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Abstract:  In recent years, VLSI testing has been gaining abundant prominence in hardware security paradigm. Testing not only 
ascertains correctness of circuit designs but also provides feedback to designers to improve existing designs. Hardware attacks at gate 
level of abstraction largely target circuit nodes with poor testability metrics. Identification of regions of a logic circuit which are 
poorly testable is referred to as Testability Analysis. In this paper we explore the possibilities of extending testability analysis for the 
detection of Hardware Trojans (HT). The effect of HT insertion on the system testability metrics is evaluated for c-17 benchmark 
circuit and the results are presented. This research also introduce a software tool developed to automatically generate the testability 
parameters namely the controllability and observability of each node in the circuit using MATLAB. The developed testability 
analysis software tool accept Hardware Description Language (HDL) file as input and generates the controllability and observability 
values of each node described by the HDL. These testability parameters can further be utilised to identification and hence 
classification of unsecure nodes. 
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I INTRODUCTION 

The entire process of converting a design into a 
product passes through several phases. The IC design 
house focusses on developing a circuit design which is 
efficient both in terms of timing and performance. This 
is made possible through partitioning, floor planning, 
placement, routing etc. To implement the design, the 
design house requires modules (intellectual property) 
from third party vendors as well as a fabrication facility 
to construct the design on chip. As attention is devoted 
to improved performance of the design, determining 
the testability of the developed design is seldom done 
at the designer’s end. The relevance of testability 
analysis of a circuit arises with secure IC design. It is 
very important in the event of Hardware Trojan (HT) 
attacks. A HT is any unwanted alteration to the design 
resulting in a deviation from the desired functionality 
at a later point in time. Any of the entities involved in 
the VLSI design cycle could be responsible for the 
malicious insertions. And therefore it is extremely 
important to prepare the system to foil such attempts by 
adversaries. For this purpose the designer should 
clearly know the regions of the circuit which are likely 
to be targeted by intruders. This information can be 
obtained by testability analysis of the logic circuit. 
Testability analysis is a two-step process which is 
performed on gate level circuit description. 
Controllability and Observability are the two 
parameters that decide the testability of every node in 
the circuit. Controllability is a measure of how 
effectively we can set a particular signal to logic level 
1or 0. On the other hand Observability measures the 
difficulty in propagating the logic value at a node to the 
output of the circuit. The first step in the process is to 

compute the controllability values of all the nodes in 
the circuit starting from the primary inputs and 
proceeding to the outputs. The computation of 
observability values commences from the output node 
travelling all the way up to the inputs.  

Testability analysis tools based on SCOAP are not 
readily available or provided by any major CAD tool 
developers in the market. The newly developed 
simulation tool provides the following advantages 

a. The tool works on the Verilog netlists of the 
circuit which is the universal standard and 
therefore does not require any additional 
formatting. 

b. Can compute the testability parameters of 
combinational circuits with any level of 
complexity. 

c. The tool works on MATLAB platform.  
d. The computed parameters can be further used 

in classification of circuit nodes in to safe and 
vulnerable zones and thereby eases the job of 
designer engineers and provides them with 
vital information regarding the security of the 
designed circuit. 

e. The tool can also be applied to compute 
testability parameters of reverse engineered 
circuit netlists which can be an effective 
mechanism for Hardware Trojan detection. 

The rest of the paper is organised as follows :- Section 
2 gives a brief description of the various categories of 
hardware attacks followed by the state of the art 
hardware detection techniques in section 3. Motivation 
behind the work, Flowchart for Implementation of 
Algorithm for Automatic Computation of Testability 
Parameters, Existing Methods for Testability Analysis, 
Algorithm description, Results and Application of 
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Testability Analysis for HT detection is given in the 
sections that follow. 
 

II HARDWARE ATTACKS  

Any attacks that results in a deviation in the 
functionality of a chip from the expected output can be 
broadly termed as hardware attacks. These attacks can 
result in leakage of information through an implanted 
backdoor, damage the chip or even result in Denial of 
Service (DoS). Hardware attacks can be launched at 
various levels of abstraction like circuit, gate and RTL. 
Attacks at the circuit level are initiated through 
changes in manufacturing process parameters like 
doping, channel width etc. At gate level, logic gates are 
added or deleted to launch attacks. Hardware attacks at 
RTL level can be introduced by the addition of states to 
the finite state machine. 

Hardware attacks on ICs can be classified into 
three on the basis of their intended actions which is 
shown in table1. The first category can be called data 
attacks which aims at retrieval of secret data on an IC 
(eg. smart cards). Design attacks forms the second 
class of attacks. The target of these attacks is to acquire 
design information of the chip for the purpose of 
counterfeiting (eg. Reverse engineering). The last class 
of attacks, referred to as functionality attacks attempts 
to alter the functionality of the IC resulting either in 
faulty operation or rendering it non-functional. 
 
 
Table 1. Classification of Hardware Attacks on IC based on 
intended actions 

 

DATA ATTACKS 
DESIGN 
ATTACKS 

FUNCTI
ONALIT
Y 
ATTACK
S 

Invasive 
Non-
invasive 

Reverse 
engineering 

Hardware 
Trojans 
(addition/ 
deletion of 
gates) 

Reverse 
engineering 

Side 
channel 
attacks 

Microprobing 
Hardware 
Trojans 

 
      The motive behind hardware attacks can be 

economic reasons or even for intelligence purposes. 
Integrated circuits are the backbone of all safety critical 
systems. Launching hardware attacks on such sensitive 
systems can result in catastrophic effects.  To protect 
digital systems from these hardware attacks, designers 
should have a vast knowledge about security 
vulnerabilities and the measures to overcome them. To 
build a secure system, the designers should be aware of 
the possible attacks to watch out for and about how to 

protect the system from such malign attacks. Analysing 
the susceptibility of a design to malicious intrusions is 
the key to developing a secure system. Thorough 
analysis of a circuit design is essential to determine its 
susceptibility to Hardware Trojan insertion. Nodes with 
poor testability have been identified as the potential 
sites for HT insertion [1, 2, 3] And therefore testability 
analysis is an integral step to assess the vulnerability of 
circuit designs. 

III   STATE OF THE ART IN HARDWARE 

TROJAN DETECTION 

HT detection can be classified into static and 
dynamic approaches. Static approach relies on formal 
verification methods for the identification of 
unused/redundant logic in the genuine circuit. This 
approach can be utilized either in design stage or post 
fabrication. In [4], the approach is used post fabrication 
where in unused filler cells are replaced with functional 
standard cells which are connected together. These cells 
form a combinational circuit which performs an 
arbitrary function. The signature obtained from the 
Output Response Analyser will differ if any of these 
standard cells have been replaced. Unused Circuit 
Identification (UCI) presented in [5] is a hybrid 
hardware-software approach to detect the presence of 
HTs in design phase. Any unused circuitry in the design 
is flagged as suspicious and detached from the genuine 
circuit if it does not get activated during any of the 
design verification tests. Logic is inserted during 
runtime hardware check to ascertain if the circuit 
flagged as suspicious is legitimate and thereby raising 
an exception. FANCI [6] works along similar lines 
where in Boolean functional analysis is used to flag 
suspicious nets in the circuit. A functional truth table is 
constructed for every gate in the design in order to 
determine the control each input exerts over the output 
of the gate. An input which weakly affects the output of 
a logic gate is termed nearly unused logic, which could 
be used by an adversary. The authors in [7] compare the 
current signatures of the IC at two different time frames 
using a Temporal Self Referencing approach. This 
method improves HT detection sensitivity by 
eliminating the effect of process variations and 
capacitive coupling. 

Dynamic approach on the other hand, requires 
activation of HTs in order to be able to detect them. 
This is made possible by increasing the transition 
probabilities of rare nodes (nodes which rarely get 
activated) in the circuit. This helps to activate the 
Trojans and thereby detect their presence on the chip. 
There are various mechanisms for Trojan activation. In 
[8] and [9] the authors have developed a gate level 
Trojan activation mechanism using dummy scan 
flipflops and 2:1 MUX respectively. In Trojan 
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activation method, using dummy scan flipflop, 
probability analysis is used to determine the set of rare 
nodes whose transition probability falls below a preset 
threshold value. Dummy scan flipflops are inserted to 
improve the transition probability of such nodes. A 3 
input gate has been used to improve the transition 
probability of signals in [10].  Statistical approach [11] 
[12] [13] is yet another approach for HT activation 
which focuses on developing input test vectors which 
facilitate multiple excitations of the rare nodes thereby 
triggering the Trojans and resulting in their detection. 
In other words, statistical approach improves the 
coverage of test vectors in detecting HT. 

 Statistical learning algorithms have been used to 
develop a framework to detect HT insertion during 
fabrication [14]. Here a linear system is formulated for 
every chip using a sparse gate profiling technique. Next 
the process variations for each chip is calibrated using 
Bayesian inference. Finally Simultaneous Orthogonal 
Matching Pursuit algorithm is used to solve the linear 
systems for a batch of chips. HT are detected by 
analysing the solutions. The authors in [15] extracted 
Trojan features from Trojan inserted benchmark circuits. 
These features like low switching logic gates, 
Multiplexer Select lines etc. were used to create a score 
based threshold to segregate HT inserted netlists from 
genuine netlists. Using Random Forest Classifier, the 
best set of Trojan features which can effectively detect 
Trojan nets is obtained in [16]. Features are extracted 
from IC images obtained through Reverse Engineering 
in [17]. Here SVM is used to classify the ICs as Trojan-
free and Trojan-inserted. Features are determined by 
comparing the physical layouts in RE images with that 
of golden IC. In this method images of each layer of a 
set of N chips are divided into non overlapping grids. 
For each grid in a layer features are extracted. The 
trained classifier obtains a decision boundary for each 
layer. Based on the decision, grids in a layer are 
classified as genuine or malicious. 

IV    MOTIVATION BEHIND WORK  

In recent years significant work related to the detection 
and analysis of Hardware Trojans has been carried out. 
However, very little emphasis has been given to the 
susceptibility assessment of circuit designs. The 
authors in [18] have presented the vulnerability 
analysis of a circuit at various levels of abstraction. 
This helps to quantify the difficulty in detecting the 
presence of an HT in the circuit, if inserted. HT attacks 
implemented at gate level involves addition or deletion 

of gates in the circuit. The size of an HT is negligible 
as compared to the size of an IC which is comprised of 
millions of gates.  And therefore they do not have an 
evident impact on the power and timing profiles of the 
circuit. Hence they can be wrongly accounted as noise 
arising due to process variations or environmental 
factors. This is the fundamental challenge in HT 
detection.  

In order to prevent HT insertion completely, 
primary importance needs to be devoted to prepare the 
system to thwart malicious insertions. Since testability 
analysis is performed at gate level, we restrict the 
circuit design analysis to gate level of abstraction. The 
gate level description of a circuit is a collection of 
Boolean functions implemented using logic gates. A 
HT inserted at gate level can be a single gate, a 
collection of gates or a combination of gates and flip-
flops, which produce an undesired effect at some point 
during the operation of the device. In order to 
understand the working mechanisms of gate level HTs, 
it is important to know the components of a HT. There 
are two basic components for a HT namely Trigger and 
Payload. In simple words Trigger is the activating 
mechanism and Payload initiates the undesired action. 
The Trojan classification [19] shown in figure 1 
includes the various digital triggers and payloads. 
Combinational and sequential are the two primary 
classes of digitally triggered Trojans.  A combinational 
Trojan is a collection of gates where the trigger section 
taps signals from multiple nodes in the genuine circuit 
and activates the payload. The signals which are likely 
to be chosen would be those signals whose logic levels 
change very rarely. A sequential Trojan uses memory 
elements in addition to logic gates from the genuine 
circuit. This makes detection of the presence of HTs 
more complex. And the test vectors applied during the 
testing phase might not activate the Trojan circuitry. 
Undetected HTs can have adverse effects on the 
reliability and expected lifetime of the circuit [20].The 
only approach to prepare the digital systems against 
malicious intrusions of this kind is through secure 
design. This process is twofold. Firstly we need to 
identify the nodes in the original circuit which could 
fall prey to malicious intrusions. This information can 
be obtained only through the process of Testability 
Analysis. This reinforces the necessity to analyse the 
testability of any digital system to protect it from 
unwanted interference. Testability also ensures quality 
and reliability of mission critical systems [21]
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    Fig. 1. Classification of Gate Level Trojans 

 
 

      Table 2. SCOAP Rules for various logic functions [22] 

 
 
 
 
 
 
 
 
 
 
 

Logic 
gate 

Combinational Zero 
controllability 

Combinational One 
controllability 

Combinational Observability 

AND 
min(zero controllability of 
inputs) +1 

Σ (one controllability of all 
inputs) +1 

Σ(output observability, one controllability of 
other inputs)+1 

OR 
Σ (zero controllability of all 
inputs) +1 

min(one controllability of 
inputs)+1 

Σ(output observability, zero controllability of 
other inputs)+1 

NOT one controllability of input +1 zero controllability of input +1 output observability+1 

NAND 
Σ(one controllability of all 
inputs)+1 

min(zero controllability of all 
inputs)+1 

Σ(output observability, one controllability of 
other inputs)+1 

NOR 
min(one controllability of 
inputs)+1 

Σ (zero controllability of all 
inputs) +1 

Σ(output observability, zero controllability of 
other inputs)+1 

EXOR 
min[CC1(input1)+CC1(input2)
, CC0(input1)+CC0(input2)]+1 

min[CC1(input1)+CC0(input2)
, CC0(input1)+CC1(input2)]+1 

Input1- Σ(output observability, 
min(CC0(input2),CC1(input2))+1 
Input2- Σ(output observability, 
min(CC0(input1),CC1(input1))+1 

EXNOR 
min[CC1(input1)+CC0(input2)
, CC0(input1)+CC1(input2)]+1 

min[CC1(input1)+CC1(input2)
, CC0(input1)+CC0(input2)]+1 

Input1-   Σ(output observability, 
min(CC0(input2),CC1(input2))+1 
Input2- Σ(output observability, 
min(CC0(input1),CC1(input1))+1 

COMBINATIONAL 

ASYNCHRONOUS 

HYBRID

SYNCHRONOUS 
MEMORY 
CONTENT 

CIRCUIT 
NODES 

SEQUENTIAL

PAYLOAD 

TROJAN 

TRIGGER 
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V. Flowchart for Implementation of Algorithm for Automatic Computation of Testability Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Input verilog netlist 

Create naming conventions corresponding to the 
specific logic functions  

logic function Nwxyz(output, inputs) 

AND function  
A1200 (output, inputs) 

NOR 
NO2200(output, inputs) NOT 

NOT3100(output, inputs)

Invoke method to compute 
CC0/CC1 value according to 

SCOAP rules 
CC0= min (zero 

controllability of inputs) +1 
CC1= Σ (one controllability 

of all inputs) +1 

Invoke method to compute CO 
value according to SCOAP rules 

CO=Σ(output observability, 
one controllability of other 

inputs)+1 

Invoke method to compute 
CC0/CC1 value according to 

SCOAP rules 
CC0= one controllability of 

input +1 
 CC1= zero controllability of 

input +1 

Invoke method to compute 
CO value according to 

SCOAP rules 

Classify the nodes in the logic circuit into primary 
inputs, intermediate nodes and primary outputs 

For each logic gate obtain the number of associated 
primary inputs(x) and intermediate nodes(y)

Ascertain whether the output of the particular logic 
gate is a primary output (z) 

Invoke method to compute 
CC0/CC1 value according to 

SCOAP rules 
CC0= min (one controllability 

of inputs) +1 
CC1= Σ (zero controllability 

of all inputs) +1 

Store the controllability values in 
CC0 and CC1 matrices respectively

Invoke method to compute CO 
value according to SCOAP rules 

CO=Σ(output observability, 
zero controllability of other 

inputs)+1

Store the observability values in CO 
matrix

Number all logic gates in the netlist (N) 

OR/NAND/EXOR/
EXNOR

Start

Stop

OR/NAND/EXOR/
EXNOR
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VI     EXISTING METHODS OF TESTABILITY 

ANALYSIS  

Testing is the classical approach to detect defects 
that arise in chips during manufacturing or packaging. 
Considering the fact that malicious intrusions are 
capable of evading detection and also because testing 
methodology has been primarily designed to detect 
defective chips, there is a fairly high chance that 
security problems go undetected. The process of 
assessing the testability of digital systems is defined as 
testability analysis. In simple words, testability is a 
numerical measure of the impact of a signal value at a 
particular node on the output of the circuit. It is captured 
using the parameters Controllability and Observability. 
In case the signal at a particular node is corrupted due to 
malicious interference, these parameters help to 
understand the chances that the interference will reflect 
in the value at the output signal. In other words, it is 
indicative of the probability of discrepancies being 
captured during testing phase. There are various 
approaches for testability analysis like SCOAP [22] [23], 
PREDICT [23], COP [24] etc. 

Testability analysis can be topology based or 
simulation based. Topology based methods include 
SCOAP and Probability based analysis at gate level. 
Topology based testability analysis is a static approach. 
Goldstein developed SCOAP testability analysis. The 
major advantage of SCOAP algorithm is that it has a 
linear computational complexity (O(n)). It therefore 
provides a speedy estimate of the circuit’s testability. 
The computed testability values range from 1 to 
infinity.The developed simulation tool is based on 
SCOAP.  

Probability based analysis works on the signal 
probabilities as the name suggests.  The probability 
values range between 0 and 1. Smaller the value, greater 
the difficulty to control or observe the signal. Though it 
provides higher level of accuracy of computed values, 
the computational complexity is exponentially large. 

Simulation based analysis on the other hand 
involves the application of test vectors for logic 
simulation as well as fault simulation of digital circuits. 
In logic simulation, test vectors are applied and 
responses are collected like occurrence of 0’s, 1’s, 
transition from 0 to 1/ 1 to 0 etc. These data are analysed 
to locate areas of poor testability. All the above 
mentioned methods can be employed for testability 
analysis at gate level of abstraction. 

At Register Transfer Level (RTL), behavioural 
synthesis has been used for testability analysis. This has 
generated testability measures for finite state machines. 
This is commonly referred to as RTL level testability 
analysis. There are various approaches to perform 
testability at RTL level.  In [25], a structured graph is 
used to represent the RTL circuit where the registers are 

represented by vertices and the edges between them are 
functional blocks. The maximum level in the structured 
graph indicates the difficulty in testing the circuit. In 
order to include high level design information about 
functional block another approach is suggested in [26]. 
Here a Directed Acyclic Graph (DAG) is used to 
represent the data flow within the functional blocks. The 
nodes of the DAG denotes arithmetic, logical or data 
transfer operations while the edges represent the signals 
involved in the operation. The primary advantage of 
RTL is that it improves data path testability at reduced 
area overhead. 

Following are the highlights of SCOAP method 
of testability analysis  

a. Provides low computational complexity 
b. Can be used to predict the length of test 

vectors. 
c. Gives a clear picture about the number 

of signals that need to be manipulated in 
order to control or observe a particular 
signal. (all values are positive integers) 

d. When addressing hardware attacks, the 
overestimated testability metrics 
generated by SCOAP can be used as a 
precautionary measure to protect the 
system against malicious intrusions. 

In order to clearly understand the algorithm for 
testability analysis, it is important to know the basics of 
SCOAP on which the tool works. For a combinational 
circuit the numerical values computed for a signal at a 
node are 

 CC0 - combinational zero controllability  
 CC1 - combinational one controllability and  
 CO - combinational observability  

 As a rule, CC0 and CC1 values of primary inputs to a 
circuit are set to 1. At the same time, CO of primary 
outputs are set as 0. The computation of the parameters 
for various logic gates are given in table 2. 

VII   ALGORITHM FOR TESTABILITY ANALYSIS  

The input for the tool is a Verilog netlist. For 
computation purpose, Verilog netlists of ISCAS 
benchmark circuits have been used. The Verilog file is 
taken as input by the MATLAB program. It is then 
converted into a character array. The next step is to 
categorize the netlist into arrays of primary inputs, 
intermediate nodes and primary outputs which are 
named primary, internode and output respectively. Once 
the various nodes are classified into the aforementioned 
three groups, the next step in the algorithm is to use a 
specific naming nomenclature and recreate the netlist in 
the new format. As it is evident from table 2, 
controllability/observability values of the signal at a 
node depends on the controllability values of inputs and 
also observability values of outputs. Hence the 
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nomenclature includes the number and category of 
inputs and outputs. The nomenclature used in the 
development of the tool is as follows 

or Nwxyz(output, inputs) 
N- name of gate. Eg. OR gate is named O. 

 
w- number of the gate. Eg. if it is the third OR 
gate in the circuit, w will be 3. 
x- number of primary inputs.eg. if one of the 
inputs to the OR gate is a primary input, x will be 
1. 
y-number of intermediate inputs. eg. if 2 inputs 
fall in this category, y will be 2. 
z- primary output or not. eg. if the output of the 
OR gate is a primary output, z will be 1 else it 
will be 0. 

For instance considering a line of code in the netlist of 
c17 benchmark circuit 
nand NAND2_1 (N10, N1, N3); 
NAND2_1 is the name of NAND gate. N10 is the output 
of the gate while N1 and N3 are the inputs. The 
algorithm denotes all NAND gates as NA and numbers 
the gates in the order of their occurrence in the netlist. 
NAND2_1 is the first NAND gate in the netlist of c17. 
Therefore it will be denoted as NA1.The algorithm also 
determines whether the output of the particular gate is a 
primary output or not. Similarly it also determines 
whether the inputs belong to primary or intermediate 
nodes category. N10 is an intermediate node while both 
the inputs are primary inputs as listed in the input 
statement. So the same line will be converted to the 
following format 
nandNA1200 (N10, N1, N3); 
c17 benchmark circuit Verilog netlist in original 
format is given below 
module c17 (N1,N2,N3,N6,N7,N22,N23); 
input N1,N2,N3,N6,N7; 
output N22,N23; 
wire N10,N11,N16,N19; 
nand NAND2_1 (N10, N1, N3); 
nand NAND2_2 (N11, N3, N6); 
nand NAND2_3 (N16, N2, N11); 
nand NAND2_4 (N19, N11, N7); 
nand NAND2_5 (N22, N10, N16); 
nand NAND2_6 (N23, N16, N19); 
endmodule 
 
The converted netlist after the nomenclature 
mapping is applied is as shown below 
module c17 (N1,N2,N3,N6,N7,N22,N23); 
input N1,N2,N3,N6,N7;                                                   
output N22,N23;                                                          
wire N10,N11,N16,N19;                                                    
nandNA1200 (N10, N1, N3);             
nandNA2200 (N11, N3, N6);             
nandNA3110 (N16, N2, N11);            

nandNA4110 (N19, N11, N7);            
nandNA5021 (N22, N10, N16);           
nandNA6021 (N23, N16, N19);                                           
endmodule                
 
Methods are defined as per SCOAP rules, for all logic 
functions. For a particular logic function, the 
corresponding method is invoked to compute the 
testability parameters. The zero and one controllability 
values of all nodes are stored in a matrices named CC0 
and CC1 respectively. The first value in the matrix CC0 
i.e. CC0 (1) is the zero controllability value for the 
output node of the gate numbered 1 in the netlist i.e. 
N10. Similar is the case with CC1 matrix. The CC0 and 
CC1 matrices computed by the tool for the module c17 
are given below 
CC0 matrix 
     3     3     4     4     5    5 
CC1 matrix 
     2     2     2     2     4     5 
N10 has a CC0 value of 3 and a CC1 value of 2. 
After computation of controllability values, 
observability values for every node is computed. The 
tool is devised with the purpose of focussing on the 
internal nodes of the circuit. So the observability 
parameters for the primary inputs are not listed out. 
Primary inputs are easy to control and cannot be 
tampered with. Now consider the NAND gate shown 
below 
nandNA6021 (N23, N16, N19);   
N23 is a primary output and therefore has a 
combinational observability value (CO) of 0. N16 is the 
output of the third NAND gate labelled NA3110 in the 
circuit (as can be seen in the converted netlist). Hence 
the observability value for N16 will be saved in CO 
matrix at CO (3). For N19 (NA4110), the computed 
value is stored at CO (4). 
CO matrix 
     3     5     3     3          
CO of N16 = 3 and CO of N19 = 3 

VIII      RESULTS AND DISCUSSIONS 

The testability parameters have been computed for 
various benchmark circuits and are listed in table 3. The 
functionality of the benchmark circuits and the total 
number of logic gates in the circuit are given in the table. 
It gives a picture of the complexity of the logic circuit. 
The maximum and minimum values for the 
controllability parameters CC0 and CC1 as well as the 
values for observability is tabulated. The maximum and 
minimum value of every parameter is indicated in the 
table so that the reader gains an understanding of how 
large the variation is within a particular logic circuit and 
also its level of complexity.  
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 Ideally it is good if the CC/CO values are closer to 
theoretical minimum which is 1/0. Though SCOAP 
defines the method to determine testability parameters 
of the circuit, it does not provide a range of values to 
classify the nodes in a logic circuit as safe and 

susceptible ones. Classification of the nodes on the basis 
of testability parameters will help designers to identify 
critical nodes/regions in the logic circuit which need to 
be attended to for safeguarding against malicious attacks.

 
     Table 3. Testability parameters of various benchmark circuits 

Benchmark 
Circuit 

No of 
logic 
gates 

Logic function 
CC0 
min 

CC0max CC1min CC1max COmin COmax 

c432 160 
27 channel interrupt 
controller 

2 613 2 222 1 1634 

c499 202 
32 bit single error 
correcting circuit 

2 109 3 243 2 299 

c1355 546 
32 bit single error 
correcting circuit 

2 4130 2 20687 1 20714 

c2670 1269 
12 bit ALU and 
controller 

2 292 2 291 1 581 

c880 383 8 bit ALU 2 264 2 265 1 260 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

  Fig 2. c-17 benchmark circuit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. c-17 benchmark circuit inserted with Combinational Trojan 1.  Fig 4. Hardware Trojan  circuit 
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Table 4. Comparison of Testability parameters of 
c-17 benchmark circuit with and without Trojans 

 
 
 
 
 

Table 5. Triggering condition and Activation 
Probability of Inserted Trojans [20] 

 

 
 
 
 
 

 
 
 
 

 

 IX    APPLICATION OF TESTABILITY 

ANALYSIS FOR HT DETECTION 

 The effect of combinational Trojans on testability 
parameters of the c17 circuit in ISCAS-85 benchmark suite 
is computed and tabulated in table 4.  c-17 circuit  shown in 
figure 2 has been chosen for ease of explanation. The 
combinational Trojan inserted is a 2 input NOR gate 
followed by a 2 input EXOR gate is shown in figure 3 [20]. 
Three different cases where the Trojan taps signals from 
different points in the genuine circuit and its impact on the 
testability metrics is shown in table 4. The Trojan circuit 
inverts the signal N23. All the three cases result in 
inversion of N23 for different triggering conditions. Logic 
0 at both inputs of the NOR gate results in conditional 
complementing of signal N23 through the EXOR gate. c-17 
circuit inserted with Trojan-1 is shown in figure 3. 
 
From the testability analysis of these circuits, it is observed 
that in all three cases only the observability values for 
certain signals namely N19 and N23 have been altered due 
to the insertion of Trojans. This is because N19 is one of 
the inputs of gate 6 generating N23 signal. So the change in 
observability of N23 will result in a change in observability 
of N19. The other input of gate 6 is N16. N16 also drives 
gate 5. The observability value for the signal at a node with 
a number of fanout stems will be the minimum of the 
observability values of the fanouts. And hence the 
observability values for N16 is taken from testability 
parameters of N22 and N10 which is lower than that of 
N23 and N19.   Another point to be noted from the 
evaluation is that the controllability values of all signals 
remain unchanged. This is because the Trojan payload is 
not stitched to any intermediate nets. In such a scenario, 
changes will be reflected in the controllability values of 
those nets as well. 
Activation of HT circuit is the key factor that ensures their 
detection by the application of test vectors. Table 5 shows 
the triggering conditions and activation probability for the 
various Trojans inserted in c-17 benchmark. It can be seen 
that the activation probabilities are as low as 6.25%. It 
should be noted that such low values of activation 
probability are obtained when a 2 gate Trojan circuit is 
introduced into a genuine circuit comprising of a total of 6 

gates. This analysis is clearly indicative of extremely poor 
transition probability for HTs inserted into standard 
circuits comprising thousands of logic gates.  
 
However using testability metrics to detect HT insertion 
eliminates the necessity to activate HT. Insertion of HTs 
will result in a change in testability metrics of a few 
nodes in the genuine circuit. Using the process of reverse 
engineering and an  efficient path retrace algorithm, the 
presence of malicious gates can be determined in any 
circuit. 

 X   CONCLUSION 

An efficient general purpose software tool based on 
MATLAB is developed to compute the testability 
parameters of combinational digital circuits of any level 
of complexity. The computation of testability parameters 
of various benchmarked digital circuits has been carried 
out using the MATLAB based testability analysis tool 
that has been developed. The tool is developed based on 
Sandia Controllability Observability Analysis Program. It 
falls under the category of topology based testability 
analysis procedure. The tool eases the process of 
computation of controllability and observability values of 
various signals in the circuit. The testability parameters 
computed using the tool can be used to develop methods 
to classify the nodes of a logic circuit into safe and 
susceptible categories.  This in turn will lead to secure 
digital system design for highly sensitive applications. 
The tool can also be used for HT detection through the 
process of reverse engineering. The application of 
testability analysis for HT detection has been elaborated. 
It is found that introduction of HTs result in a change in 
testability parameters of certain nodes in a circuit. 
Subsequently suitable path retrace algorithm can be used 
to identify the location of malicious gates in the particular 
circuit. 
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