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Abstract: Rice cultivation faces significant challenges from various leaf diseases that substantially impact crop
yield and food security. Traditional disease identification methods rely heavily on expert knowledge and visual in-
spection, which are time-consuming and prone to human error. This study presents a comprehensive deep learning
approach for automated rice leaf disease detection, comparing three state-of-the-art convolutional neural network
(CNN) architectures: ResNetl8, DenseNetl121, and EfficientNet-B0O. The dataset comprises 5,932 images across
four disease categories: Bacterial Blight, Blast, Brown Spot, and Tungro. The experimental results demonstrate
exceptional performance across all models, with DenseNet121 achieving the highest test accuracy of 99.83%,
followed by ResNet18 at 99.49% and EfficientNet-BO at 98.99%. To enhance model interpretability and trust,
explainable Al (XAI) techniques including Grad-CAM and LIME were integrated, providing visual explanations
for model predictions. The implementation of XAl methods enables agricultural practitioners to understand the
decision-making process of the deep learning models, thereby increasing confidence in automated diagnosis sys-
tems. This research contributes to precision agriculture by offering a reliable, interpretable, and efficient solution
for rice disease detection that can be deployed in real-world agricultural settings.
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1 Introduction subjectivity, regional inconsistencies, and limited ac-
cessibility to trained personnel, especially in remote
rural areas where rice farming is prevalent. Moreover,
similar visual symptoms across different diseases can
lead to frequent misdiagnoses, especially during early
infection stages when symptoms are subtle. Manual
surveys are also labor-intensive and time-consuming,
making them impractical for rapid and scalable dis-
ease detection across large cultivation areas. These
constraints often lead to delayed intervention, allow-
ing diseases to spread and cause irreversible damage,
thereby exacerbating food security challenges.

Rice (Oryza sativa) stands as one of the world’s most
crucial staple crops, feeding over half of the global
population and serving as the primary food source
for billions of people worldwide. The agricultural
significance of rice extends beyond mere sustenance,
as it represents a cornerstone of food security, eco-
nomic stability, and cultural heritage across numer-
ous nations, particularly in Asia, Africa, and Latin
America. However, rice cultivation faces numerous
challenges that threaten both yield quality and quan-
tity, with plant diseases representing one of the most

significant obstacles to sustainable rice production. Recent advancements in artificial intelligence
Among the most prevalent and destructive diseases af- (AD) and deep learning offer promising alternatives
fecting rice crops are Bacterial Blight, Blast, Brown through the development of automated, scalable, and
Spot, and Tungro, each presenting distinct symptoms accurate plant disease detection systems. Convolu-
and requiring specific management strategies to pre- tional Neural Networks (CNNs), in particular, have
vent large-scale crop loss. demonstrated exceptional performance in agricultural

Traditional approaches to disease identification in image analysis due to their ability to learn hierarchical
rice cultivation have heavily relied on manual inspec- features and extract complex spatial patterns from vi-
tion by agricultural experts, extension workers, and sual data. When applied to rice leaf disease detection,
experienced farmers. While grounded in centuries of CNN-based models provide significant advantages:
agronomic knowledge, this visual diagnosis method they reduce dependence on human expertise, operate
suffers from several limitations, including observer with consistent performance, and are capable of pro-
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cessing large volumes of image data in real time. Ad-
ditionally, these models show potential in early-stage
disease recognition, where subtle visual cues—often
imperceptible to the human eye—can be leveraged for
timely diagnosis and intervention, thereby mitigating
crop losses more effectively.

Despite their potential, deep learning models
are often criticized for their ”black box” nature,
which hinders their acceptance among agricultural
stakeholders who require transparency and trust in
decision-making tools. The integration of Explain-
able Al (XAI) techniques such as Gradient-weighted
Class Activation Mapping (Grad-CAM) and Local In-
terpretable Model-agnostic Explanations (LIME) ad-
dresses these concerns by visually highlighting the
regions and features influencing model predictions.
This study explores the design and evaluation of high-
performance CNN architectures for rice leaf disease
classification, while also incorporating XAI meth-
ods to enhance model interpretability and facilitate
human-Al collaboration. Through this dual focus on
predictive accuracy and explainability, the research
aims to advance practical and trustworthy Al solutions
for sustainable rice agriculture.

2 Related Work

The detection and classification of rice leaf diseases
have garnered significant attention from researchers
due to the critical role of rice as a staple food
crop worldwide. Traditional manual inspection meth-
ods for disease detection are time-consuming, labor-
intensive, and prone to human error, necessitating
the development of automated approaches [2], [8].
Early research efforts primarily focused on conven-
tional machine learning techniques combined with
image processing methods. Ahmed et al. [2] demon-
strated the effectiveness of traditional machine learn-
ing algorithms, achieving over 97% accuracy using
Decision Tree algorithm with 10-fold cross valida-
tion for detecting common rice diseases including leaf
smut, bacterial leaf blight, and brown spot. Simi-
larly, comprehensive reviews by Mukherjee et al. [8]
and Jackulin and Murugavalli [6] highlighted vari-
ous machine learning approaches employed between
1999 and 2022, emphasizing the transition from man-
ual feature extraction methods to more sophisticated
Al-assisted techniques for early disease detection and
surveillance.

Rice cultivation faces significant threats from
various diseases that can substantially impact crop
yield and quality, necessitating effective detection and
management strategies. Bacterial leaf blight (BLB),
caused by Xanthomonas oryzae pv. oryzae, repre-
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sents one of the most significant bacterial diseases
affecting rice production, requiring sustainable man-
agement approaches that combine biological control
methods with traditional chemical treatments to sup-
press pathogen growth through antagonistic microbes
and enhanced plant immunity [16]. Rice blast, caused
by the fungal pathogen Pyricularia oryzae, poses a
severe threat to global food security as it can infect
aboveground tissues at any growth stage, producing
characteristic lesions on leaves, culms, and panicles
that vary in appearance depending on environmental
conditions and varietal resistance [3]. Brown spot dis-
ease, caused by Bipolaris oryzae, has emerged as a re-
emerging worldwide concern, causing approximately
4% grain yield losses globally with variations rang-
ing from 1% to 34% across different regions in Africa
and Asia, while also affecting seed quality with infec-
tion rates varying from 0.5% to 76% [?]. Addition-
ally, viral diseases such as rice tungro disease present
unique challenges in irrigated rice systems where con-
tinuous cropping throughout the year facilitates dis-
ease spread between fields, with transmission dynam-
ics significantly influenced by vector populations, va-
rietal resistance, and proximity to inoculum sources
[4]. These diverse pathogenic threats underscore the
critical importance of developing robust automated
detection systems capable of accurately identifying
and classifying multiple disease types to enable timely
intervention and sustainable rice production.

The advent of deep learning has revolutionized
plant disease detection, offering superior performance
compared to traditional approaches. Ferentinos [5] pi-
oneered the application of convolutional neural net-
works (CNNGs) for plant disease detection, achieving
an impressive 99.53% accuracy on a dataset of 87,848
images covering 25 different plant species across 58
distinct disease classes. This breakthrough demon-
strated the potential of deep learning models to per-
form automated disease diagnosis with minimal hu-
man intervention. Liu and Wang [7] provided a com-
prehensive review of deep learning applications in
plant disease detection, categorizing approaches into
classification networks, detection networks, and seg-
mentation networks, while highlighting the superior
performance of deep learning over traditional meth-
ods in digital image processing tasks. The success
of these early works established deep learning as the
preferred approach for automated plant disease iden-
tification systems.

Recent advances in rice leaf disease detection
have focused on leveraging transfer learning and en-
semble methods to improve model performance and
generalization capabilities. Simhadri et al. [15]
conducted a systematic literature review of 82 high-
quality articles published since 2017, identifying
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transfer learning, ensemble learning, and hybrid ap-
proaches as the most effective deep learning strate-
gies for rice disease detection. Krishnamoorthy et
al. [9] successfully applied InceptionResNetV2 with
transfer learning, achieving 95.67% accuracy for rice
leaf disease classification, while Rahman et al. [11]
developed an ensemble learning framework combin-
ing multiple architectures that achieved 99.78% ac-
curacy, surpassing other state-of-the-art approaches.
These studies demonstrate the effectiveness of com-
bining different deep learning architectures and pre-
trained models to enhance disease detection perfor-
mance while reducing computational requirements
and training time.

The integration of explainable artificial intelli-
gence (XAI) techniques with deep learning models
has emerged as a crucial research direction to en-
hance model interpretability and user trust in auto-
mated disease detection systems. Sagar et al. [13]
emphasized the importance of explainable Al in plant
disease detection, highlighting the need for transpar-
ent and interpretable solutions that can provide mean-
ingful insights to end-users, particularly farmers and
agricultural practitioners. Rahman et al. [11] suc-
cessfully integrated Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) into their ensemble mod-
els to generate visual explanations for disease predic-
tions, bringing transparency to the diagnostic process.
Recent works by Saranya and Kumar [1] and Ning et
al. [10] have focused on developing real-time CNN-
based systems that not only achieve high accuracy but
also provide practical deployment solutions for mo-
bile devices and field applications, incorporating fea-
tures such as fertilizer recommendation modules and
lightweight model architectures for enhanced usabil-
ity in precision agriculture scenarios.

3 Methodology

3.1 Dataset Description and Preparation

The foundation of this study rests upon a comprehen-
sive rice leaf disease dataset comprising 5,932 high-
quality images distributed across four distinct disease
categories. The dataset includes 1,584 images of Bac-
terial Blight, 1,440 images of Blast disease, 1,600
images of Brown Spot, and 1,308 images of Tungro
disease. This dataset represents a diverse collection
of rice leaf conditions captured under various envi-
ronmental conditions, lighting scenarios, and disease
severity levels, ensuring comprehensive representa-
tion of each disease category for robust model training
and evaluation.

The dataset preparation process followed rigorous
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standards to ensure data quality and consistency. All
images underwent careful inspection to verify correct
labeling and remove any corrupted or mislabeled sam-
ples. The dataset exhibits natural class imbalance, re-
flecting real-world disease occurrence patterns where
certain diseases may be more prevalent than others in
specific geographical regions or growing seasons.

To establish reliable model evaluation protocols,
the dataset was systematically divided into training,
validation, and test sets using stratified sampling to
maintain proportional representation of each disease
category across all splits. The division followed
industry-standard ratios with 75% of images allocated
to the training set (4,449 images), 15% to the valida-
tion set (889 images), and 15% to the test set (594
images). This partitioning strategy ensures adequate
data availability for model training while preserving
sufficient samples for unbiased performance evalua-
tion.

The training set serves as the primary learning re-
source for model parameter optimization, providing
diverse examples of each disease category to enable
comprehensive feature learning. The validation set
functions as an independent evaluation dataset dur-
ing training, facilitating hyperparameter tuning, early
stopping decisions, and model selection processes.
The test set remains completely isolated from training
and validation procedures, serving as the final bench-
mark for assessing model generalization capabilities
and providing unbiased performance metrics for com-
parative analysis.

3.2 Data Preprocessing and Augmentation

Image preprocessing constitutes a critical component
of the deep learning pipeline, ensuring consistent in-
put formats and optimal model performance. All
images underwent standardized preprocessing proce-
dures including resizing to 224x224 pixels to match
the input requirements of pre-trained CNN architec-
tures. This standardization process maintains aspect
ratios while ensuring computational efficiency and
compatibility with transfer learning approaches. Nor-
malization procedures followed ImageNet standards,
applying mean values of [0.485, 0.456, 0.406] and
standard deviation values of [0.229, 0.224, 0.225]
across RGB channels. This normalization strategy
aligns input data distributions with pre-trained model
expectations, facilitating effective transfer learning
and stable gradient propagation during training pro-
cesses. The preprocessing pipeline incorporates ten-
sor conversion operations to transform PIL image ob-
jects into PyTorch tensor formats suitable for neural
network processing. This conversion process main-
tains data integrity while enabling efficient batch pro-
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cessing and GPU acceleration during training and in-
ference phases.

3.3 Model Architectures

This study evaluates three state-of-the-art convolu-
tional neural network architectures, each represent-
ing distinct approaches to deep learning model design
and offering unique advantages for image classifica-
tion tasks.

3.3.1 ResNetl8 Architecture

The ResNet18 model implements the residual learn-
ing framework introduced by He et al., addressing
the vanishing gradient problem through skip connec-
tions that enable training of deeper networks. The ar-
chitecture (Figure 1) comprises 18 layers organized
into residual blocks, each containing two 3x3 con-
volutional layers with batch normalization and ReLU
activation functions. The skip connections allow gra-
dients to flow directly through the network, enabling
stable training and improved convergence character-
istics. For this study, the final fully connected layer
was modified to output four classes corresponding to
the rice disease categories, while all preceding layers
were initialized with ImageNet pre-trained weights to
leverage transfer learning benefits.

X
Weight Layer
X
F(x) i RelU identity
‘ Weight Layer
F(x) + x

Figure 1: ResNet-18 Architecture denoting Skip Con-
nection
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3.3.2 DenseNet121 Architecture

The DenseNet121 model implements dense connec-
tivity patterns where each layer receives feature maps
from all preceding layers within dense blocks. This
architecture (Figure 2) promotes feature reuse and
strengthens feature propagation throughout the net-
work, often achieving superior performance with
fewer parameters compared to traditional CNN de-
signs. The model comprises four dense blocks with
varying numbers of layers, connected through tran-
sition layers that perform downsampling operations.
The dense connectivity pattern encourages feature di-
versity and reduces overfitting risks, making it partic-
ularly suitable for datasets with limited sample sizes.
Similar to ResNet18, the classifier layer was adapted
for four-class rice disease classification while main-
taining pre-trained feature extraction capabilities.

Output
(Predicted Class)

Figure 2: DenseNet-121 Model Architecture

3.3.3 EfficientNet-B0 Architecture
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Figure 3: EfficientNet BO Model Architecture

The EfficientNet-BO model represents a break-
through in neural architecture scaling, systematically
balancing network depth, width, and input resolu-
tion through compound scaling methods. This ar-
chitecture (Figure 3) achieves optimal trade-offs be-
tween model accuracy and computational efficiency,
making it suitable for both high-performance appli-
cations and resource-constrained deployment scenar-
ios. The model incorporates mobile inverted bot-
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tleneck blocks with squeeze-and-excitation optimiza-
tion, enabling efficient feature extraction and repre-
sentation learning. The compound scaling approach
ensures that network dimensions are optimally bal-
anced, avoiding the inefficiencies associated with ar-
bitrary scaling of individual dimensions.

3.4 Explainable AI Integration

To address interpretability requirements and enhance
model trustworthiness, this study integrates two com-
plementary explainable Al techniques: Grad-CAM
and LIME. These methods provide different perspec-
tives on model decision-making processes, enabling
comprehensive understanding of prediction mecha-
nisms.

34.1 Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-
CAM) generates visual explanations by computing
gradients of predicted class scores with respect to
feature maps in the final convolutional layer [14].
The implementation registers forward and backward
hooks on the target convolutional layer (layer4 for
ResNet18) to capture feature activations and gradients
during forward and backward passes. The gradient
information is used to compute importance weights
for each feature map, which are then combined with
the feature activations to produce class-specific acti-
vation maps. These activation maps highlight image
regions that contribute most significantly to the pre-
dicted class, providing intuitive visual explanations
that align with human understanding of disease symp-
toms.

34.2 LIME

Local Interpretable Model-agnostic Explanations
(LIME) provides an alternative interpretability ap-
proach by explaining individual predictions through
locally faithful approximations [12]. The LIME im-
plementation segments input images into superpixels
and systematically perturbs these regions to observe
their impact on model predictions. By training a local
linear model on the perturbed samples, LIME identi-
fies which image regions contribute positively or neg-
atively to specific class predictions. This approach
provides region-based explanations that complement
Grad-CAM’s activation-based visualizations, offering
users multiple perspectives on model decision-making
processes.

The integration of both XAI techniques enables
comprehensive model interpretability, addressing dif-
ferent user preferences and use cases. Grad-CAM pro-
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vides smooth, continuous activation maps that high-
light important image regions, while LIME offers dis-
crete, region-based explanations that may be more in-
tuitive for users familiar with traditional image analy-
sis approaches.

4 Results and Discussion

4.1 Model Performance Comparison

The experimental evaluation of the three CNN archi-
tectures reveals exceptional performance across all
models, with each achieving remarkably high ac-
curacy rates that demonstrate the effectiveness of
deep learning approaches for rice leaf disease detec-
tion. The comprehensive performance analysis sum-
marized in Table 1 encompasses training dynamics,
validation performance, and final test set evaluation
to provide thorough assessment of model capabilities.
Acc., Prec., Rec., and F1 stand for accuracy, precision,
recall, and F1-score.

Table 1: CNN Model Performance on Rice Leaf Dis-
ease Detection

Model Acc. (%) Loss Prec. | Rec. F1

ResNet18 99.49 0.0271 1.00 | 0.99 | 0.99
DenseNet121 99.83 0.0057 1.00 1.00 | 1.00
EfficientNet-B0 98.99 0.0339 | 099 | 099 | 0.99

DenseNet121 emerged as the top-performing
model, achieving an outstanding test accuracy of
99.83% with the lowest test loss of 0.0057. This ex-
ceptional performance can be attributed to the dense
connectivity patterns that promote feature reuse and
strengthen gradient flow throughout the network. The
architecture’s ability to combine features from mul-
tiple scales and depths enables comprehensive repre-
sentation learning that captures subtle disease charac-
teristics effectively.

ResNet18 demonstrated highly competitive per-
formance with a test accuracy of 99.49% and test
loss of 0.0271. The residual learning framework
proves highly effective for rice disease classification,
with skip connections enabling stable training and ro-
bust feature learning. The slightly lower performance
compared to DenseNet121 may be attributed to the
less extensive feature reuse capabilities, though the
difference remains minimal and practically insignifi-
cant.

EfficientNet-B0 achieved a test accuracy of
98.99% with test loss of 0.0339, representing excel-
lent performance while maintaining computational ef-
ficiency advantages. The compound scaling approach

Volume 10, 2025



Omkar Prabhu

balances model complexity and performance effec-
tively, though the slight performance gap compared to
the other architectures suggests that the specific scal-
ing configuration may not be optimal for this particu-
lar dataset size and complexity.

Based on these results, DenseNet121 is identified
as the most effective model for the classification task.
The corresponding confusion matrix of DenseNet121
(shown in Figure 4) confirms its robustness, exhibit-
ing minimal misclassifications across all disease cat-
egories. This underscores its potential for practical
deployment in precision agriculture scenarios.

Confusion Matrix on Test Set

Bacterialblight

Blast

- 80

True label

Brownspot 60

40

Tungro r20

Bacterialblight

Blast Brownspot
Predicted label

Tungro

Figure 4: Confusion Matrix of DenseNet121.

4.2 Per-Class Performance Analysis

The detailed classification reports reveal consistent
high performance across all disease categories, in-
dicating robust model capabilities for discriminating
between different rice leaf diseases. The analysis
examines precision, recall, and F1-score metrics for
each disease class to identify potential biases or weak-
nesses in model performance. This is depicted in Ta-
ble 2.

Table 2: Per-Class Performance of CNN Models

Model Class Prec. | Rec. | F1 N
ResNet18 Bact. Blight | 0.99 1.00 | 1.00 | 159
Blast 0.99 1.00 | 099 | 144
Brown Spot 1.00 | 098 | 0.99 | 160
Tungro 1.00 | 1.00 | 1.00 | 131
DenseNet121 | Bact. Blight 1.00 1.00 | 1.00 | 159
Blast 0.99 1.00 | 1.00 | 144
Brown Spot 1.00 | 099 | 1.00 | 160
Tungro 1.00 1.00 | 1.00 | 131
EffNet-BO Bact. Blight | 1.00 | 0.98 | 0.99 | 159
Blast 099 | 098 | 099 | 144
Brown Spot 0.97 1.00 | 0.98 | 160
Tungro 1.00 | 1.00 | 1.00 | 131
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Prec., Rec., F1, and N stand for precision, recall,
F1-score, and number of test samples.

All models demonstrate excellent precision and
recall values, indicating both accurate positive predic-
tions and comprehensive detection of disease cases.
The consistent high performance across different dis-
ease types suggests robust feature learning capabilities
that capture distinctive characteristics of each disease
category.

4.3 Training Dynamics and Convergence
Analysis

The training process analysis reveals fascinating in-
sights into model learning behaviors and convergence
characteristics across the seven-epoch training period.
Each model exhibited distinct learning patterns that
reflect their architectural differences and optimization
characteristics.

4.3.1 ResNetl8 Training Progression

The ResNet18 model demonstrated rapid initial learn-
ing with training accuracy improving from 90.78% in
epoch 1 t0 95.84% in epoch 2, accompanied by signif-
icant validation accuracy improvement from 98.43%
to 99.21% (Figure 5). This rapid convergence in-
dicates effective transfer learning utilization and sta-
ble gradient propagation through residual connec-
tions. The training loss decreased consistently from
0.2667 to 0.0349 over seven epochs, while validation
loss fluctuated between 0.0091 and 0.0626, indicating
good generalization capabilities with minimal overfit-
ting. The final training accuracy reached 98.85% with
validation accuracy of 99.10%, demonstrating excel-
lent model performance and appropriate regulariza-
tion.

Train vs Val Loss Train vs Val Accuracy

— Train Accuracy
— val Accuracy

0 1 2 H 3 H 6 [ 1 2 3 a 5 5

Figure 5: Training vs validation curves for ResNet18.

4.3.2 DenseNet121 Training Progression

DenseNet121 exhibited more gradual but steady im-
provement patterns, with training accuracy progress-
ing from 93.46% in epoch 1 to 99.24% in epoch 7
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(Figure 6). The model showed remarkable validation
performance improvement, achieving 99.89% valida-
tion accuracy in the final epoch with minimal valida-
tion loss of 0.0029. This exceptional validation per-
formance, combined with the steady training progres-
sion, indicates optimal feature learning and excellent
generalization capabilities. The dense connectivity
patterns appear to provide superior feature reuse and
gradient flow, resulting in the most stable and effective
learning trajectory among the evaluated models.

Train vs Val Loss Train vs Val Accuracy

/S~
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— Train Loss — Train Accuracy
Val Loss Val Accuracy
7
0175 .
0150
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0125 -
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§ o100 \ g
0075 Y

0050 o
0025

0,000

Figure 6: validation curves for

DenseNet121.

Training vs

4.3.3 EfficientNet-B0 Training Progression

EfficientNet-BO demonstrated rapid early conver-
gence with training accuracy reaching 95.80% in the
first epoch and achieving consistently high valida-
tion accuracy above 99% from epoch 1 onwards (Fig-
ure 7). The model maintained stable performance
throughout training, with final training accuracy of
98.22% and validation accuracy of 99.78%. The com-
pound scaling approach appears to provide effective
initialization and balanced model capacity, enabling
rapid convergence while maintaining excellent gener-
alization performance.

Train vs Val Loss Train vs Val Accuracy

Figure 7: Training vs validation curves for Efficient-
Net BO.

4.4 Explainable AI

The integration of explainable Al techniques provides
valuable insights into model decision-making pro-
cesses, enhancing interpretability and building user
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confidence in automated disease detection systems.
As DenseNetl21 achieved the highest classification
performance among the evaluated models, it was se-
lected for interpretability analysis using Grad-CAM
and LIME. The visualizations from both techniques
consistently reveal that the model focuses on clini-
cally relevant image regions, aligning well with hu-
man expert understanding of disease symptoms. This
interpretability not only supports the model’s reliabil-
ity but also facilitates its adoption in real-world agri-
cultural settings.

44.1 Grad-CAM Analysis

The Grad-CAM visualizations demonstrate that all
three models consistently focus on diseased leaf re-
gions when making classification decisions. For
Bacterial Blight cases, the activation maps highlight
water-soaked lesions and yellowing areas that cor-
respond to characteristic disease symptoms. Blast
disease visualizations show concentrated attention on
diamond-shaped lesions with gray centers and brown
borders, accurately identifying the distinctive mor-
phological features of this fungal disease. Brown Spot
cases reveal activation patterns focused on oval brown
spots with yellow halos, demonstrating the model’s
ability to recognize these characteristic symptoms.
Tungro disease visualizations highlight yellowing and
discoloration patterns associated with viral infection
symptoms.

The consistency of Grad-CAM results across dif-
ferent model architectures suggests robust feature
learning that captures fundamental disease character-
istics rather than spurious correlations or background
artifacts. The activation maps provide intuitive visual
explanations that agricultural experts can readily in-
terpret and validate against their domain knowledge.

4.4.2 LIME Analysis

LIME explanations complement Grad-CAM visual-
izations by providing region-based interpretations that
segment images into discrete areas of influence. The
LIME results consistently identify diseased leaf re-
gions as positive contributors to disease classification
decisions while showing neutral or negative contribu-
tions from healthy leaf areas and background regions.
This behavior aligns with expected decision patterns
and provides confidence in model reliability.

The superpixel-based explanations reveal that
models make decisions based on multiple image re-
gions rather than single distinctive features, indicating
comprehensive pattern recognition capabilities. The
explanations show appropriate weighting of differ-
ent symptom characteristics, such as lesion morphol-
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ogy, color patterns, and spatial distribution of disease
symptoms.

Class Grad-CAM

Original Image

Bacterial
blight

Blast

Brownsp
ot

Tungro

Figure 8: Visual Explanations using Grad-CAM and
LIME for DenseNet121 Predictions

The combination of Grad-CAM and LIME pro-
vides comprehensive interpretability coverage, ad-
dressing different user preferences and analytical
needs. Agricultural practitioners can utilize these ex-
planations to verify model decisions, understand dis-
ease identification criteria, and build confidence in au-
tomated diagnosis systems for practical field applica-
tions, as illustrated in Figure 8.

5 Conclusion

This study presents a comprehensive investigation of
deep learning methods for rice leaf disease detection
using state-of-the-art CNN architectures—ResNet18,
DenseNet121, and EfficientNet-BO—achieving ex-
ceptional test accuracies of 99.49%, 99.83%, and
98.99%, respectively. The integration of explainable
Al techniques such as Grad-CAM and LIME effec-
tively addresses the “black box” nature of deep learn-
ing models, enhancing interpretability and user trust.
Visual explanations consistently aligned with human
expert understanding, reinforcing the credibility of au-
tomated decisions and supporting their adoption in
real-world agricultural environments. These results
demonstrate that CNN-based systems can offer both
accuracy and transparency, meeting the dual needs of
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high-performance classification and human-centered
interpretability.

Beyond classification, this work contributes
meaningfully to the domain of precision agriculture
by laying out a framework for designing interpretable
and deployable Al solutions. The comparative analy-
sis of CNN models provides actionable guidance for
selecting architectures based on accuracy, explainabil-
ity, and computational efficiency. Future work can
explore integrating drone-based imagery and tempo-
ral analysis for large-scale monitoring, or building
lightweight models suitable for mobile deployment in
low-resource farming regions. Additionally, expand-
ing datasets to include more rice varieties and rare dis-
ease cases will help improve generalization across di-
verse agricultural conditions. Ultimately, this study
establishes a foundation for scalable, intelligent sys-
tems capable of not only disease
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