
Modern deep learning algorithms are frequently taught on 
large datasets, which may contain sensitive user data.  When 
such data must be removed—due to privacy restrictions such 
as the GDPR's "Right to be Forgotten" [3]—deleting 
information from storage is insufficient; its impact on the 
model must also be deleted.  This approach, known as 
Machine Unlearning [1, 2], seeks to eliminate learnt 
correlations with specific data points. 

 While retraining from zero guarantees precise unlearning 
[1, 4], it is computationally expensive, particularly for large-
scale models such as LLMs [7].  This has sparked interest in 
approximation approaches [2, 11], while many—such as those 
based on gradient ascent [8, 9]—can be unstable or incomplete 
[17, 20], while others remain unduly complicated or resource-
intensive [10]. 

However, most techniques lack fine-grained, user-guided 
control. To address this, we propose Interactive LoRA 
Steering—a framework combining LoRA’s efficiency [12], 
IHL’s stability [17], and human-in-the-loop control via 
conceptual steering vectors. This enables semantically guided, 
transparent, and controllable unlearning. We present the 
framework, evaluate its performance, and explore trade-offs, 
advancing user-aligned, trustworthy AI. 

Machine unlearning, the process of removing the influence 
of specific data subsets from trained models, has become a 
crucial research area driven by privacy regulations like 
GDPR's "Right to be Forgotten" [3] and the need for model 
maintenance (e.g., removing harmful or outdated information) 
[2]. The primary challenge lies in achieving this removal 
efficiently without compromising the model's performance on 
the remaining data. 

Unlearning methods are broadly categorized as exact or 
approximate [2]. Exact unlearning aims to produce a model 
statistically indistinguishable from one retrained from scratch 
on the retained data [1]. While providing strong guarantees, 
methods like SISA [4], which partition data and retrain sub-
models, often incur significant computational or storage 
overhead, limiting practicality for large models. 
Consequently, research has increasingly focused on 
approximate unlearning [2, 11]. 

These methods modify the parameters of the already 
trained model to approximate the state of a retrained model, 
prioritizing efficiency. Foundational approaches include: 

 Gradient-Based Methods: Techniques like 
Gradient Ascent (GA or NegGrad) [8, 9] attempt to 
"reverse" learning by maximizing the loss on the data 
to be forgotten (forget set, Df). However, standard 
GA using losses like cross-entropy can suffer from 
optimization instability and catastrophic forgetting 
of retained knowledge [17, 20]. Methods trying to 
mitigate this by adding regularizing losses can still 
face stability issues. 

 Influence Function & Fisher Information 
Methods: Other techniques leverage influence 
functions [10] or Fisher Information [8] to estimate 
the impact of specific data points on model 
parameters and attempt to counteract this influence. 
While principled, these can be computationally 
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intensive or complex to implement, especially for 
large models. 

 Privacy Risks: A critical challenge for any 
approximate method is ensuring effective removal; 
imperfect unlearning may leave models vulnerable to 
Membership Inference Attacks (MIA) [5, 6], which 
aim to determine if specific data was part of the 
training set. 

Recognizing the computational burden of updating large 
models, particularly in fine-tuning and adaptation contexts, 
Parameter-Efficient Fine-Tuning (PEFT) techniques have 
emerged. Low-Rank Adaptation (LoRA) [12] is a prominent 
PEFT method. LoRA freezes the base model weights and 
injects small, trainable low-rank matrices (adapters, where 
update ΔW = BA) into specific layers. Training only these 
adapters drastically reduces the number of trainable 
parameters, improving computational efficiency and memory 
usage [12]. Furthermore, LoRA offers inherent regularization 
properties and better stability against catastrophic forgetting 
compared to full fine-tuning [13]. 

The efficiency and modularity of LoRA make it an 
attractive candidate for approximate unlearning. Several 
recent studies have explored this: 

 NegLoRA [16]: This work directly applies the 
negative gradient ascent principle (GA) to the LoRA 
adapters, training only the low-rank matrices to 
maximize loss on the forget set. It demonstrates 
efficiency gains but may inherit stability issues from 
standard GA. 

 PruneLoRA [14]: This method combines model 
sparsification (pruning) with LoRA adaptation and 
subsequent unlearning, showing potential trade-offs 
between unlearning effectiveness, performance 
retention, and efficiency. 

 Residual Feature Alignment LoRA (RFA LoRA) 
[15]: This approach uses LoRA adapters to align 
features of the forget set with the average features of 
the retain set, aiming for consistency at the 
intermediate representation level. 

 IHL & FILA for LLM Unlearning [17]: Focused 
on large language models (LLMs), this work 
addresses GA instability by proposing the Inverted 
Hinge Loss (IHL) for more stable optimization 
during unlearning with LoRA. It also introduces 
Fisher-weighted Initialization for LoRA Adapters 
(FILA) to potentially accelerate the unlearning 
process. Our work leverages the stability insights 
from IHL [17]. 

Despite rapid progress in efficient approximate unlearning 
using LoRA [14, 15, 16, 17], existing SOTA methods 
primarily focus on automating the process to achieve 
efficiency and performance preservation. There remains a 
significant gap in frameworks that provide fine-grained user 
control, interactivity, and semantic guidance over the 

unlearning process. Current methods generally lack 
mechanisms for users to specify what aspects of knowledge to 
forget (beyond specific data points or classes) or to interpret 
and steer the forgetting process dynamically based on 
feedback. Our work, Interactive LoRA Steering, aims to fill 
this gap by proposing an interactive, user-centric paradigm 
built upon efficient and stable LoRA-based unlearning 
primitives. 

Current automated unlearning methods often lack the 
precise control needed for complex "knowledge surgery" tasks 
which go beyond simple data removal. To resolve this, we 
propose Interactive LoRA Steering, a framework designed 
to integrate user guidance directly into an efficient and stable 
unlearning process. Our goal is to transform unlearning from 
an opaque procedure into a controllable, interpretable 
technique by leveraging parameter efficiency and user 
interaction. 

The core idea is to empower users to semantically guide 
the unlearning process in terms of both what specific concepts 
or data influences should be targeted (Direction) and how 
strongly they should be removed (Intensity). We achieve this 
by building upon the parameter efficiency of Low-Rank 
Adaptation [12] and the stability of unlearning methods like 
Inverted Hinge Loss (IHL) [17]. 

Fig 1. Architecture Diagram 

 

The system comprises of a Base Model (e.g., CNN, 
ResNet, Transformer) whose original parameters (W) remain 
frozen during unlearning to preserve general knowledge and 
maintain efficiency. LoRA Adapters (low-rank matrices A, B 
where update ΔW = BA) injected into selected layers. These 
adapters contain the only trainable parameters during the 
unlearning phase [12]. An Unlearning Mechanism (Section B) 
that updates the LoRA adapters based on the forget objective 
(e.g., IHL) applied to the target forget data (Df_target). An 
Interactive Control component (Section D) where user inputs 
(Target, Intensity, Semantic Direction) are taken guiding the 
Unlearning Mechanism. 

 The mechanism for inducing forgetting operates solely by 
modifying the parameters of the LoRA adapters (A and B). 
We use the Inverted Hinge Loss (IHL) [17] calculated over the 
user-specified forget data (Df_target). For a target output 𝑥௧ 
(potentially conditioned on context 𝑥ழ௧), IHL is defined as:  
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𝐿IHL(𝑥) = max ቆ0,𝑚 + 𝑝஘(𝑥௧|𝑥ழ௧) − max
௩ஷ௫೟

𝑝஘ (𝑣|𝑥ழ௧)ቇ 

Here: 

 𝑝஘( 𝑥௧ ∣∣ 𝑥ழ௧ ) is the model’s predicted probability for 
token y given context 𝑥ழ௧, incorporating the effect of 
active LoRA adapters. 

 𝑥௧ is the target token to forget, and 𝑣 ≠ 𝑥௧  denotes 
alternative vocabulary tokens. 

 m is a positive margin hyperparameter controlling 
the separation between 𝑥௧ and the most likely 
alternative token. 

Negative cross-entropy used in standard Gradient Ascent 
(GA) gives decent results but IHL offers crucial advantages: 
its bounded nature prevents numerical instability and gradient 
explosion observed in GA [17], and it promotes targeted 
forgetting by directly penalizing the target output probability 
relative to the most likely alternative, potentially causing less 
collateral damage to the model's overall distribution. During 
unlearning, gradients of LIHL are computed only with respect 
to the trainable LoRA parameters (A, B) and used to update 
them via an optimizer like AdamW [24]. While standard 
LoRA initialization is used here, exploring Fisher-weighted 
initialization [17] is a potential future enhancement. 

 The central novelty of our framework lies in enabling user 
interaction to guide the LoRA adapter updates. Via a 
conceptual control interface, users define: 

 Target (Df_target): The specific data points or criteria 
defining the information to be forgotten. 

 Intensity (I): The desired strength or depth of the 
unlearning effect. 

 Semantic Direction (SD): High-level guidance on what 
features, concepts, or data characteristics within the 
Target set should be preferentially unlearned. 

LoRA Steering Vector Logic interprets this user intent. 
This logic functions as a translator, transforming high-level 
directives into concrete configurations for the IHL-based 
unlearning process. For example, 'Intensity' may refer to 
LoRA rank r, IHL margin m, or the number of unlearning 
epochs; 'Semantic Direction' could be dynamically picking 
subsets of Df_target  or applying alternate weights during the 
IHL update based on data attributes. These "vectors" represent 
this control logic, not direct model parameters. 

This enables an iterative workflow, outlined in Algorithm 
1. The user sets initial parameters, the system performs an 
unlearning step on the LoRA adapters, feedback (e.g., 
performance metrics) is provided, and the user can then 
choose to stop, continue, or adjust the steering parameters 
(Intensity, Direction) for the next iteration. 

ALGORITHM 1: INTERACTIVE LORA STEERING CYCLE 
Input:   M (Frozen base model with active 
LoRA adapters A, B) 
         D (Full dataset) 
Output:  Updated LoRA adapters A, B 
1:  settings ← InitUserSettings() // Target, 
Intensity, Direction 
2:  loop 

3:   // Configure: Translate user settings -
> unlearning parameters 
4:    Df_target, config ← Translate(settings, 
D) // Get forget data, epochs, rank, etc. 
5: 
6:  // Unlearn: Update LoRA adapters using 
IHL 
7:     for epoch = 1 to config.epochs 
8:         Update A, B using IHL_Loss(M, 
Df_target) // Gradients only for A, B 
9:     end for 
10: 
11:   // Feedback: Evaluate performance & 
present to user 
12:    metrics ← Evaluate(M, Df_target, ...)      
// Forget/Retain Acc 
13:    PresentFeedback(metrics) 
14: 
15:    // Decide: Get user action & 
potentially new settings 
16:  action, new_settings ← 
Get_User_Decision() // STOP, CONTINUE, 
ADJUST 
17: 
18:    if action == STOP then 
19:        break // Exit loop 
20:    else if action == ADJUST then 
21:        settings ← new_settings 
22:    end if 
23:    // Implicitly CONTINUE if action is 
neither STOP nor ADJUST 
24: end loop 
25: return A, B 

This human-in-the-loop approach facilitates targeted, 
adaptable knowledge modification, offering a level of control 
and potential interpretability beyond that of fully automated 
methods. 

This section talks about the methodology used to evaluate 
the proposed Interactive LoRA Steering framework, focusing 
on the core LoRA+IHL unlearning mechanism. Our 
objectives were: (1) assess the effectiveness, efficiency, and 
stability of LoRA+IHL against relevant baselines; (2) evaluate 
its impact on model utility and privacy (via MIA); and (3) 
demonstrate the conceptual feasibility of the interactive 
steering aspect. 

We used standard image classification benchmarks: 

1) MNIST [22]: Handwritten digits (0-9). Task: Forget 
class '7'. 

2) CIFAR-10 [23]: 10-class color images. Task: Forget 
class '3' ('cat'). 

For each dataset, the training set was split into a Forget Set 
(Df), comprising all training samples of the target class (e.g., 
all 'cat' images from CIFAR-10 train), and a Retain Set (Dr), 
containing all remaining training samples. Standard dataset-
specific normalization was applied. For Membership 
Inference Attack (MIA) evaluation, balanced datasets were 
created using samples from Dr (members, label 1) and the test 
set (non-members, label 0), following standard practice [5, 6]. 

3.3 Interactive Steering of the 
Unlearning Process 

4. Experimental Setup 

4.1 Datasets and Tasks 
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1) MNIST: A standard Convolutional Neural Network 
(CNN) with two convolutional layers followed by max-
pooling and two linear layers (details in Appendix if space 
permits). 

2) CIFAR-10: A ResNet-18 architecture [21], initialized 
with ImageNet pre-trained weights and then fully fine-tuned 
on the complete CIFAR-10 training set to establish a realistic 
starting point (the 'Baseline' model). 

For methods involving LoRA (LoRA FT, LoRA+GA, 
LoRA+IHL), adapters were injected into the final two linear 
layers of the classifier head. Unless otherwise specified for 
ablation studies, we used a default LoRA rank r=8, alpha=16, 
and dropout=0.1. Critically, the base model parameters 
remained frozen during all LoRA-based unlearning or fine-
tuning steps; only adapter weights were updated. We utilized 
the Hugging Face PEFT library [25] for LoRA 
implementation. 

We evaluated our proposed LoRA+IHL approach against 
the following methods: 

1) Baseline: The original model trained on the full 
dataset (Dr ∪ Df). 

2) Retraining: Model trained from scratch only on the 
Retain Set (Dr); represents the theoretical 'gold 
standard' for forgetting. 

3) GA (Full): All parameters in the baseline model 
undergo Standard Gradient Ascent with negative 
cross-entropy on Df. 

4) Parameter Zeroing: The naïve strategy involves 
zeroing the weights and biases associated with the 
forget class in the final linear layer of the Baseline 
model. 

5) LoRA FT (Retain): Baseline model with LoRA 
adapters optimised for Dr and standard cross-entropy 
loss. 

6) LoRA+GA: Gradient Ascent (negative cross-entropy) 
upgrades Df's baseline model and LoRA adapters. 

Performance was assessed using metrics covering utility, 
unlearning effectiveness, efficiency, and privacy: 

1) Utility: Accuracy on the full Test Set (Test Acc) and 
on test samples from retained classes (Retain Acc). 

2) Forgetting: Accuracy on test samples from the forget 
class (Forget Acc - lower is better). 

3) Efficiency: Wall-clock time (s) for the 
unlearning/retraining procedure. 

4) Privacy (MIA): A Logistic Regression MIA predictor 
trained on model prediction confidences (retain vs. 
test set). Evaluated by: 

5) MIA AUC: Area Under the ROC Curve (closer to 0.5 
indicates better privacy/less distinguishability). 

6) MIA Efficacy: Accuracy of the MIA predictor in 
classifying original Df samples as non-members 
(higher indicates Df samples look less like members 
after unlearning). 

Steering (Interactive Demo): 
7) Steering Accuracy: Defined as 2) Forget Accuracy 
8) Semantic Selectivity: Qualitative assessment of 

accuracy drop on target vs. retained classes. 

Experiments were conducted using PyTorch [26] on 
NVIDIA Tesla T4 GPUs. We primarily used the AdamW 
optimizer [24]. Key hyperparameters, such as learning rates, 
number of epochs, the IHL margin m (typically 1.0 or 2.0), 
and gradient clipping for GA methods (clip=1.0), are noted 
with the results where applicable or detailed in the Appendix. 

We created an interactive LoRA steering interface (Fig. 
2) to show usability and practical feasibility, allowing users 
to conceptually and visually direct the unlearning process.  
Three primary inputs are supported by the system: 
 Target Class: Chooses which data or class should be 

forgotten. 
 The steering intensity, which is related to LoRA 

parameters like rank r, margin m, and training epochs, 
regulates how aggressively the model unlearns. 

 Optional semantic direction gives precise conceptual 
direction on which aspects of the target should be 
removed. 

 In order to facilitate qualitative study of the effectiveness 
of unlearning, a live embedding visualization panel (right) 
uses t-SNE projections to demonstrate how the representation 
of the forgotten class disperses over time and assists in 
tracking semantic shifts after unlearning. 

Users obtain immediate feedback via an evaluation table 
displaying updated metrics, including Test Accuracy, Forget 
Accuracy, and Retain Accuracy.   This repeated unlearning 
process allows the user to modify steering parameters and 
promptly observe the effects.   This loop exemplifies the 
human-in-the-loop design that supports our proposed 
technique. 
 

Fig. 2. Schematic showing example user inputs 

  

We evaluated the proposed Interactive LoRA Steering 
framework by analyzing the performance of its core 
LoRA+IHL unlearning mechanism against baselines on 
MNIST and CIFAR-10. Key results are summarized in Table 
1. 

TABLE I.  COMPARATIVE EVALUATION OF UNLEARNING METHODS 
ON MNIST AND CIFAR-10 

Method 
Datas

et 

Test 
Acc 

↑ 

Retai
n 

Acc ↑ 

Forge
t Acc 

↓ 

MIA 
Effica
cy ↑ 

Time 
(Unlear

n) ↓ 

Baseline 

MNIS
T 

0.993
3 

0.997
2 

99.63
% 

0.0826 N/A 

CIFA
R-10 

0.754
4 

0.919
2 

71.36
% 

0.606 N/A 

Retraine
d 

MNIS
T 

0.890
4 

0.995
5 

0.00
% 

0.7248 53.73s 

4.2 Models and LoRA Configuration 

4.3 Methods Compared 

4.4 Evaluation Metrics 

4.5 Implementation Details 

5. Results and Analysis 
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CIFA
R-10 

0.720
1 

0.922
8 

0.00
% 

0.6704 155.55s 

GA (Full) 

MNIS
T 

0.352
2 

0.396
8 

0.00
% 

0.9996 76.71s 

CIFA
R-10 

0.574
2 

0.688
4 

17.14
% 

0.543 94.99s 

Zeroed 

MNIS
T 

0.927
2 

0.997
4 

34.49
% 

0.9158 ~0s 

CIFA
R-10 

0.719
1 

0.926
5 

0.70
% 

0.6274 ~0s 

LoRA FT 
(Retain) 

MNIS
T 

0.9 
0.997

9 
9.11% 0.8594 26.29s 

CIFA
R-10 

0.726
2 

0.938
5 

0.00
% 

0.606 77.41s 

LoRA+I
HL 
(Ours) 

MNIS
T 

0.892
4 

0.997
4 

0.02
% 

0.8468 11.25s 

CIFA
R-10 

0.721
8 

0.926
6 

5.12
% 

0.6636 10.31s 

 

The baseline methods established important benchmarks 
(Table 1). Retraining effectively reduced Forget Accuracy 
(near 0%) and achieved good MIA Efficacy (MNIST: 0.72, 
CIFAR-10: 0.67), confirming its status as a theoretical 
optimum for removal. However, it was the most time-
consuming (MNIST: 53.7s, CIFAR-10: 155.6s) and incurred 
a noticeable drop in overall Test Accuracy compared to the 
original Baseline model (MNIST: 89.0% vs 99.3%, CIFAR-
10: 72.0% vs 75.4%), highlighting potential utility costs. GA 
(Full) proved very unstable, causing catastrophic forgetting 
on MNIST (Test Acc: 35%) and failing to unlearn effectively 
in addition to still damaging utility on CIFAR-10 (Forget 
Acc: 17%, Test Acc: 57%). This underscores the unreliability 
of naive gradient ascent. Faster methods like Parameter 
Zeroing and LoRA FT (Retain) reduced Forget Accuracy 
significantly with minimal time cost, but their relatively poor 
MIA Efficacy scores (e.g., CIFAR-10: 0.63, 0.61 
respectively) suggest the unlearning might be superficial 
compared to Retraining. These baseline results motivate the 
need for a method balancing effectiveness, efficiency, 
stability, and principled unlearning. 
 

Our proposed LoRA+IHL method demonstrated a 
strong balance of properties (Table 1). Compared to 
LoRA+GA, LoRA+IHL exhibited significantly better 
stability. On MNIST, LoRA+GA collapsed (Test Acc: 
~11%), mirroring the full GA instability, while LoRA+IHL 
maintained high Test/Retain accuracy (~89.2%/~99.7%) 
comparable to Retraining, alongside excellent forgetting 
(Forget Acc: 0.02%). On CIFAR-10, LoRA+IHL also 
preserved Test Accuracy slightly better than LoRA+GA 
(72.2% vs 71.7%) while achieving effective forgetting 
(Forget Acc ~5.1%). 

In terms of efficiency, both LoRA+IHL and LoRA+GA 
were very fast, updating only the small adapter sets using the 
forget data (MNIST: ~11s, CIFAR-10: ~9-10s) – a substantial 
improvement over Retraining or even LoRA FT on the larger 
retain set. 

Crucially, LoRA+IHL demonstrated superior performance 
regarding privacy metrics. Its MIA Efficacy (MNIST: 0.85, 
CIFAR-10: 0.66) and MIA AUC scores were consistently 
closer to the Retraining benchmark than those of LoRA+GA 
(CIFAR-10 MIA Efficacy: 0.62). This suggests that IHL 

promotes a more fundamental removal of the forget set's 
influence, making it harder for an MIA predictor to 
distinguish forgotten samples, whereas GA's effect might be 
less targeted. Overall, LoRA+IHL provides an effective, 
efficient, and stable unlearning mechanism with favorable 
privacy characteristics. 

We simulated the interactive workflow using LoRA+IHL 
on CIFAR-10 (forgetting 'cat'). The simulation confirmed 
feasibility: the user conceptually selected the target and 
intensity (mapped to rank 8, 10 epochs), triggering the 
efficient (~10s) LoRA+IHL unlearning step. Results showed 
high Steering Accuracy (1 - Forget Acc ≈ 94.9%) and good 
Semantic Selectivity, with a large accuracy drop (~74% 
absolute) on the target 'cat' class but only minimal impact on 
retained classes (Test Acc. dropped slightly from 75.4% to 
72.2%). Primary tests changing LoRA rank also confirmed 
the ability to trade off forgetting depth vs. utility preservation, 
supporting the potential for user control over intensity. 

Qualitative investigation employing t-SNE visualizations 
of penultimate layer embeddings (Figure 2, CIFAR-10) backs 
up these findings. In contrast to the Baseline model's obvious 
class clusters, the Retrained model demonstrates that the 
target 'cat' cluster has been dissolved. The LoRA+IHL 
visualization is very similar to the Retrained one: the 'cat' 
cluster is greatly dispersed, while the clusters for retained 
classes are mostly intact. This visibly validates the targeted 
unlearning and selectivity found numerically, in contrast with 
the anticipated larger distortions expected from unstable 
approaches such as GA. 

The results presented validate the core LoRA+IHL 
mechanism of our proposed Interactive LoRA Steering 
framework. Our findings demonstrate that this combination 
outperforms unstable baselines like Gradient Ascent [8, 9] 
and offers a better balance of effectiveness, efficiency, and 
privacy preservation compared to naive or simple PEFT 
approaches on MNIST and CIFAR-10. This section discusses 
these results in the context of state-of-the-art methods, 
outlines the novelty and limitations of our interactive 
approach, and identifies future research directions. 

Our LoRA+IHL mechanism [12, 17] proved effective and 
efficient (Table 1). It significantly outperformed full Gradient 
Ascent (GA) in terms of stability and utility preservation, 
avoiding the catastrophic forgetting observed in GA (Full). 
Compared to simple LoRA fine-tuning on the retain set 
(LoRA FT (Retain)), our method achieved comparable or 
better forgetting with potentially improved privacy metrics 
(MIA Efficacy closer to Retraining), suggesting a more 
principled removal than simply optimizing for retained data. 

While direct numerical comparison with all recent LoRA-
based SOTA methods like NegLoRA [16], PruneLoRA [14], 
and RFA LoRA [15] was beyond the scope of this initial 
study due to implementation complexities and focus, our 
LoRA+IHL component conceptually aligns with the goals of 

5.1 Baseline Performance Analysis 

5.2 Core Mechanism Validation: 
LoRA+IHL vs. LoRA+GA 

5.3 Interactive Feasibility Demonstration 

5.4 Visualization Analysis 

6. Discussion and Future Work 

6.1 Core Mechanism Performance and 
Comparison to SOTA Concepts 
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stability and efficiency highlighted in works like Cha et al. 
[17]. The use of IHL specifically addresses the instability 
noted in GA-based methods [17], including potentially 
NegLoRA [16] if it relies on standard negative losses. 

The primary novelty of Interactive LoRA Steering lies not 
just in the core unlearning algorithm (which leverages LoRA 
[12] and IHL [17]) but in the proposed interactive, user-
centric paradigm: 

 User Control & Interactivity: Unlike fully 
automated SOTA methods [14, 15, 16, 17], our 
framework introduces a human-in-the-loop 
mechanism. Users can initiate, monitor (via 
feedback like metrics and visualizations, Fig. 2), 
guide (Intensity, Target), and iteratively refine the 
unlearning process. This transforms unlearning 
from a one-shot black-box operation into a 
controllable tool. 

 Semantic Guidance & "Knowledge Surgery": 
Current SOTA typically targets data points or 
classes. Our framework conceptually allows users to 
control the semantic direction of forgetting via 
"Steering Vectors," moving beyond data removal 
towards more nuanced "knowledge surgery" (e.g., 
forgetting specific attributes or concepts within the 
target data). 

 Enhanced Interpretability: The interactive nature, 
combined with potential visualizations (like the t-
SNE embeddings in Fig. 2), provides greater 
transparency. Users can observe the effects of their 
steering actions, gaining insights into how the 
model's knowledge representation is modified 
during unlearning. 

It is crucial to acknowledge the limitations: 
 Preliminary Empirical Validation: The 

experiments focused on validating the core 
LoRA+IHL mechanism against basic baselines on 
image classification tasks (MNIST, CIFAR-10). 
Comprehensive benchmarking against the full suite 
of recent SOTA methods [14, 15, 16, 17] across 
diverse tasks (especially NLP/LLMs) and 
unlearning scenarios is necessary future work. 

 Conceptual Steering Mechanism: The "Steering 
Vector Logic" translating high-level user intent 
(Intensity, Semantic Direction) into low-level 
unlearning configurations (e.g., IHL margin, LoRA 
rank, subset selection) is currently conceptual. 
Implementing robust and generalizable logic, 
potentially through learned components, is a 
significant challenge. 

 User Interface Simulation: The interactive 
component was simulated programmatically 
(Algorithm 1) and conceptually visualized (Fig. 2). 
A full implementation requires careful UI/UX 
design, and user studies are needed to assess its 
practical usability and effectiveness. 

 Scalability to LLMs: While motivated by 
challenges in large models [7] and using efficient 
techniques [12], the framework's scalability and 

effectiveness for models with billions of parameters 
remain unproven and require dedicated 
investigation. 

 Approximate Nature: Like most efficient 
unlearning methods [2, 11, 14-17], our approach is 
approximate and does not offer the formal 
guarantees of exact retraining [1, 4]. 

These limitations point to key future directions: 
1. Extend and Benchmark on LLMs: Adapt and 

rigorously evaluate Interactive LoRA Steering on 
NLP tasks and LLMs, comparing against SOTA 
unlearning techniques [14-17]. 

2. Develop Steering Vector Logic: Research methods 
(rule-based, learning-based) to translate user intent 
into effective LoRA adapter updates and IHL 
configurations. Explore mapping semantic goals 
(e.g., "forget toxicity," "remove bias related to X") 
to parameter-level changes. 

3. Implement and Evaluate Interactive Interface: 
Build a functional prototype and conduct user 
studies to assess the usability and utility of the 
interactive controls. 

4. Explore Algorithmic Refinements: Investigate 
adaptive LoRA ranks, sophisticated initialization 
strategies like FILA [17], and integration with other 
PEFT methods or knowledge editing techniques. 

5. Theoretical Analysis: Explore theoretical bounds 
or properties related to the interactive unlearning 
process, potentially connecting user actions to 
changes in model behaviour or privacy 
characteristics. 

In summary, Interactive LoRA Steering proposes a shift 
towards user-controlled, interpretable unlearning. While 
leveraging efficient primitives like LoRA [12] and stable 
objectives like IHL [17], its main contribution is the 
interactive paradigm. Significant future work is needed to 
fully realize its potential, particularly in steering logic design 
and large-model scalability. 

 

 This paper introduced Interactive LoRA Steering, a 
framework designed to enhance the efficiency, stability, and 
user control of machine unlearning. By combining the 
parameter efficiency of LoRA [12] with the stability of 
objectives like Inverted Hinge Loss [17], and coupling this 
with a conceptual human-in-the-loop steering mechanism, we 
aim to move unlearning from automated bulk removal towards 
more precise, interpretable, and user-guided knowledge 
modification. Our findings demonstrate that the core 
LoRA+IHL unlearning technique is effective and 
significantly more stable and efficient than standard baselines 
like full gradient ascent [8] or computationally expensive 
retraining [1, 4]. The preliminary feasibility demonstration of 
the interactive component suggests a promising direction for 
addressing the limitations in controllability and 
interpretability of current automated SOTA methods [14, 15, 
16, 17]. While further development is required, particularly in 
refining the steering logic and scaling to LLMs [7], Interactive 
LoRA Steering represents a potential step towards more 

6.2 Novelty: User Control, Semantic Guidance, 
and Interpretability 

6.3 Limitations of the Current Work 

6.4 Future Work 

7. Conclusion 
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trustworthy, governable, and adaptive AI systems where users 
can actively shape model knowledge. 
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