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Abstract: - This paper presents some considerations on the mathematical description as well as the assay and 
modelling and analysis systems in state space. The mathematical model of the systems consists of a set of 
equations describing the system trajectory and how the system behaves from some points of view. After 
obtaining the mathematical model and transfer matrix, we analysed the system both in terms of controllability 
and observability. This analysis was facilitated by the use of the Matlab programming environment and 
interfaces Labview. 
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1 Introduction 
The output of a system is affected by the inputs 
before the time t0. Taking into account the inputs 
from the time point t=-∞ is difficult to achieve, so a 
new concept, namely the state variable, will be 
introduced. Status variables represent a group of 
sizes that completely define the status of the system 
at a time. These variables also fulfil the role of 
initial conditions for the evolution of the previous 
system. By definition, the state x(t0) of the system at 
the time t0 is the information available that together 
with the input u(t) for t≥t0, uniquely determines the 
output y(t) of the system for t≥t0. Thus, if the state 
of the system is known at the time t0 of its 
determination, y(t) to t≥t0, it is no longer necessary 
to know the inputs applied before the time t0. State 
variables are selected as output signal, along with its 
derivatives in relation to time.  

We will write the general form of the system 
input-state-output equations with matrices A, B, C 
and D independent of time with the meaning of 
matrices [1-6]. 
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where: 
A - the system matrix (nxn) 
B - the input matrix (nxm) 
C - the output matrix (pxn) 
C - the direct connection matrix (pxn) 
 
 
 

2 Mathematical model for the level 
liquid system 
Using the transformed Laplace for the system (1) we 
obtain: 

⇒






+=

−−+−−=

⇒






+=
−
+

=
⇒

⇒




+=
+=−

⇒

⋅





+=
+=−

)()()(
)0(1)()(1)()(

)()()(

)0()()(

)()()(
)0()()()(

)()()(
)()()0()(

sDUsCXsY
xAsIsBUAsIsX

sDUsCXsY
AsI
xsBUsX

sDUsCXsY
xsBUsAXssX

sDUsCXsY
sBUsAXxssX

 
(2) 

  
Replace equations X(s) in equation Y(s): 
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If we consider x(0)=0 and know 
U(s)
Y(s)G(s) = that 

we will determine the transfer function or the 
transfer matrix (it is also called because it is 
calculated on the basis of matrix operations) [7-15]. 

DBAsICsG +−−= 1)()(  (4) 
 
where: I - is the unit matrix 
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There are industrial applications where the level 
of liquid in tanks used in the production process 
needs to be kept constant. A simplified model can 
be considered as the example in figure 1, for which 
it is required to determine the equivalent transfer 
function. It is assumed that under normal operating 
conditions, the inlet and outlet flow rates of the two 
tanks are equal to Q, and the liquid levels are H1 
and H2. A u-disturbance of the inlet flow rate in the 
first tank is considered to cause variations in the 
liquid levels x1 and x2, as well as the flow rates of 
the two y1 and y tanks [16]. 

 

 
Fig.1 Liquid level system 

 
If R1 and R2 are considered to be the resistances 

of the two valves in the system and they depend on 
the normal levels H1 and H2 we will have the 
relations: 
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Changes in fluid levels can also be highlighted 
through the following equations: 
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By replacing y and y1 in the above relations we 
obtain: 
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These equations are also written in matrix form as 
follows [16]: 
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For examples, if A1=10, A2=5, R1=2 and R2=1, 
we obtain: 
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3 Determining the transfer matrix 
and testing system controllability and 
observability 
To determine the equivalent transfer function we 
will use the following Matlab code sequence: 
 
syms s A1 A2 R1 R2  
A=[-1/(A1*R1) 1/(A1*R1); 1/(A2*R1) -
(1/(A2*R1)+1/(A2*R2))] 
B=[1/A1; 0] 
C=[0 1/R2] 
D=[0] 
Phi=inv(s*eye(2)-A) 
G=C*PHI*B+D 
pretty(simple(G)) 
 
We will get matrices for the input-state-output 
system and transfer function: 
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3.1 System controllability 
A system is controllable if, for any initial state, an 
input vector can be found to determine the evolution 
of the state to any desired final value. 

It is considered a system described by the 
equations (1). Because the output of the system has 
nothing to do with the controllability property, only 
the first equation will be referred. A system is fully 
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controllable if there is an input vector u (t) that 
transfers the system from the initial state x (t0) to 
the final state, whatever the initial state x (t0) = x0 
and the final state x (t1) x (t0) in a finite time. A 
system is a partially controllable or uncontrollable 
state if the x1 component of the state is controllable, 
and the x2 component of the state is uncontrollable. 
 

 
Fig. 2 System controllability [16]. 
a) fully controllable state system, b) partially controllable 
state system 
 

Testing the controllability with formula (11). 

[ ]BABAABBC 1n2 −=          (11) 
 
where C is the controllability matrix formed by the 
sub-matrices AkB, k = 0,1, ..., n-1 

The system is fully controllable if and only if     
rank C=n or det C≠0. 

 
3.1 System observability 

A system is observable if the evolution of the 
inputs and outputs is known over a time interval and 
the state function can be deduced over the time 
interval considered. In other words, observability is 
the property of dynamic systems that highlight the 
possibility of estimating the state of the system by 
knowing its output [16]. 

It is considered a system described by the 
equations (1). A system is fully observable if, for 
any t0, the state vector x(t0) can be fully determined 
based on the knowledge of the input vector u (t) and 
the output vector y(t) on the interval [t0, t1] with t1> 
t0≥0. 
Testing for a system observability is performed with 
formula (12). 
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where O is the observability matrix formed by 
subclasses CAk, k = 0,1, ..., n-1. 

A system is fully observable and only if the rank 
O=n or det O ≠ 0. 

We tested the system controllability and 
observability with the following Matlab program: 
 
syms s t 
A = [-1/20 1/20; 1/10 -3/10]; 
B=[1/10;0] 
C=[0 1]; 
CO=ctrb(A,B) 
OB=obsv(A,C) 
d1=det(CO) 
d2=det(OB) 
if ((d1==0)&(d2==0)) 
disp ('The system not is controllable and nor is 
observable') 
elseif ((d1==0)&(d2~=0)) 
disp('The system is observable, but not is 
controllable') 
elseif ((d1~=0)&(d2==0)) 
disp('The system is controllable, but not is 
observable') 
elseif ((d1~=0)&(d2~=0)) 
disp('The system is controllable and observable') 
end 

we will obtain d1=0.001 and d2=-0.1 and matrices 
that controllability and observability (13): 
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Resulting: The system is controllable and 
observable 
To analyse and visualize controllability and 
observability following interface system we use 
Labview. 
 

 
Fig. 3 Block Diagram  
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Fig. 4 Front panel  

The LED’s are on, so the system is controllable and 
observable. 
 
5 Conclusion 
The analysis of the trajectory of the electrical 
systems with the Matlab matrix calculation program 
has functions dedicated to the system analysis using 
the controllability matrix - ctrb and observability 
matrix - obsv. A system is controllable and 
observable in Labview if the LED’s are on. The 
ranges of these matrices will give us information 
about the performance of the system. Thus, 
prototyping a system will have to go through the 
steps of analyzing the space of the states listed 
above in order to shorten the start-up time of the 
analyzed system. 
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