if it is the third OR
gate in the circuit, w will be 3.
x- number of primary inputs.eg. if one of the
inputs to the OR gate is a primary input, x will be
1.
y-number of intermediate inputs. eg. if 2 inputs
fall in this category, y will be 2.
z- primary output or not. eg. if the output of the
OR gate is a primary output, z will be 1 else it
will be 0.

For instance considering a line of code in the netlist of
c17 benchmark circuit
nand NAND2_1 (N10, N1, N3);
NAND2_1 is the name of NAND gate. N10 is the output
of the gate while N1 and N3 are the inputs. The
algorithm denotes all NAND gates as NA and numbers
the gates in the order of their occurrence in the netlist.
NAND2_1 is the first NAND gate in the netlist of c17.
Therefore it will be denoted as NA1.The algorithm also
determines whether the output of the particular gate is a
primary output or not. Similarly it also determines
whether the inputs belong to primary or intermediate
nodes category. N10 is an intermediate node while both
the inputs are primary inputs as listed in the input
statement. So the same line will be converted to the
following format
nandNA1200 (N10, N1, N3);
c17 benchmark circuit Verilog netlist in original
format is given below
module c17 (N1,N2,N3,N6,N7,N22,N23);
input N1,N2,N3,N6,N7;
output N22,N23;
wire N10,N11,N16,N19;
nand NAND2_1 (N10, N1, N3);
nand NAND2_2 (N11, N3, N6);
nand NAND2_3 (N16, N2, N11);
nand NAND2_4 (N19, N11, N7);
nand NAND2_5 (N22, N10, N16);
nand NAND2_6 (N23, N16, N19);
endmodule

The converted netlist after the nomenclature
mapping is applied is as shown below
module c17 (N1,N2,N3,N6,N7,N22,N23);
input N1,N2,N3,N6,N7;
output N22,N23;
wire N10,N11,N16,N19;
nandNA1200 (N10, N1, N3);
nandNA2200 (N11, N3, N6);
nandNA3110 (N16, N2, N11);

nandNA4110 (N19, N11, N7);
nandNA5021 (N22, N10, N16);
nandNA6021 (N23, N16, N19);
endmodule

Methods are defined as per SCOAP rules, for all logic
functions. For a particular logic function, the
corresponding method is invoked to compute the
testability parameters. The zero and one controllability
values of all nodes are stored in a matrices named CC0
and CC1 respectively. The first value in the matrix CC0
i.e. CC0 (1) is the zero controllability value for the
output node of the gate numbered 1 in the netlist i.e.
N10. Similar is the case with CC1 matrix. The CC0 and
CC1 matrices computed by the tool for the module c17
are given below
CC0 matrix
 3 3 4 4 5 5
CC1 matrix
 2 2 2 2 4 5
N10 has a CC0 value of 3 and a CC1 value of 2.
After computation of controllability values,
observability values for every node is computed. The
tool is devised with the purpose of focussing on the
internal nodes of the circuit. So the observability
parameters for the primary inputs are not listed out.
Primary inputs are easy to control and cannot be
tampered with. Now consider the NAND gate shown
below
nandNA6021 (N23, N16, N19);
N23 is a primary output and therefore has a
combinational observability value (CO) of 0. N16 is the
output of the third NAND gate labelled NA3110 in the
circuit (as can be seen in the converted netlist). Hence
the observability value for N16 will be saved in CO
matrix at CO (3). For N19 (NA4110), the computed
value is stored at CO (4).
CO matrix
 3 5 3 3
CO of N16 = 3 and CO of N19 = 3

VIII RESULTS AND DISCUSSIONS

The testability parameters have been computed for
various benchmark circuits and are listed in table 3. The
functionality of the benchmark circuits and the total
number of logic gates in the circuit are given in the table.
It gives a picture of the complexity of the logic circuit.
The maximum and minimum values for the
controllability parameters CC0 and CC1 as well as the
values for observability is tabulated. The maximum and
minimum value of every parameter is indicated in the
table so that the reader gains an understanding of how
large the variation is within a particular logic circuit and
also its level of complexity.

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 7 Volume 5, 2020

 Ideally it is good if the CC/CO values are closer to
theoretical minimum which is 1/0. Though SCOAP
defines the method to determine testability parameters
of the circuit, it does not provide a range of values to
classify the nodes in a logic circuit as safe and

susceptible ones. Classification of the nodes on the basis
of testability parameters will help designers to identify
critical nodes/regions in the logic circuit which need to
be attended to for safeguarding against malicious attacks.

 Table 3. Testability parameters of various benchmark circuits

Benchmark
Circuit

No of
logic
gates

Logic function
CC0
min

CC0max CC1min CC1max COmin COmax

c432 160
27 channel interrupt
controller

2 613 2 222 1 1634

c499 202
32 bit single error
correcting circuit

2 109 3 243 2 299

c1355 546
32 bit single error
correcting circuit

2 4130 2 20687 1 20714

c2670 1269
12 bit ALU and
controller

2 292 2 291 1 581

c880 383 8 bit ALU 2 264 2 265 1 260

 Fig 2. c-17 benchmark circuit

Fig 3. c-17 benchmark circuit inserted with Combinational Trojan 1. Fig 4. Hardware Trojan circuit

N16
N2

N6

N11

N19N7

N3

N1

N10
N22

N23

N16
N2

N6

N11

N19N7

N3

N1 N10
N22

N23

1

2

3

4

5

6

1

2

3

4

6

5

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 8 Volume 5, 2020

Table 4. Comparison of Testability parameters of
c-17 benchmark circuit with and without Trojans

Table 5. Triggering condition and Activation
Probability of Inserted Trojans [20]

 IX APPLICATION OF TESTABILITY

ANALYSIS FOR HT DETECTION

 The effect of combinational Trojans on testability
parameters of the c17 circuit in ISCAS-85 benchmark suite
is computed and tabulated in table 4. c-17 circuit shown in
figure 2 has been chosen for ease of explanation. The
combinational Trojan inserted is a 2 input NOR gate
followed by a 2 input EXOR gate is shown in figure 3 [20].
Three different cases where the Trojan taps signals from
different points in the genuine circuit and its impact on the
testability metrics is shown in table 4. The Trojan circuit
inverts the signal N23. All the three cases result in
inversion of N23 for different triggering conditions. Logic
0 at both inputs of the NOR gate results in conditional
complementing of signal N23 through the EXOR gate. c-17
circuit inserted with Trojan-1 is shown in figure 3.

From the testability analysis of these circuits, it is observed
that in all three cases only the observability values for
certain signals namely N19 and N23 have been altered due
to the insertion of Trojans. This is because N19 is one of
the inputs of gate 6 generating N23 signal. So the change in
observability of N23 will result in a change in observability
of N19. The other input of gate 6 is N16. N16 also drives
gate 5. The observability value for the signal at a node with
a number of fanout stems will be the minimum of the
observability values of the fanouts. And hence the
observability values for N16 is taken from testability
parameters of N22 and N10 which is lower than that of
N23 and N19. Another point to be noted from the
evaluation is that the controllability values of all signals
remain unchanged. This is because the Trojan payload is
not stitched to any intermediate nets. In such a scenario,
changes will be reflected in the controllability values of
those nets as well.
Activation of HT circuit is the key factor that ensures their
detection by the application of test vectors. Table 5 shows
the triggering conditions and activation probability for the
various Trojans inserted in c-17 benchmark. It can be seen
that the activation probabilities are as low as 6.25%. It
should be noted that such low values of activation
probability are obtained when a 2 gate Trojan circuit is
introduced into a genuine circuit comprising of a total of 6

gates. This analysis is clearly indicative of extremely poor
transition probability for HTs inserted into standard
circuits comprising thousands of logic gates.

However using testability metrics to detect HT insertion
eliminates the necessity to activate HT. Insertion of HTs
will result in a change in testability metrics of a few
nodes in the genuine circuit. Using the process of reverse
engineering and an efficient path retrace algorithm, the
presence of malicious gates can be determined in any
circuit.

 X CONCLUSION

An efficient general purpose software tool based on
MATLAB is developed to compute the testability
parameters of combinational digital circuits of any level
of complexity. The computation of testability parameters
of various benchmarked digital circuits has been carried
out using the MATLAB based testability analysis tool
that has been developed. The tool is developed based on
Sandia Controllability Observability Analysis Program. It
falls under the category of topology based testability
analysis procedure. The tool eases the process of
computation of controllability and observability values of
various signals in the circuit. The testability parameters
computed using the tool can be used to develop methods
to classify the nodes of a logic circuit into safe and
susceptible categories. This in turn will lead to secure
digital system design for highly sensitive applications.
The tool can also be used for HT detection through the
process of reverse engineering. The application of
testability analysis for HT detection has been elaborated.
It is found that introduction of HTs result in a change in
testability parameters of certain nodes in a circuit.
Subsequently suitable path retrace algorithm can be used
to identify the location of malicious gates in the particular
circuit.

REFERENCES

[1] Y. Shiyanovski, F. Wolff, A. Rajendran, C. Papachristou, D. Weyer
and W. Clay, “Process Reliability based Trojans through NBTI and
HCI effects,” in NASA/ESA Conference on Adaptive Hardware and
Systems, 2010.

SIGN
ALS

COMBINATIONAL TESTABILITY
Trojan
Free

Trojan-1 Trojan -2
Trojan
- 3

N10 3/2/3 3/2/3 3/2/3 3/2/3

N11 3/2/5 3/2/5 3/2/5 3/2/5

N16 4/2/3 4/2/3 4/2/3 4/2/3

N19 4/2/3 4/2/7 4/2/7 4/2/7

N22 5/4/0 5/4/0 5/4/0 5/4/0

N23 5/5/0 5/5/4 5/5/4 5/5/4

Trojan
Triggering
Condition

Trojan
Activation
Probability

Trojan-1 N10=0, N19=0 2/32

Trojan-2 N10=0, N11=0 4/32

Trojan-3 N10=0, N16=0 2/32

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 9 Volume 5, 2020

[2] X. Wang, S. Narasimhan, A. Krishna, T. Mal-Sarkar and B. S.,
“Sequential hardware Trojan: Side-channel aware design and
placement,” in Proc. of the IEEE 29th International Conference on
Computer Design, 2011.

[3] G. T. Becker, A. Lakshminarasimhan, S. S. L. Lang, V. Suresh and
W. Burelson, “Implementing hardware Trojans: experiences from a
hardware Trojan challenge,” in Proc. of the IEEE 29th International
Conference on Computer Design, 2011.

[4] X. Kan, D. Forte and M. Tehranipoor, “A Novel Built-in
Authentication Technique to prevent inserting Hardware Trojans,”
IEEE Transactions on Integrated Circuits and Systems, vol. 33, no.
12, pp. 1778-1791, 2014.

[5] M. Hicks, M. Finnicum, S. T. King, M. M. Martin and J. M. Smith.,
“Overcoming an Untrusted Computing Base: Detecting and
Removing Malicious Hardware Automatically.,” in IEEE Symposium
on Security and Privacy, 2010.

[6] A. Waksman, M. Suozz and S. Sethumadhavan, “FANCI:
identification of stealthy malicious logic using boolean functional
analysis,” in ACM SIGSAC conference on Computer &
communications security, 2013.

[7] T. Hoque, S. Narasimhan, X. Wang, S. Mal-Sarkar and S. Bhunia,
“Golden-free hardware Trojan detection with high sensitivity under
process noise,” Journal of Electronic Testing, vol. 33, no. 1, pp. 107-
124, 2017.

[8] H. Salmani, M. Tehranipoor and J. Plusquellic, “A novel technique
for improving hardware trojan detection and reducing trojan activation
time,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 20, no. 1, pp. 112-125, 2012.

[9] B. Zhou, W. Zhang, S. Thambipillai, J. T. K. Jin, V. Chaturvedi and
T. Luo, “Cost-efficient acceleration of hardware trojan detection
through fan-out cone analysis and weighted random pattern
technique,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 5, pp. 792-805, 2016.

[10] S. Dupuis, M.-L. Flottes, G. D. Natale and B. Rouzeyre, “Protection
Against Hardware Trojans With Logic Testing: Proposed Solutions
and Challenges Ahead,” IEEE Design & Test 35, vol. 35, no. 2, pp.
73-90, 2018.

[11] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou and S. Bhunia,
“MERO: A statistical approach for hardware Trojan detection,” in
Cryptographic Hardware and Embedded Systems-CHES 2009,
Switzerland, 2009.

[12] S. Saha, R. S. Chakraborty, S. S. Nuthakki and D. & Mukhopadhyay,
“Improved test pattern generation for hardware trojan detection using
genetic algorithm and boolean satisfiability,” Embedded Systems,
France, 2015.

[13] Q. Liu and H. Li, “Signal Word-Level Statistical Properties-based
Activation Approach for Hardware Trojan Detection in DSP
Circuits,” IET Computers & Digital Techniques, 2018.

[14] X. Chen, L. Wang, Y. Wang, Y. Liu and H. Yang., “A general
framework for hardware trojan detection in digital circuits by
statistical learning algorithms,” IEEE Transactions on ComputerAided
Design of Integrated Circuits and Systems, vol. 36, no. 10, pp. 1633-
1646, 2017. .

[15] K. Hasegawa, S. Youhua, M. Yanagisawa and N. Togawa, “A Score-
Based Classification Method for Identifying Hardware-Trojans at
Gate-Level Netlists,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2015.

[16] K. Hasegawa, M. Yanagisawa and N. Togawa, “Trojan-feature
extraction at gate-level netlists and its application to hardware-Trojan
detection using random forest classifier,” in IEEE International
Symposium on Circuits and Systems (ISCAS), 2017.

[17] C. Bao, D. Forte and A. Srivastava, “On application of one-class SVM
to reverse engineering-based hardware Trojan detection,” in 15th
International Sym on Quality Electronic Design (ISQED), 2014.

[18] M. Tehranipoor, H. Salami and X. Zhang, “Design Vulnerability
Analysis,” in Integrated Circuit Authentication, Springer International
Publishing, 2014, pp. 125-145.

[19] R. S. Chakraborty, S. Narasimhan and S. Bhunia, “Hardware Trojan:
Threats and emerging solutions,” in IEEE International Conference on
High Level Design Validation and Test Workshop, 2009.

[20] D.Mukhopadhyay and R.S.Chakraborty, “Overview of Hardware
Trojans,” in Hardware Security- Design, Threats and Safeguards,
Taylor and Francis Group, 2015, pp. 382-396.

[21] G. K. Contreras, A. Nahiyan, S. Bhunia, D. Forte and M. Tehranipoor,
“Security vulnerability analysis of design-for-test exploits for asset
protection in SoCs,” in 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), Tokyo, 2017.

[22] L-T.Wan, C-W.Wu and X.Wen, VLSI Test Principles and
Architectures Design For Testability, Elsevier, 2006.

[23] V.D.Agarwal and M.L.Bushnell, “Testability Measures,” in Essentials
of Electronic Testing for Digital, Memory and Mixed-signal VLSI
circuits, New York, kluwer Publishers, 2002, pp. 129-150.

[24] F. Brglez, P. Pownall and R. Hum, “Applications of testability
analysis: From ATPG to critical delay path tracing,” in nternational
test conference on The three faces of test: design, characterization,
production, 1984.

[25] T. Lee, W. Wolf, N. Jha and J. Acken, “Behavioral synthesis for easy
testability in data path allocation.,” in International Conference on
Computer Design: VLSI in Computers and Processors, 1992.

[26] S. Boubezari, E. Cerny, B. Kaminska and B. Nadeau-Dostie,
“Testability analysis and test-point insertion in RTL VHDL
specifications for scan-based BIST,” IEEE transactions on computer-
aided design of integrated circuits and systems, vol. 18, no. 9, pp.
1327-1340, 1999.

Authors' Biography

 Sreeja Rajendran is currently doing
her PhD at BITS Pilani Dubai Campus
(BPDC), UAE. She has done her Masters
in Microelectronics from BPDC (2015)
and B.Tech in Electronics and
Instrumentation from Cochin University
of Science and Technology(CUSAT),
India. Her research interests include

hardware security systems, microelectronic circuits, low
power circuit design and FinFET analysis and testing.

Dr. Mary Lourde Regeena received the
B.Tech. degree in Electrical engineering
from University of Kerala, India, in
1983, the M.Tech. degree in Electronics
from the Cochin University of Science
and Technology, India, in 1987, and the
Ph.D. degree in Electrical engineering
from the Indian Institute of Science,
Bangalore, India, in 1998. She has been a

faculty at CUSAT, Cochin, India, since 1990. She is currently
with the Birla Institute of Technology and Science Pilani
Dubai Campus, Dubai, UAE, where she is working as an
Associate Professor with the Department of Electrical and
Electronic Engineering. Her research interests include signal
processing and its applications, VLSI design, and power
electronics and drives. Dr. Lourde is a Life Member of the
Institution of Electronics and Telecommunication Engineers,
India (LM IETE), the Indian Society for Technical Education

(LM ISTE) and member of IEEE.

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 10 Volume 5, 2020

Sreeja Rajendran, Mary Lourde R.
International Journal of Circuits and Electronics

http://www.iaras.org/iaras/journals/ijce

ISSN: 2367-8879 11 Volume 5, 2020

