
1 Introduction
Slater-type basis functions are widely used to calculate atomic and
molecular orbitals. The analytical expansion of Slater-type ba-
sis functions has successfully achieved Hartree-Fock solutions and
ab initio methods for single atoms and diatomic molecules [3, 4].
However, the computation of integrals for multicenter molecules,
many-body systems and large-scale atoms faces significant chal-
lenges. On the other hand, Gaussian-type orbitals were originally
developed by John C. Slater [1] to describe electronic wavefunc-
tions, because they simplify the integration over Gaussian functions
compared to Slater-type orbitals. Recent work with large Gaussian
basis sets has shown the efficiency of Hartree-Fock (HF) wavefunc-
tion calculations for molecular integrals [2]. However, the Gaussian
basis functions do not behave correctly near the nucleus, and decay
faster than Slater basis functions far from the nucleus [5, 6, 7]. The
conventional definition of the normalized radial part of Slater-type
orbitals [8, 9] is given by

R
S
(r, ζ) = N

S
(ζ)rn−1 exp(−ζ|r|) (1)

where ζ is the exponent parameter for Slater-type orbitals. We
use α as the exponent parameter for Gaussian-type orbitals. The
normalized radial part of Gaussian-type orbitals [10, 11] can be
written as:

R
G

(r, α) = N
G

(α)rn−1 exp(−αr2) (2)

To rephrase in English: ”Moreover, it seems that none of
the existing types of orbitals can provide a clear and definitive
interpretation for molecular calculations. Slater-type Orbitals
(STO’s) are good at capturing the specific behavior of an electron
near a nucleus. Gaussian-Type Orbitals (GTO’s) are convenient for
computing molecular integrals. However, both STO’s and GTO’s
have a major drawback: they assume that the electron wavefunc-
tions are only dependent on one nucleus. This is a mathematical
property of the Gaussian and Exponential decay basis functions,
which have single centers and decay quickly away from the
nucleus. This is a significant limitation, as real macroscopic atomic
structures [12, 13, 14] consist of multiple centers, many-body
interactions and emergent phenomena. Therefore, STO’s and
GTO’s are not very effective at connecting single orbitals with
macroscopic atomic structure behaviors, such as the quantization
effects observed in quantum mechanics.

We can write STO’s orbitals as a sum of Gaussian basis func-
tions with M terms, where ci are the expansion coefficients and αi
are the exponent parameters. The formula for the linear combina-
tion of GTO’s that approximates STO’s is given by [9].

R
S
(r, ζ) ≈ R

G
(r, αi) ≈ rn−1

M∑
i=1

ci exp(−αir2) (3)

This research aims to develop a novel Periodic Gaussian basis
function for Hydrogen-atom wavefunctions that includes 3d-type
orbital and to analyze its physical and mathematical properties in
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relation to quantization phenomenon. In this paper, we use a sin-
gle Gaussian (M=1) in Eq. 3 basis function exp(−αr2) to expand
both Slater-type basis function exp(−ζ|r|) and Periodic Gaussian
basis function ψ(r) as shown in Figure. 1. We detail the spatial
and frequency analysis in sections II.1 and II.2. We describe the
canonical Hydrogenic wavefunctions in section II.3. We discuss
the analytical and simulation results in Section. III.

 

 

Gaussian−type: exp(−α r2)
Periodic Gaussian: ψ(r)
Slater−type: exp(− ζ |r|)

Figure 1: Normalized Slater-type, Gaussian-type and Periodic
Gaussian ψ(r) basis functions for given distance to nucleus (r).

2 Periodic Gaussian basis Function

2.1 Spatial Analysis
The Gaussian basis function g1(r) has two parameters: (µ) and
(σ). The former is the center of the Gaussian, while the latter is
the standard deviation that measures how far the values are spread
from the center. α is the Gaussian exponent parameter that is the
inverse of the variance (σ2).

g1(σ, µ)(r) =
1

σ
√

2π
exp

(
− 1

2σ2

(
r − µ

)2)
= A exp

(
− αr2µ

)
,

where A =
1

σ
√

2π
, α =

1

2σ2
, rµ = r − µ

(4)

Let f0 be the natural spatial frequency or wave-number that
describes the periodic atomic structure in space, measured in cycles
per meter m−1, which is the inverse of the wavelength λ = 1/f0
in meter. We use ω0 = 2πf0 = 2π/λ to denote the atomic angular
wave-number in rad/m. The Gaussian order is determined by the
parameter n [15]. Then, the radial Periodic Gaussian basis function
ψ1(r) can be written as

ψ1(n, f0)(r) =A sinn
(

2πf0r

)
= A sinn

(
ω0r

)
, n ≥ 1 (5)

The common units for measuring the size of atoms and the
distance from the nucleus are nanometer (1 nm = 10−9 m) and
Angstrom (1 Å = 10−10 m). The units of (r) and (λ) should be
consistent. Then, the ratio r

λ is independent of the unit of distance
as follows

ψ1(r) = A sinn
(

2π
r

λ

)
= A sinn

(
2π
r · 10−9

λ · 10−9

)
(6)

Given (σ, µ), let β be the ratio of σ to µ and N be the num-
ber of spatial periods. Then, the computation of the radial periodic
Gaussian basis function with (n, f0) parameters is simplified to the
expression in Eq. (7). This equation shows the analytical trans-
formation from the true Gaussian g1(σ, µ)(r) to the approximate
Gaussian ψ1(n, f0)(r) basis functions with an error less than 10−6

[15].

g1(r) ≈ ψ1(r) = A sinn
(
ω0r

)
= A sinn

(
πr

2µ

)

where



σ(n) = µ

(
1− 2

π
arcsin

(
exp

(
− 1

2n

)))
,

n(σ) = − 1

2 ln

(
sin

(
π

2
(1− β)

)) ,
β =

σ

µ
, 0 < β < 1, µ =

λ

4
=

1

4f0
, 0 ≤ r ≤ 2µN

(7)
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Figure 2: True Gaussian basis function g1(r) and its approximation
ψ1(r) versus n, µ = λ

4 = 1/4, N=1: 0 ≤ r ≤ λ
2 .

Figures 2 and 3 describe a single (N=1) periodic Gaussian
ψ1(r) relative to a single true Gaussian, g1(r) and round a Gaus-
sian number (N=3) versus the n parameter as shown in Eq. (7). The
periodic Gaussian expansion decays rapidly as n increases as an in-
verse effect of the σ parameter. As mentioned in [15] and shown
in Fig. 2, the periodic Gaussian approximation model gave the best
accuracy compared to the original Gaussian function with Odd and
even values of n imply that the periodic Gaussian cells are sym-
metric and antisymmetric , as shown in Fig. 3. From this figure,
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Figure 3: Normalized periodic Gaussian ψ1(r) versus n for µ =
λ
4 = 1/4, N=3: 0 ≤ r ≤ 3λ2

the highest (n) value seems produced similar (σ) as (n+ 1) (n=200
⇒σ≈ 0.0112, n=201⇒σ≈ 0.0112). In the following, we extend
the periodic Gaussian basis function to 2D and 3D dimensions in
Cartesian coordinates using illustrative examples.

(m) denotes the dimension number. For periodically high
Gaussian parameters, a combination of multiple methods is
used in a one-dimensional Gaussian method. Considering
r={r1, r2, ..., rm} point coordinates in m-dimensional space, we
have

gm(r) = g1(r1) · g1(r2) · ... · g1(rm) =

m∏
i=1

g1(ri)

= Am exp

(
− α

(
r21 + r22 + ...+ r2m

))

= Am exp

(
− αr2

)
, r =

√
r21 + r22 + ...+ r2m

(8)

If the terms (5) and (7) are replaced by (9), then the m-
dimensional periodic Gaussians ψm(r) and ψ3(r) can be expressed
by

ψm(r) = ψm(r1, r2, ..., rm) = Am
m∏
i=1

ψ1(ri)

= Am
m∏
i=1

sinn
(
ω0ri

)

ψ3(r) = A3

(
sin(ω0r1) · sin(ω0r2) sin(ω0r3)

)n
,

where r =
√
r21 + r22 + r23, A

3 =

(
1

2πσ2

) 3
2

=

(
α

π

) 3
2

(9)

Periodic Gaussian basis functions in 1D, 2D, and 3D space
are described in Fig. 4, together with {r1, r2, r3} ∈ {0, N λ

2 },
λ=1. The ψ3(r) function has a spherical isosurface shape, as can
be seen in the image. The only factors influencing the number
of Gaussian cells Nb are the dimensions parameters (m,N ) and
periods. One cell, four cells for ψ2(r)(N=3,m=2), eight cells
for ψ3(r)(N=3,m=3), and Nb = Nm for ψm(r), N > 1 make
up the ψ1(r) (N=3,m=1). The number of spherical objects per
volume unit in 3D space, or number density, is indicated by the
Nb parameter. It can be applied to 3D space to determine the size
architecture of periodic spherical objects such as molecules and
atoms.

The periodic Gaussian basis function’s n parameter’s interest is
seen in Fig. 5. The n parameter determines the periodic Gaussian
size. While the distance from the nucleus remained constant, the
size of the cell decreased as n increased. It is commonly known
that the Gaussian center µ is centered in ±3σ approximately 99%
of the Gaussian energy. Moreover, the inverse effect of the standard
deviation σ on n is given by equation (7). A rise in n caused a
void to appear between every two cell neighbors. This parameter
is interesting for adjusting the size and spacing of spherical objects
within a certain volume. We shall examine the periodic Gaussian
basis function analytically in the spatial frequency domain in the
sections that follow.

2.2 Frequency Analysis
Here we compute Fourier Transforms (FT) between an infinite sum
of shifted single Gaussian functions and a periodic Gaussian basis
function. The only function we’ll utilize is 1D. This produces out-
comes that are both intriguing and straightforward to understand in
the analysis. With ν representing the wave number in the spatial
frequency in m−1, let G1(ν) represent the FT of g1(r). As a result,
G1(ν) can be expressed as

G1(ν) = FT

[
g1(r)

]
= A1 exp

(
− α1ν

2

)
︸ ︷︷ ︸
continuous Gaussian

,

with A1 = A
√
π/α, α1 = π2/α

(10)

Let α1 be the Gaussian exponential parameter in the frequency
domain, and N1 be the number of shifted Gaussian cells by µ. Let
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Figure 4: From top to bottom ψ3(r), ψ2(r) and ψ1(r) for
N={1,2,3}, n=10, f0=1, 0 ≤ r1, r2, r3 ≤ 1.5, 128×128×128 mesh
elements.

g(r) represent the infinite sum of g1(r) shifted Gaussian cells. Us-
ing the property of convolutional product (⊕), we get

g(r) =

∞∑
N1=−∞

g1(r −N1µ) = g1(r)⊕
∞∑
−∞

δ(r −N1µ) (11)

let δ denotes Dirac delta distribution and G(ν) the FT of g(r).
Then, we obtain

G(ν) = FT

[
g1(r)

]
=

∞∑
−∞

FT

[
g1(r)

]
· FT

[
δ(r −N1µ)

]

=
1

µ

∞∑
−∞

G1(ν) · δ
(
ν − N1

µ

)

=

∞∑
−∞

1

µ
G1

(
ν − N1

µ

)
︸ ︷︷ ︸
discrete Gaussian

δ

(
ν − N1

µ

)
(12)

Let us now compute ψ1(r), a Periodic Gaussian basis function.
To start, in order to reduce mathematical complexity, we provide
an Euler linearization of the power-sine function. Let ωi represent
angular pulsation for specified harmonics (i), (j) be an imaginary
number with j2=-1, and

(
n
i

)
denote binomial coefficients. Next up,

we have

Figure 5: From top to bottom ψ3(r), ψ2(r) and ψ1(r) for for
n={2,4,32}, N=2, f0=1, 0 ≤ r1, r2, r3 ≤ 1, 128×128×128 mesh
elements.

ψ1(r)/A = sinn
(
ω0r

)
=

1

(2j)n

n∑
i=0

(
n

i

)(
− 1

)n−i
· exp

(
jωir

)
where

(
n

i

)
=

n!

i!(n− i)!
, ωi = ω0(2i− n), n > 0 ∈ IN,

(13)

Then the FT Ψ1(ν) of ψ1(r) described in Eq. (13) using shift-
ing property in frequency domain is expressed by

Ψ1(ν)/A = FT

[
ψ1(r)/A

]
= FT

[
sinn

(
ω0r

)]
=

1

(2j)n

n∑
i=0

(
n

i

)(
− 1

)n−i
· δ
(
ν − fi

)
where ωi = 2πf0(2i− n) = 2πfi, fi = f0(2i− n)

(14)

Additionally, µ = λ
4 can be used to describe ψ1(r) with the

cosine function via left translation. This results in a spatial domain
that is centered Gaussian. Since Ψc

1(ν) is the ψ1(r) FT, we get
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ψ1(r + µ)/A = cosn
(
ω0r

)
=

1

2n

n∑
i=0

(
n

i

)
exp

(
jωir

)

Ψc
1(ν)/A = FT

[
ψ1(r + µ)/A

]
=

1

2n

n∑
i=0

(
n

i

)
δ

(
ν − fi

)
(15)

For both the (14) and (15) equations, the FT modulus is given
by, and it stays constant finely.

||Ψ1(ν)|| = ||Ψc
1(ν)|| =

n∑
i=0

A

2n

(
n

i

)
︸ ︷︷ ︸

discrete coefficients

δ

(
ν − fi

)

(16)

2.3 Hydrogenic Wave-functions

In this section, we present the Cartesian expansions of STO orbitals.
We apply a first approximation to simplify the mathematical expres-
sion, using GTO and Periodic Gaussian (PG) basis functions (STO
≈ STO-1G ≈ STO-1PG) as shown in Eq. (17). Moreover, we pro-
vide analytical formulas for primary STO orbitals including 3d-type
and their corresponding canonical periodic Gaussian orbitals.

A · exp

(
− ζr

)
︸ ︷︷ ︸

STO

≈

STO−1G︷ ︸︸ ︷
B · exp

(
− αr2

)
≈ C · ψ3(r)︸ ︷︷ ︸
STO−1PG

A,B,C : Normalization constants

(17)

Let us now define the meaning of the exponent parameter (ζ)
in Slater-type orbitals. We use the following constants and param-
eters: me: electron mass, qe: elementary charge, Z: number of
protons, h: Planck’s constant, ε0: vacuum permittivity and a0 is
the Bohr radius. The ζ parameter is linearly proportional to the
number of protons Z and the electron mass me as shown in Eq.
(18). A higher ζ means a larger and heavier particle.

ζ =
Z

a0
= Zme

πq2e
h2ε0︸ ︷︷ ︸
ζ0

= Zmeζ0, where a0 =
h2ε0
meπq2e (18)

We can now compute the canonical forms of the Periodic Hy-
drogenic orbitals, by considering each wavefunction individually.
Let ψ1s(r), ψ2s(r), ψ2px(r), ψ2py(r) and ψ2pz(r) represent the
first five wavefunctions of the (1s), (2s), (2px), (2py) and (2pz)
orbitals, respectively. The canonical forms of the other wavefunc-
tions, including the 3d-type ones, are given in the Appendix section.
Then, we obtain

ψ1s(r) = A1s exp

(
− ζr

)
, A1s =

√
ζ3

π

≈ B1s exp

(
− αr2

)
, N = 1

≈ B1s

A3︸︷︷︸
constant B′

1s

ψ3(r) = B′1sψ3(r), N ≥ 1

(19)

ψ2s(r) = A2s

(
2− ζr

)
exp

(
− ζ

2
r

)
, A2s =

√
ζ3

32π

= A2s

(
2− ζr

)
exp

(
− ζ

2
r

)
let ψ

1
2
1s =

[
A1s exp

(
− ζr

)] 1
2

=
√
A1s exp

(
− ζ

2
r

)
⇒ exp

(
− ζ

2
r

)
=

(
ψ1s

A1s

) 1
2

then ψ2s(r) = A2s

(
2− ζr

)(
ψ1s

A1s

) 1
2

=
A2s√
A1s︸ ︷︷ ︸
A′

2s

(
2− ζr

)
ψ

1
2
1s

≈ A′2s
(

2− ζr
)(

B1s exp

(
− αr2

)
︸ ︷︷ ︸

≈ψ1s(r)

) 1
2

let

(
ψ

1
2
1s

)(1)

=
∂

∂r

(
ψ

1
2
1s

)
= −αrψ

1
2
1s

⇒ rψ
1
2
1s = − 1

α

(
ψ

1
2
1s

)(1)

then ψ2s(r) ≈ A′2s
(

2ψ
1
2
1s +

ζ

α

(
ψ

1
2
1s

)(1))

(20)

ψ2pz(r) = A2pzζz exp

(
− ζ

2
r

)
, A2pz = A2s

=
ζA2pz√
A1s

zψ
1
2
1s = A′2pzζzψ

1
2
1s

let

(
ψ

1
2
1s

)(1z)

=
∂

∂z

(
ψ

1
2
1s

)
≈ −αzψ

1
2
1s

⇒ zψ
1
2
1s ≈ −

1

α

(
ψ

1
2
1s

)(1z)

then : ψ2pz(r) ≈ −A′2pz
ζ

α

(
ψ

1
2
1s

)(1z)

ψ2py(r) ≈ −A′2py
ζ

α

(
ψ

1
2
1s

)(1y)

ψ2pr(r) ≈ −A′2px
ζ

α

(
ψ

1
2
1s

)(1x)

(21)
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with

(
ψ

1
2
1s

)(1x)

=

(
A

1
2
1s

(
sin(ω0x) sin(ω0y) sin(ω0z)

)n
2
)(1x)

= A
1
2
1s

n

2
ω0 cos(ω0x) sin

n
2
−1(ω0x)·(

sin(ω0y) sin(ω0z)

)n
2

n

2
>> 1⇒

(
ψ

1
2
1s

)(1x)

≈ nω0

2
cos(ω0x)ψ

1
2
1s

⇒
(
ψ

1
2
1s

)(1y)

≈ nω0

2
cos(ω0y)ψ

1
2
1s

⇒
(
ψ

1
2
1s

)(1z)

≈ nω0

2
cos(ω0z)ψ

1
2
1s

(22)

3 Simulation Results and Discussions

3.1 Quantization phenomenon
To show how the number of periods N affects the spectrum of the
periodic Gaussian basis function ψ1(r), we first look at simulation
results where the spectrum are made from single (N=1) and
multiple (N=10) Gaussian beams as in Fig. 6. The results are for
n = 10, λ = 1 and 0 ≤ r ≤ N

2 . We used Matlab Fourier transform
function for simulation results. It is clear that the magnitude
of single Gaussian Fourier transform ||Ψ1(ν)|| in space domain
gives another continuous Gaussian in spatial frequency domain.
We know that a FT of a single Gaussian is another Gaussian
as in Eq. (10) and Fig. 6. This equation shows the duality of
Gaussian parameters between spatial and frequency domains: The
Gaussian width in spatial domain is inversely proportional to those
in frequency domain (α1 = π2/α). However, multiple Gaussian
beams produce a discrete Gaussian in frequency domain. This
means that increasing N causes a natural quantization phenomenon
in frequency domain, especially when N ≥ 2 as in Eq. (12). This
equation shows that the distance between peaks such as spatial
frequency resolution is constant and multiple of 1

µ= 4
λ .

Now let’s observe and interpret the influence of the n param-
eter in the frequency domain and its link with the quantization
phenomenon. The simulation results in Fig. 7 show ||Ψ1(ν)|| for
varying n from 1 to 8. The results have been obtained for N = 10,
λ = 1 and 0 ≤ r ≤ 5. The periodic Gaussian spectra are fully
discrete with Gaussian shape. The number of peaks increases with
increasing n, and is equal to n + 1 as shown in Eq. (13) and (14).
However, this parameter does not affect the spectrum behavior and
the spatial frequency resolution. Furthermore, the n parameter
adjusts the Gaussian bandwidth in the frequency domain, and the
maximal frequency is |nf0|=|nλ | as shown in Eq. 13. This can
explain the increasing Gaussian width in the frequency domain
for increasing n. As a result, the quantization phenomenon occurs
only during the analysis of periodic Gaussians in the frequency
domain. A single continuous Gaussian in the spatial domain
induces another continuous Gaussian in the Fourier domain. This

means that if we consider a periodic system in the spatial domain
spaced by λ and characterized by the ψ3(r) function in 3D space,
then we will obtain a discrete spectrum in the Fourier domain.
However, if we consider a single system, we will obtain a single
continuous spectrum in the frequency domain.
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Figure 6: Periodic Gaussian basis function ψ1(r) and its Fourier
transform Ψ1(ν) for N=1 and N=10. n is set to 40, λ = 1, 0 ≤ r ≤

N
λ

2
.

Furthermore, as demonstrated in Eq. 16, the binomial coef-
ficients

(
n
i

)
control the magnitude of Periodic Gaussian peaks in

the Fourier domain. These coefficients define the Pascal’s triangle
addresses. The nth row and ith value in Pascal’s triangle are indi-
cated by them. They predicted the amplitudes of split NMR peaks
using Neutron Magnetic Resonance (NMR) spectroscopy [16, 17].
Moreover, the protons number n in NMR spectroscopy produced
n + 1 peaks, which are known as the n + 1 rule and n lets spin
multiplicity. As seen in the images 7 and 8, we can clearly dis-
cern a correlation between Periodic Gaussian Fourier analysis and
1H NMR Spectroscopy from these. By analogy, we propose that the
Fourier transform of the Periodic Gaussian system structure and the
split pattern of NMR spectroscopy are correlated.

3.2 Periodic Gaussian Orbitals

We consider nn: Principal Quantum Number (QN), ll: Azimuth
QN and mm: Magnetic QN. The Table. 2 and Figures. 9 to 22
summarize analytical and simulation results. This table shows
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Figure 7: Fourier transform modulus ||Ψ1(ν)|| of Periodic Gaus-
sian basis function versus n parameter. N is set to 10, λ = 1,
0 ≤ r ≤ 5.
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Figure 8: Some examples of splitting patterns, n protons induced
n+ 1 peaks known as n+ 1 rule in 1H NMR Spectroscopy.

explicit expanded STO orbitals including 3d-type orbital in the
form of canonical Periodic Gaussian-Type Orbitals STO-1PG.
The analytical results indicate that entire wavefunctions can be
developed exclusively by employing s-type functions in form
of canonical STO-1PG. By applying partial primary and sec-
ondary derivative like Gradient and Laplacian operators, we can
produce orbitals knowing only (1s) wavefunction. As stated
in the previous section, the (1s) wavefunction ψ1s like ψ3 have
a spherical form in the 3D space as shows in the Fig. 9 and Table. 2.

Figure 9: Normalized Periodic (1s) orbital ψ1s(r), N=2, n=10,
λ=1, 128×128×128 mesh points.

The (2s) orbital is formed by a linear combination of ψ
1
2
1s and

its first partial derivative, as shown in Fig. 10. The function ψ
1
2
1s is

related to ψ1s by taking the square root of both the Gaussian ampli-
tude and width: ψ

1
2
1s ≈ A

1
2
1s sin

n
2 (ω0r). Similarly, the cube root of

ψ1s gives ψ
1
3
1s, and so on. The table shows that only the principal

quantum number nn affects the Gaussian width in the STO-1PG ex-

pansion, as ψ
1

nn
1s ≈ A

1
nn
1s sin

n
nn (ω0r). We can infer from this that

the parameter nn controls the spatial diffusion of Gaussian cells, as
illustrated in Fig. 11 [20, 21, 22].

Figure 10: Normalized Periodic (2s) orbital ψ2s(r), N=2, n=10,
λ=1, ζα = 10−2, 128×128×128 mesh points.

The periodic 2p-type orbitals may be expanded by the direc-
tional gradient of ψ

1
2
1s over (x), (y) or (z) direction as shown in the

table. The equation Eq. 21 introduces an explicit approximation of
the periodic Gaussian directional gradient. This formula indicates
a decrease of the spatial Gaussian width ψ

1
2
1s compared to ψ1s

and also a modulation by cos(2πf0x). This induces a symmetric
Gaussian spectrum in the spatial frequency domain over ±f0=± 1

λ .
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Figure 11: Periodic Gaussian basis function diffusion ψ
1

nn
1s (r) for

N=1, n=20, λ=1, nn={1,3,5,7,9} (from left to right).

Examples of spatial periodic 2p-type orbitals are illustrated in
Figures. 12 and 13 for N=1 and N=2, respectively.

Figure 12: Normalized Periodic (2px) orbital ψ2px(r), N=1, n=10,
λ=1, 128×128×128 mesh points.

Figure 13: Normalized Periodic (2py) orbital ψ2py(r), N=2, n=10,
λ=1, 128×128×128 mesh points.

The number of Gaussian cells required to approximate Slater
basis function of periodic system in comparison between GTO’s
expansion and Periodic GTO’s in 3D space (m=3) is shown in the
Table. 1. The number of the Gaussian cells to approximate a single

Table 1: Comparison of number of Gaussian basis function re-
quired to approximate STO-kG and STO-kPG orbitals in Cartesian
3D space versus N, where k being a positive integer.

Periods Number N
1 2 3 4 5 ∀N

STO-1G 1 8 27 64 125 1×N3

STO-1PG 1 1 1 1 1 1
STO-2G 2 16 54 128 250 2×N3

STO-2PG 2 2 2 2 2 2
STO-3G 3 24 81 192 375 3×N3

STO-3PG 3 3 3 3 3 3
STO-30G 30 240 810 1920 3750 30×N3

STO-30PG 30 30 30 30 30 30
STO-kG k×13 k×23 k×33 k×43 k×53 k×N3

STO-kPG k k k k k k

Cost Gain 1 8 27 64 125 N3

Slater-type basis function is given by the positive integer (k). It is
clear in the table that the number Gaussian cells growth as the cube
of the number of periods (N) and linear proportional to (k) parame-
ter, it raised from 1 (STO-1G, N=1) to 125 (STO-1G, N=5). How-
ever, a single periodic Gaussian is sufficient in case of STO-1PG,
∀N . As result, the gain between STO-kG and STO-kPG in terms
of single Gaussian cell reach N3 in 3D space. As a conclusion,
by applying Periodic Gaussian, the computation cost of periodic
system may be dramatically reduced by N3 compared to the basic
Gaussian cell [23, 24, 25, 26]. This is due to natural periodicity of
sinusoidal function.

The table shows how many Gaussian cells are needed to
approximate a Slater basis function of a periodic system, using
either GTO’s expansion or Periodic GTO’s in 3D space (m=3).
The number of Gaussian cells for one Slater-type basis function
is determined by the positive integer (k). The table reveals that
the number of Gaussian cells increases with the cube of the
number of periods (N) and is linearly proportional to (k). It goes
from 1 (STO-1G, N=1) to 125 (STO-1G, N=5). However, only
one periodic Gaussian is enough for STO-1PG, regardless of N.
Therefore, the advantage of using STO-kG over STO-kPG in terms
of single Gaussian cell is N3 in 3D space. In conclusion, periodic
Gaussians can reduce the computational cost of periodic systems
by N3 compared to basic Gaussian cells [23, 24, 25, 26], because
of the natural periodicity of sinusoidal functions.

However, in GTO expansions, it is well known that the
number of Gaussian basis functions required to achieve better
approximations of Slater-type orbitals may be important. In this
study we limited to first approximation of STO’s in terms of
GTO’s. This may represent a primary approximation of electron
behavior over the nucleus. The higher number of Gaussian basis
functions to approximate Periodic Gaussian function have not yet
been investigated. We believe that the mathematical complexity of
molecular computation will be reduced by using Periodic Gaussian
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basis function. These orbitals will be describing electrons behavior
such as a linear combination of sine a cosine functions. In addition,
we postulate existence of correlation between Periodic Gaussian
Fourier transform and NMR molecular spectrum. The inspection
of these hypotheses is now in progress.

One challenge of using GTO expansions is that they need many
Gaussian basis functions to approximate Slater-type orbitals more
accurately. In this study, we used the first approximation of STO’s
by GTO’s. This is a basic way of modeling the electron behavior
near the nucleus. We have not explored the use of more Gaussian
basis functions to approximate Periodic Gaussian functions. We
think that Periodic Gaussian basis functions can simplify the
mathematical calculations of molecular systems. We used orbitals
to model how electrons behave as a linear combination of sine
and cosine functions. We also proposed a connection between
the Periodic Gaussian Fourier transform and the NMR molecular
spectrum. The inspection of these hypotheses is now in progress.

Figure 14: Normalized Periodic (3s) orbital ψ3s(r), N=3, n=10,
λ=1, 128×128×128 mesh points.

Figure 15: Normalized Periodic (3px), (3py) and (3pz) orbitals,
N=1, n=10, λ=1, 128×128×128 mesh points.

4 Appendix
Let ψ3s(r), ψ3px(r), ψ3py(r) ,..., ψ3d2(r) denote the rest of nine
wavefunctions including 3d-type orbitals. The approximate canon-

Figure 16: Normalized Periodic (3px) orbital ψ3px(r), N=2, n=10,
λ=1, 128×128×128 mesh points.

Figure 17: Normalized Periodic (3dz2 ) orbital, N=1, n=3x10, λ=1,
128×128×128 mesh points.

Figure 18: Normalized Periodic (3dz2 ) orbital, N=2, n=3x10, λ=1,
128×128×128 mesh points.
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Table 2: Explicit Primary Slater-Type Orbitals STO’s and corresponding canonical Periodic Gaussian-Type Orbitals STO-1PG involving 1s
Wavefunction ψ1s(r).

N Orbital (nn, ll,mm) Explicit STO’s Orbitals Canonical STO-1PG Orbitals (Eq.), Fig.

2 1s (1, 0, 0) ψ1s(r) = A1s exp

(
− ξr

)
, A1s =

√
ξ3

π
ψ1s(r) ≈ B′1sψ3(r) (19), 9

2 2s (2, 0, 0) ψ2s(r) =
A2s√
A1s

(
2− ζr

)
ψ

1
2
1s, A2s =

√
ξ3

32π
ψ2s(r) ≈ A′2s

(
2ψ

1
2
1s +

ζ

α

(
ψ

1
2
1s

)(1))
(20), 10

1 2px (2, 1, -1) ψ2px(r) =
ζA2px√
A1s

xψ
1
2
1s, A2px = A2s ψ2px(r) ≈ −A′2px

ζ

α

(
ψ

1
2
1s

)(1x)

(21), 12

2 2py (2, 1, 1) ψ2py(r) =
ζA2py√
A1s

yψ
1
2
1s, A2py = A2s ψ2py(r) ≈ −A′2py

ζ

α

(
ψ

1
2
1s

)(1y)

(21), 13

2pz (2, 1, 0) ψ2pz(r) =
ζA2pz√
A1s

zψ
1
2
1s, A2pz = A2s ψ2pz(r) ≈ −A′2pz

ζ

α

(
ψ

1
2
1s

)(1z)

(21)

3 3s (3, 0, 0) ψ3s(r) = A′3s

(
27− 18ζr + 2(ζr)2

)
ψ

1
3
1s ψ3s(r) ≈ A0

3s

(
ψ

1
3
1s

)
+A1

3s

(
ψ

1
3
1s

)(1)

A′3s =
1

81A
1
3
1s

√
ζ3

3π
+A2

3s

(
ψ

1
3
1s

)(2)

(23), 14

1 3pz (3, 1, 0) ψ2pz(r) = A′3pzz

(
6− ζr

)
ψ

1
3
1s ψ3pz(r) ≈ −A′′3pz cos(ω0z)

(
6ψ

1
3
1s+

3ζ

2α

(
ψ

1
3
1s

)(1))
(24), 15

1 3py (3, 1, 1) ψ2py(r) = A′3pyy

(
6− ζr

)
ψ

1
3
1s ψ3py(r) ≈ −A′′3py cos(ω0y)

(
6ψ

1
3
1s+

3ζ

2α

(
ψ

1
3
1s

)(1))
(24), 15

1,2 3px (3, 1, -1) ψ2px(r) = A′3pxx

(
6− ζr

)
ψ

1
3
1s ψ3px(r) ≈ −A′′3px cos(ω0x)

(
6ψ

1
3
1s+

3ζ

2α

(
ψ

1
3
1s

)(1))
(24), 16, 15

1,2 3dz2 (3, 2, 0) ψ3dz2(r) = A′3dz2

(
3z2 − r2

)
ψ

1
3
1s ψ3dz2(r) ≈ A′′3dz2

(
3

(
ψ

1
3
1s

)(2z)

−(
ψ

1
3
1s

)(2)

+ 4α′ψ
1
3
1s

)
(25), 17, 18

5 3dxz (3, 2, -1) ψ3dxz(r) = A′3dxzxzψ
1
3
1s ψ3dxz(r) ≈

A′3dxz
(2α′)2

(
ψ

1
3
1s

)(1x)(
ψ

1
3
1s

)(1z)

·

ψ
− 1

3
1s (25), 21,19,20

1 3dyz (3, 2, 1) ψ3dyz(r) = A′3dyzyzψ
1
3
1s ψ3dyz(r) ≈

A′3dyz
(2α′)2

(
ψ

1
3
1s

)(1y)(
ψ

1
3
1s

)(1z)

·

ψ
− 1

3
1s (25), 19

1 3dxy (3, 2, -2) ψ3dxy(r) = A′3dxyxyψ
1
3
1s ψ3dxy(r) ≈

A′3dxy
(2α′)2

(
ψ

1
3
1s

)(1x)(
ψ

1
3
1s

)(1y)

·

ψ
1
3
1s (25), 19

2 3dx2−y2 (3, 2, 2) ψ3d2(r) = A′3d2

(
x2 − y2

)
ψ

1
3
1s, ψ3d2(r) ≈

(
n′ω0

2α′

)2

A′3d2 · ψ
− 1

3
1s ·

A3d2 =
1

81

√
2ζ3

π

[(
ψ

1
3
1s

(1x)
)2

−
(
ψ

1
3
1s

(1y)
)2
]

(27)

N: Periods number, nn: Principal Quantum Number (QN), ll: Azimuth QN, mm: Magnetic QN
r = r{x, y, z} =

√
x2 + y+z2: Electron distance from the nucleus in Cartesian coordinates

A1s, A1s, ..., A3d2: Normalization constants of Slater basis functions
B1s, B

′
1s, ..., B

′
3d2: Normalization constants of Periodic Gaussian basis functions
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Figure 19: Normalized Periodic (3dxz), (3dyz) and (3dxy) orbitals,
N=1, n=3x10, λ=1, 128×128×128 mesh points.

Figure 20: Normalized Periodic (3dxz) orbital, N=1, n=3x10, λ=1,
128×128×128 mesh points.

Figure 21: Normalized Periodic (3dxz) orbital, N=5, n=3x10, λ=1,
128×128×128 mesh points.

ical formulas are given in equations (23) to (27).

Figure 22: Normalized Periodic (3dx2−y2 ) orbital, N=2, n=3x10,
λ=1, 128×128×128 mesh points.

ψ3s(r) = A3s

(
27− 18ζr + 2(ζr)2

)
exp

(
− ζ

3
r

)
,

where A3s =
1

81

√
ζ3

3π

let ψ
1
3
1s = A

1
3
1s exp

(
− ζ

3
r

)
≈ B

1
3
1s exp

(
− α

3
r2
)

⇒ exp

(
− ζ

3
r

)
=

(
ψ1s

A1s

) 1
3

then ψ3s(r) = A3s

(
27− 18ζr + 2(ζr)2

)(
ψ1s

A1s

) 1
3

=
A3s

A
1
3
1s︸︷︷︸

A′
3s

(
27− 18ζr + 2(ζr)2

)
ψ

1
3
1s

let

(
ψ

1
3
1s

)(1)

=
∂

∂r

(
ψ

1
3
1s

)
= −2

3
αr

(
ψ

1
3
1s

)
⇒ r

(
ψ

1
3
1s

)
= − 3

2α

(
ψ

1
3
1s

)(1)

and

(
ψ

1
3
1s

)(2)

=
∂2

∂r2

(
ψ

1
3
1s

)
= −2

3
α

(
ψ

1
3
1s

)
+

(
2α

3

)2

r2
(
ψ

1
3
1s

)
⇒ r2

(
ψ

1
3
1s

)
=

(
3

2α

)2((
ψ

1
3
1s

)(2)

+
2α

3

(
ψ

1
3
1s

))
then ψ3s(r) ≈ A′3s

(
27ψ

1
3
1s + 27

ζ

α

(
ψ

1
3
1s

)(1)

+

2

(
3ζ

2α

)2((
ψ

1
3
1s

)(2)

+
2α

3

(
ψ

1
3
1s

)))
≈ A0

3s

(
ψ

1
3
1s

)
+A1

3s

(
ψ

1
3
1s

)(1)

+A2
3s

(
ψ

1
3
1s

)(2)

,

where A0
3s = A′3s

(
27 +

3ζ2

α

)
, A1

3s = 27A′3s
ζ

α
,

A2
3s = 2A′3s

(
3ζ

2α

)2

(23)
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ψ3pz(r) = A3pzz

(
6− ζr

)
exp

(
− ζ

3
r

)
,

A3pz =
1

81

√
2ζ5

π

=
A3pz

A
1
3
1s

z

(
6− ζr

)
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1
3
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6− ζr

)
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3
1s
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ψ

1
3
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)(1)
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3
αrψ

1
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3
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)(1)
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ψ

1
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)(1z)
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1
3
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n

3
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n
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·
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)n
3

n

3
>> 1⇒
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1
3
1s

)(1z)

≈ nω0

3
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1
3
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3
zψ

1
3
1s
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2α︸ ︷︷ ︸
A′′

3pz

cos(ω0z)

(
6ψ
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=
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− ζ
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1
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ψ3d2(r) = A3d2

(
x2 − y2

)
exp
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− ζ

3
r

)
, A3d2 =

1
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=
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)
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3
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)
ψ

1
3
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let x2ψ
1
3
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ψ
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3
1s
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cos2(ω0x)

(
sin(n′−2)(ω0x)·

sinn
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)
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α

3
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n

3
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)(1y)(
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1
3
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1
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(
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′
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)
then ψ3d2(r) ≈

(
n′ω0
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ψ

1
3
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−

(
ψ

1
3
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(1y)
)2
]

(27)
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