
Development of a Multilingual Programming Language Using Rust

JEMIMAH NATHANIEL
School of Computing, Joensuu campus

University of Eastern Finland
FINLAND

MOWETE FUMNANYA KAVAN

 Department of Computer and Information
Sciences

Covenant University, NIGERIA

Abstract: - The increasing globalization of technology necessitates the development of programming languages
that accommodate diverse linguistic backgrounds. The entrenchment of the English Language as the lingua franca
of computing has had dire consequences on determining the requirements for entry into the industry often barring
qualified candidates because they do not possess adequate knowledge about the language—when there is no
fundamental technical reason for doing so, as computers do not “care” about their language of instruction. To
combat this, this paper designed and implemented a multilingual programming language using Rust called Lingo,
it is an interpreter that translates source code for a multilingual programming language into executable programs
which should be able to be natively executed on users’ computers. Lingo aimed at enhancing accessibility for
non-English speakers, the languages supported by this system include English, Francia’s (French), Hausa, and
Yoruba, with keywords, error messages, and functions available in each of the four of them. Lingo is inspired by
Lisp, with modified syntax to facilitate multilingual interaction. The results of this study show that Lingo is a
viable alternative to English-based programming languages and can be used to introduce programming to a wider
audience, as well as provide localized error messages to help users understand and fix any issues with their code—
is a step in the right direction to bridge this gap and make programming more accessible to a wider audience. The
findings indicate that a multilingual approach can significantly improve the user experience and broaden
participation in programming, ultimately contributing to a more diverse and innovative tech community.

Key-Words: - multilingual programming language, programming language, programming, bilingual, English-
based programming languages.

Received: April 8, 2025. Revised: June 26, 2025. Accepted: June 30, 2025. Published: July 3, 2025.

1 Introduction
Digital computers form an integral part of our 21st-
century lives as humans, coming a long way from
being relegated to giant, ventilated rooms a` la the
ENIAC [1], to being the primary means of
communication for most humans on the planet—
mobile phones [2]. Programming languages,
therefore, have reached an unprecedented level of
importance as they are the primary means of
interfacing with computers—effectively “telling
them what to do”. As a result, they have adopted a
break-neck pace of development, with new
languages coming out every year with brand-new
features like generics—which is when algorithms
are not written with specific types but given a “to-
be-specified-later” type—introduced by ML in
1973, borrow-checking—a technique used to
manage memory and ensure safety without using a
traditional garbage collector—demonstrated by [3]
with Rust, and goroutines, a form of green threading
(a thread scheduled by a program’s runtime as
opposed to the actual operating system) popularised
by Go [4]. Due to this development pace, existing
programming languages are varied in a wide range
of attributes, with everything from the level of

abstraction from the hardware to how much
emphasis is placed on manual memory management,
but one attribute they mostly share is the use of the
English language vocabulary as a base—keywords
are common concatenations of English words, error
messages are in English and, more often than not, the
language is designed to be written on a US-layout
keyboard [5].
The current state of affairs is that English is
entrenched as the lingua franca (of computing
because of its origins in North American and
European institutions, even though no technical
limitations are keeping it so —it is all bits and bytes
to the computer at the end [6].This heavy use of
English leads to an uneven gradient of entry into the
industry. For a new programmer to make progress,
they have no choice but to learn English because
even though programming languages are formal
grammars disconnected from their origins [7], the
majority of programming languages are based on
English keywords. Apart from these, error messages
and online discussions are predominantly in English
[8],which provides an invaluable resource to
developers everywhere [9], and would not help if
they just managed to memorize the keywords and

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 190 Volume 10, 2025

kept working in their native language. Providing
alternate means to program can help mitigate the
effects of this and lower the barrier of entry, for
example, by decoupling programming from textual
representations and making it wholly visual-based
[10] or translating language keywords and making
localized versions of popular programming
languages. Some existing languages have attempted
to tackle this, but potential problems arise with this
approach—these visual languages break down for
large codebases as navigation becomes complex
[11], and unofficial translators often have few
resources to maintain the language.
This study hypothesizes that a well-designed
programming language that caters to non-English
languages is created—with localized keywords,
error messages, and documentation—along with a
forum that encourages questions to be asked and
answered in the native language would benefit a vast
number of people that otherwise would not be able
to get into computing. In addition, it would
encourage collaboration between people with whom
the language barrier would otherwise separate. The
tools developed as a result of this study have strict
constraints to ensure their effectiveness in breaking
down the language barrier in this industry. The
language is targeted toward general-purpose
computer programming and does not make any
priorities towards producing the best performance.
The primary audience for the language should be
people with little to medium experience with
programming who do not have a solid grasp of
English, for example, secondary school and first-
year university students.

2 Related Works
Digital computers are a marvel of modern
technology whose continued presence continues to
have a gigantic impact on our collective lives. We
owe this thanks to the numerous layers of systems
that work together beneath the surface to deliver
seamless experiences. At a high level, we can
subdivide these systems into two categories—
hardware and software. Many parts come into play
in the software aspect to cooperate and serve the
user. The operating system manages resources, and
applications carry out activities on behalf of the user.
Some particular applications, called utilities, help
manage other software, exist. Some utilities, such as
programming tools and libraries, help create, test,
and maintain applications the general public uses
daily. The focus of this study is on the development
of a multilingual programming language, which
necessitates the review of some concepts relevant to

the field and other attempted solutions to the
problem.
2.1 Review of Programming Languages
Programming languages are notation systems for
writing computer programs [12]. They consist of all
the rules that govern how they can be structured—
their syntax, what they mean—their semantics, and
what values and operations can be performed—their
computational models. Programming languages are
heavily influenced by the architecture of the
computer they are designed to run on—[13] defines
an architecture as a description of the structure of the
separate components of a computer—and in turn,
dictate how standard programs are built for systems
of that architecture. This network of cause and effect
leads to a broad spectrum and variety of languages,
each with unique features, ease of use levels, tooling,
benefits, and downsides. Low-level programming
languages are languages that provide little-to-no
abstraction—the generalization of specific, concrete
implementation details that are not relevant [14]over
a computer’s instruction set. This leads to commands
in the language being very similar in structure to the
actual instructions executed by the processor. They
are used when programs need to be run as fast as
possible, with the downside being that it is hard to
write and maintain [15]. Examples include assembly
language, which is transformed directly into
sequences of machine instructions and data
according to [16], and languages with access to low-
level functions like C [17].
 High-level programming languages have a
high level of abstraction from the computer’s
implementation details, often preferring natural
language constructs to aid development and ease of
use and automatically performing operations such as
memory management. They provide a simpler
frontend for writing programs – preferring to use
constructs like variables and subroutines that hide
the details of registers, opcodes, and memory
allocation. These are commonly used when the ease
of use of the program development process is more
critical than any theoretical benefits that could be
gotten from a more performant language. Some
examples are the Lisp family of languages, the third-
oldest high-level programming language still in
common use as it was originally made in 1960 [18],
C#, and Java, among others.
2.2 Review of the Language Barrier
Even though the most popular software applications
have begun to move away from English-centrism
and are becoming more accessible and
internationalized [19], a startling majority of
programming languages (and their associated

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 191 Volume 10, 2025

libraries) are not—they have stuck to their ASCII,
English-based roots. Over a third of all programming
languages have been developed in English-speaking
countries [20]. Even languages not developed in one
are still overwhelmingly English-based for example,
Figure 1 shows Lua code that was made in Brazil
(and named after the moon in Portuguese) but still
uses English keywords.

Figure 1: Sample Lua code, with English keywords

Theoretically, there is no reason it should be so at a
hardware level. According to [6], in an article aptly
named Coding Is for Everyone—as Long as You
Speak English, argues that computers have no
technical limitations that make them any better at
parsing English than any other language and could
easily do it just as effectively if we used anything
from emoji to Cyrillic. [6] also hypothesizes that the
community around a language is the most important,
practical aspect that keeps the status quo in place,
and it rings true. Figure 2. shows a computer’s steps
when it builds an executable from a source program.
There is no reason English has to be the language in
the tokenization or parsing steps (also referred to as
lexical and syntax analysis, respectively).

Figure 2: The stages of compilation [21]

Studies have shown a direct link between English
proficiency and computer programming ability, up
to the university level [22], which makes this
entrenchment of English a major problem in this
industry. Because learning programming languages
primarily involves memorizing keywords,

recognizing error messages and dealing with them
appropriately, and building the skill of searching for
documentation when needed, gatekeeping everyone
unable or unschooling to learn the language from the
industry actively hurts it.

2.3 Review of Existing Approaches
A common approach to this problem is to swap out
the keywords of a PL for more localized alternatives,
but this is not very effective. This is how quite a few
esoteric languages —languages made for humorous
purposes, like Pikachu, which only has three
keywords: pi, pika, and Pikachu—are out there. A
programming language is more than just keywords
however, error messages also matter as a means for
the user to be told what is wrong with any program
being written. Error messages are so important that
72% of respondents used Rust at work because it
was “enjoyable to use” [23], Figure 3 shows an
illustration of errors in rust.

Figure 3: An example of a comprehensive rust error
- E0382
Unfortunately, most languages also lack the
extensibility to change the error messages. Also,
libraries and other resources (such as
documentation) fall back to the original language,
English, making it challenging to discover resources
or any issues a user might have. Developer tooling is
also a big deal as this is also how users primarily
interact with any programming language—without a
good way to utilize any features fully, users should
turn away to more accessible tools. For example, the
lack of high adoption of package managers by most
C++ developers [24] is a pain point in the ecosystem
that Rust’s Cargo conveniently solves—along with
taking care of dependency and project management.
Similarly, any multilingual programming language
should have to ensure users are not inundated with
all the possibilities and give up.

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 192 Volume 10, 2025

2.3.1 Visual Programming Languages

These programming languages allow programs to be
specified using graphical elements instead of
traditional text. These are commonly used as
introductory material to novice programmers as they
reduce the potential of ill-formed programs resulting
from syntactic errors [25]. A disadvantage,
however, is that managing projects once they
become too large becomes impractical with a visual
PL instead of a textual one. Some popular ones are:
Blockly: Blockly is an open-source Google for
creating browser-based visual programming
languages. It was created in 2011 by Neil Fraser,
Quynh Neutron, Ellen Spertus, and Mark Friedman.
It forms a basis for many educational tools such as
Scratch and Code.org The reference implementation
presents interlocking blocks that can generate code
in Javascript, Dart, Python, and more. It has also
been localized into over 100 languages [26] and
supports RTL (right-to-left languages, such as
Arabic and Hebrew).
Scratch: Scratch was initially created by Mitchel
Resnick and Yasmin Kafaiin in 2003 (Maloney et
al., 2004). Its purpose is to be an educational tool for
8-16-year-olds [27] It is available in more than 70
languages in most countries of the world [27]. The
user uses various blocks which can be combined in
the stage area to create various special effects (eg
music, animations) and control a sprite–a two-
dimensional fixed-size object composited with a
background in a scene [28].

2.3.2 Non-English-based Programming

Languages

These programming languages do not use syntactic
elements inspired by the English language as shown
in shown in Table 1. They achieve this by deriving
the keywords from other languages like Russian and
Latin or by doing away with keywords entirely, for
example, APL: uses special graphical symbols to
perform actions on multidimensional arrays [29].
Piet: uses bitmaps that look like abstract art of the
ones that use traditional textual keywords [30], just
not derived from English, some examples should be
considered here:
Hapy: This is a simple language comprised of Hausa
keywords that transpiles to Python [31], with a few
syntactic changes, such as the inclusion of braces for
scopes, as opposed to Python’s whitespace, and
semicolon line-endings. It lacks localized errors in

Hausa and does not provide facilities for code to be
shared and reused across projects.
Hedy: Hedy is an educational open-source Python
subset. It is multilingual, supporting over 40
languages for the actual language and the UI of the
editor application It also allows teachers to fully
customize the students’ experience [32]. A
considerable emphasis is placed on ensuring the
learning experience is tailored to newcomers to the
language—the tutorial is subdivided into “levels,”
which lower the language barrier by starting with an
elementary language and adding concepts and
syntax as the learner progresses. This technique is
referred to as “Gradual Programming” and is further
expanded upon by [33] and [34]. Levels are also
taken advantage of to produce gradual error
messages [34] as code written in a lower level has
simpler grammar and more limited options—which
can be taken advantage of to produce more precise
error messages. While admittedly very good, Hedy
is fundamentally limited because it transpires to
regular Python and is a subset of it. Even when
written offline, there is no option to not write Hedy
or to somehow interoperate with other people’s code
written in other PLs. Additionally, libraries you’ve
written cannot be shared with others because Hedy
aims to be a learning tool first and general-purpose
language second.
Babylscript: This is a multilingual version of
Javascript built by [35] that has multiple tokenizers,
allowing objects and variables to have different
names in different languages. This functionality is
exposed for all the standard library methods,
allowing people with different languages to get up
and running quickly. Babylscript has the unique
feature of allowing programmers to mix code from
different vocabularies in a single project—
enhancing collaboration. It also allows developers to
extend their code to hook into the multilingual API
exposed by the language and specify alternate names
in other vocabularies. A significant downside is that
it is modeled after Javascript, which, even though it
is the most used language in the world, lacks the
safety of static typing, leading to errors by beginners
who have no idea what the language is doing [36].
Despite the multilingual benefits, this makes it a
poor choice to recommend to someone completely
new to programming. International Scheme: As a
Lisp, Scheme is a very flexible and expressive
language—allowing Scheme code to modify syntax
directly. This has given rise to translations of
schemes distributed as libraries, one of which is the
International Scheme [37] - an open-source
collection of translated keywords. Existing error

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 193 Volume 10, 2025

messages cannot be translated using the library,
which is a big drawback. Apart from the ergonomics
of the programming language itself, certain specific
tools give languages an edge over others when it
comes to overall developer happiness and
experience. Some important ones should be
evaluated to measure their impact.

Table 1: Comparison of the non-English-based
programming languages

2.3.3 Q&A Software

Q&A software facilitates discussions that aim to
answer user-provided questions around a specific
topic or inter-est. They commonly occur on or are an
integral aspect of an internet forum—a discussion
website where people communicate in written
messages. They typically focus on a field or industry
so that specialists have a place to meet and build
knowledge in that domain. Some of the most popular
Q&A sites are the Stack Exchange family of sites,
the biggest of which are (Stack Exchange, 2024):
Stack Overflow (https://stackoverflow.com/) which
focuses on “professional and enthusiast
programmers” (23m users). Super User
(https://superuser.com/), targeted toward “computer
enthusiasts and power users” (1.6m users). Ask
Ubuntu (https://askubuntu.com/), for “Ubuntu users
and developers” (1.5m users). These Q&A sites have
a large amount of programming-related content
flowing through them daily—more than 2400
questions are asked on Stack Overflow alone daily,
which makes it an invaluable resource whenever
developers get stuck with a problem relating to a
piece of code. Any new programming language
would benefit from being featured on a good quality
Q&A site, but adapting them to a multilingual
audience would be an arduous task as they have
mostly been designed English-first—so far, since
2013, only three additional Stack Overflow sites
have been made, for Spanish

(https://es.stackoverflow.com/), Portuguese
(https://pt.stackoverflow.com)

2.3.4 Build Automation Utilities

As a codebase increases in complexity, manually
invoking command-line tools to build and test
binaries can become complicated, with many
command-line options. Make, one of the earliest
build automation tools was inspired by a developer
spending an entire morning looking for the source of
a bug he had already fixed but forgot to recompile
due to the sheer size of the project [38]. As
computing has become even more complex, tools
like CMake, Cargo, and Meson have stepped in to
fill the gap but complaints have arisen at how
complex they can be to set up initially and efforts are
being made to simplify the process [39].

3 Methodology
The proposed system is an interpreter that translates
source code for a multilingual programming
language called “Lingo” into executable programs
that should be able to be natively executed on users’
computers. The languages supported by this system
include English, Fran¸cais (French), Igb`o, Hausa,
and Yor`ub´a, with keywords, error messages, and
functions available in each of the four of them. Lingo
is inspired by Lisp, with modified syntax to facilitate
multilingual interaction. A quick overview follows:

(i) All statements are delimited by parentheses:

(ii) Keywords have equivalents in multiple
languages:

(iii) Variables can be declared with the use of the

let keyword and associated types and
values:

(iv) Functions can be created with the return type,
arguments, and body:

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 194 Volume 10, 2025

https://pt.stackoverflow.com/

(v) Adding double semicolons on top of a
variable or function declaration allows aliases to be
specified in other languages:

3.1 Data Collection
The system’s dataset comprises mappings of
localized keywords and diagnostic messages to their
internal representations. These keywords and
messages are sourced from various sources,
including but not limited to, native speakers, Google
and Microsoft translation services, and localized
media. These mappings are stored as TOML files in
source form, which are then integrated into the
interpreter itself.

4 Discussion
The proposed system is divided into several
modules, each responsible for a specific task. The
modules and their interfaces are detailed in the
sections. Figure 4 shows the proposed system called
Lingo, the architecture comprises:

Figure 4: System Architecture Diagram for the

Lingo
 Command-line interface

The command-line interface is the primary means by
which the user interacts with the system. It allows
the user to input source code, interpret it, and run the
resulting executable. The interface also displays
messages meant for the user’s consumption, such as
localized error reports and progress information.
Lexer

Lexer is responsible for tokenizing the raw source
code to make subsequent processing easier. It reads
the source code character by character and converts
it into meaningful tokens that can be understood by
the parser. logos was used to define the lexer for the
proposed system which results in extremely fast
lexing due to its various performance improvements
over na¨ıve lexing such as combining all token
definitions into a single deterministic state machine
and unwinding all loops as shown in Figure 5. This
lexer utilizes various dialect definition tool files to
allow languages to be added at ease to the
interpreter.

Figure 5: A snippet of the lexer definition for the
proposed system:
Parser

The parser is responsible for constructing an abstract
syntax tree (AST) from the tokens produced by the
lexer. It checks the tokens for conformance to the
rules of the language and constructs a tree that
represents the structure of the source code. Figure 6
shows the parser for the proposed system was
implemented using the Chomsky parser generator
for Rust, which allows for the definition of grammar
in a concise and readable manner.

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 195 Volume 10, 2025

Figure 6: parser definition for the proposed system

Semantic analyzer

Figure 7 shows a snippet of the semantic analyzer
which is responsible for checking the AST for rule
violations by analyzing the source code in a context-
sensitive manner. It finds logical errors, such as the
use of an invalid type/value combination, and
annotates the parse tree with this information. The
semantic analyzer for the proposed system was
implemented as a series of functions that traverse the
AST and perform the necessary checks.

Figure 7: Semantic Analyser Snippet

Intermediate Representation Generator

The intermediate representation (IR) generator is
responsible for transforming the annotated parse tree
(APT) into an IR, a platform-agnostic language-
independent instruction set. This IR allows for
highly efficient optimizations with a variety of
transformations, to make the best use of hardware.
The intermediate representation generator for the
proposed system was implemented as a series of
functions that traverse the APT and generate the
corresponding IR bytecode as a shows Figure 8.

Figure 8: Intermediate representation generator for
the proposed system

Optimizer: The optimizer performs operations on
the IR to increase the performance and quality of the
generated code. It analyses data flow in the program
and utilizes various heuristic techniques that have
been solved for NP-Hard optimization problems.
 Code generator: code generator finally translates
the improved IR to the target language the machine
code of the processor—along with ensuring it is in a
format that can easily be executed by the user.

Error Reporter

The error reporting module is responsible for
providing informative and actionable error messages
to the user. It analyses the source code and the
annotations in the APT to detect any possible errors
and generates messages that help the user understand
and fix the issues. in Figure 9 shows error reporting
module for the proposed system was implemented as
a series of functions that traverse the APT and
generate the corresponding localized error
messages.

 Figure 9: Error Reporting Snippet

4.2 Evaluation of Result
Performance: Lingo was found to have comparable
performance to the Hedy,Hapy, and International
Scheme as seen in Table 2. Babylscript was
consistently 4-10 times faster than equivalent-
looking Lingo code as it utilizes advanced
performance features of various browser engines
such as Speculation [40]. This is not to say that
language usage was sluggish, typical interactions at
the REPL took less than 2 seconds, but running code
in a tight loop took a big hit performance-wise. This
gap can potentially be shortened by the integration
of ahead-of-time and just-in-time compilation
techniques into the interpreter, as well as the use of
more advanced optimization algorithms.

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 196 Volume 10, 2025

Beginner Friendliness: Lingo was found to be more
beginner-friendly than Hapy and International
Scheme. The syntax of Lingo was designed to be
easy to learn and understand, with a user-friendly
command-line interface and informative error
messages to help users understand and fix issues
with their code. Various evaluators commented on
how the existence of localized errors helped them
grasp and fix problems faster than when they had to
read everything in English. Babylscript was also
beginner-friendly, but its reliance on preexisting
knowledge of Javascript syntax made it less
accessible to novice programmers. Hedy excelled in
this regard, as it was designed to be an educational
tool for beginners. Its documentation and tutorials
were considerably more fleshed out than Lingo’s
which, being still in development, was more of just
a reference.
Extensibility: Lingo allows for the addition of new
languages through the use of dialect definition
TOML files. This makes it easy to extend the system
to support additional programming languages. Hedy,
in contrast, specifies that translations should be
contributed to through their Weblate instance. The
use of a website for translations as opposed to a more
programmatic approach has pros and cons, the
significant ones being the website is more accessible
to possible volunteers while giving up a more
programmatic approach such as allowing user-
defined translations in files. If possible, future work
on Lingo could consider integrating a similar system
to allow for more crowdsourced translations while
still keeping the advantages of the TOML file
approach. Babylscript also supports multiple
languages, but it requires users to manually specify
the translations for each keyword and function,
which can be time-consuming and error-prone.
Lingo was evaluated against existing systems to
determine its effectiveness and efficiency in solving
the issue of the language barrier. The systems
compared were Hedy, Hapy, Babylscript, and
International Scheme due to their similar text-based
natures. In addition to this, several English-speaking
bilingual university students were informally
interviewed after they used the system for a twenty-
minute session. The testing methods and criteria are
detailed below: Performance: Equivalent programs
to generate the stopping time of the Collatz sequence
for the first 1000 natural numbers were made and
timed. The results are shown below in Table 2.

Table 2: Collatz Sequence Number Generation
Benchmark

Language Time taken (ms)-
Averaged over 10
runs

Babylscript 35

International
Scheme

169

Lingo (proposed

system)

181

Hapy 190

Hedy 202

Beginner-friendliness: The 7 interviewees were
walked through the language and were shown its
basic capabilities in both their native languages and
English. They were then asked to rate the learning
experience in both languages and whether or not
having the keywords and errors localized helped
during the native language round. The results are
shown in Table 3.

 Table 3: Interview Results

Question YES NO

Was the quality
of the English
error reporting
good?

7 0

Was the quality
of the alternate
language error
reporting good?

5 2

Was the language
shown to be
capable and ready
for release?

2 5

Would you add a
new language to
the interpreter?

2 5

Was the language
shown to be
capable and ready
for release?

1 6

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 197 Volume 10, 2025

Extensibility: The difficulty of adding a new
language’s keywords to these languages was
evaluated by inspecting their repositories and
websites. Hedy was unable to be evaluated with
thiscriteria because it does not support language
extensions. The results are shown in Table 4.

Table 4: Extensibility of Evaluated Languages

5 Conclusion
The implementation of the proposed interpreter
along with the design of the Lingo programming
language shows that this proof-of-concept is viable
and further work should be done in this area of study.
By applying efficient compiler design techniques,
the interpreter can efficiently and accurately execute
source code and give informative localized user
feedback. Based on the results of the evaluation,
Lingo meets the requirements set forth at the
beginning of the study. It provides a beginner-
friendly environment, supports extensibility, excels
in localization, and promotes collaboration among
users, making it a great solution for overcoming the
language barrier in programming. However, the
addition of some quality-of-life features like an
easier-to-use translation interface, better guides, and
text-editor integration would further improve the
language and make it even more welcoming to
newer users.
Some recommendations for the future of the study
and further work on programming language design
in the area of localization and accessibility. They
include: Increased focus on localization efforts: The
study only focused on four languages for the initial
implementation. Future work should expand this to
include more languages, especially those with non-
Latin scripts, as well as provide a web interface to
reduce the effort needed by potential volunteers.
Better localized documentation and tutorials: The
study did not cover the localization of extensive
documentation for the language—just settling with a
reference in the various languages offered. Future

work should look into this to ensure that users can
learn programming concepts with the use of Lingo
in their native dialect, no matter their skill level. As
the world gets more digital, the language barrier only
serves to reduce the number of potential computer
programmers who could make a difference in the
industry. This means that the industry is missing out
on a lot of potential talent that could be contributing
to the field. The proposed system—one that can take
source code written in a multilingual programming
language and execute it on a user’s computer, as well
as provide localized error messages to help users
understand and fix any issues with their code—is a
step in the right direction to bridge this gap and make
programming more accessible to a wider audience.
The repository containing the code for the
implemented language can be found at https://
codeberg.org/fumnanya/lingo.

References:

[1] Weik, M. H. (1955, December). A Survey of
Domestic Electronic Digital Computing
Systems.
https://ed‑ thelen.org/comp‑ hist/BRL‑ e‑ h.h
tml#ENIAC

[2] Gunter, B. (2019). The Prevalence of Mobile
Phones in Children's Lives. Children and
Mobile Phones: Adoption, Use, Impact, And
Control, 25–34.
https://doi.org/10.1108/978‑ 1‑ 78973‑ 035‑
720191006

[3] Turon, A. (2015). Fearless Concurrency with
Rust. The Rust Programming Language
Blog.https://blog.rust‑ lang.org/2015/04/10/Fe
arless‑ Concurrency.html

[4] Donovan, A. A., & Kernighan, B. W. (2016).
The Go Programming Language (pp. 280–281).
Addison‑ Wesley.
https://doi.org/10.5555/2851099

[5] Sommerfeld, H. (2021). Use a US Keyboard for
Programming. Henrik Sommerfeld's
Blog.https://www.henriksommerfeld.se/use‑ a
‑ us‑ keyboard‑ for‑ programming/

[6] McCulloch, G. (2019). Coding Is for
Everyone—as Long as You Speak English.
https://www.wired.com/story/coding‑ is‑ for‑
everyoneas‑ long‑ as‑ you‑ speak‑ english/

[7] Goguen, J. A. (1975). Semantics of
computation. Category Theory Applied to
Computation and Control.
https://doi.org/10.1007/3‑ 540‑ 07142‑ 3_75

[8] Stack Overflow. (2023). Key territories: Stack
Overflow DeveloperSurvey 2023.
https://web.archive.org/web/2/https://survey.st

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 198 Volume 10, 2025

ackoverflow.co/2023/#developer‑ profile‑ key
‑ territories

[9] Abdalkareem, R., Shihab, E., & Rilling, J.
(2017). What Do Developers Use the Crowd
For? A Study Using Stack Overflow (Vol. 34,
pp. 53–60). https://doi.org/10.1109/MS.
2017.31

[10] Price, T. W., & Barnes, T. (2015). Comparing
Textual and Block Interfaces in a Novice
Programming Environment. Association for
Computing Machinery.
https://doi.org/10.1145/2787622.2787712

[11] Rymer, J. R., & Richardson, C. (2015).
Low‑ Code Platforms Deliver
Customer‑ Facing Apps Fast, But Will They
Scale Up?
https://web.archive.org/web/20240404121723/
https://www.forrester.com/report/

[12] Aaby, A. A. (2004). Introduction to
Programming Languages. https://web.archive.
org/web/20121108043216/
http://www.emu.edu.tr/aelci/Courses/D‑ 318/
D‑ 318‑ Files/ plbook/intro.htm

[13] Dragoni, N. (2014). Introduction to P2P
Computing (p. 2–3). http://www2.imm.dtu.dk/
courses/02220/2017/L6/P2P.pdf

[14] Colburn, T., & Shute, G. (2007). Abstraction in
Computer Science. Minds and Machines, 17(2),
169–184.
https://doi.org/10.1007/s11023‑ 007‑ 9061‑ 7

[15] O'Regan, G. (2008). Computer Programming
Languages. In A Brief History of Computing
(pp. 73–102). Springer.
https://doi.org/10.1007/978‑ 1‑ 84800‑ 084‑
1

[16] Saxon, J. A., & Plette, W. S. (1962).
Programming the IBM 1401, a
self‑ instructional programmed manual.
Prentice‑ Hall.
https://babel.hathitrust.org/cgi/pt?id=mdp.

[17] Kernighan, B. W., & Ritchie, D. M. (1978).
Preface to the first edition. In The C
Programming Language (2nd ed., p. 8–9).
Prentice‑ Hall.
https://books.google.com/books?id=FGkPBQ
AAQBAJ

[18] Perlis, A. J. (1996). Foreword. In H. Abelson,
G. J. Sussman, & J. Sussman, Structure and
Interpretation of Computer Programs (2nd ed.).
https://web.archive.org/web/20010727170154/
http://mitpress.mit.edu/sicp/full‑ text/book/bo
ok‑ Z‑ H‑ 5.html

[19] GNOME (2023). GNOME
Languages.https://web.archive.org/web/20230
829184045/ https://l10n.gnome.org/languages

[20] Axtens, B. M. (2024). HOPL. http://hopl.info/
[21] Bob Nystrom (2021). A map of the territory.

https://github.com/munificent/
craftinginterpreters/blob/cf221a107ac185c1d6
ebd02324179934714c2538/site/image/a‑ map
‑ of‑ the‑ territory/mountain.png

[22] Benidris, M., & Ammar, H. (2018). The
Correlation between Arabic Students' English
Proficiency and Their Computer Programming
Ability at the University Level. International
Journal of Managing Public Sector Information
and Communication Technologies, 9.
https://doi.org/10.5121/ijmpict.2018.9101

[23] Rust Survey Team. (2023). State of Rust
Annual Survey 2023.
https://blog.rust‑ lang.org/
2024/02/19/2023‑ Rust‑ Annual‑ Survey‑ 20
23‑ results.html

[24] Miranda, A., & Pimentel, J. (2018). On the use
of package managers by the C++open‑ source
community.
https://doi.org/10.1145/3167132.3167290

[25] Kuhail, M. A., Farooq, S., Hammad, R., &
Bahja, M. (2021). Characterizing Visual
Programming Approaches for End‑ User
Developers: A Systematic Review. IEEE
Access,9, 14181–14202.
https://doi.org/10.1109/ACCESS.2021.305104
3

[26] Translatewiki. (2024). Localisation statistics
for the Blockly core module.
https://translatewiki.net/wiki/Special:Message
GroupStats/out‑ blockly‑ core#sortable:3=des
c

[27] Scratch Team. (2024). Scratch Statistics.
https://web.archive.org/web/
20240229194506/https://scratch.mit.edu/statist
ics/

[28] Hague, J. (2013). Why Do Dedicated Game
Consoles Exist? Programming in the Twenty-
First Century.
https://prog21.dadgum.com/181.html

[29] McIntyre, D. B. (1991). Language as an
intellectual tool: From hieroglyphics to APL.
IBMSystems Journal, 30(4), 554–581.

[30] Morgan‑ Mar, D. (2008). Piet.
https://dangermouse.net/esoteric/piet.html \

[31] Segun‑ Lean, E., & Wuta, S. (2021b). Hapy:
Hausa Programming Language
[Computersoftware].
https://github.com/hapy‑ lang/hapy

[32] Hedy Team. (2021). Hedy: Textual
programming for the classroom.
https://www.hedy.org/

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 199 Volume 10, 2025

[33] Hermans, F. (2020). Hedy: A Gradual
Language for Programming Education. ICER
'20: International Computing Education
Research Conference.
https://doi.org/10.1145/3372782.3406262

[34] Gilsing, M., & Hermans, F. (2021). Gradual
Programming in Hedy: A First User Study.
2021 IEEE Symposium on Visual Languages
and Human‑ Centric Computing (VL/HCC).
https://doi.org/10.1109/VL/HCC51201.2021.9
576236

[35] Iu, M.‑ Y. C. (2012). Babylscript: Multilingual
Javascript. Companion to the 26th Annual
ACM SIGPLAN Conference on
Object‑ Oriented Programming, Systems,
Languages, And Applications, OOPSLA 2011,
197–198.
https://doi.org/10.1145/2048147.2048204

[36] Adriano Torres, Caio Oliveira, Márcio
Okimoto, Diego Marcílio, Pedro Queiroga,
Fernando Castor, Rodrigo Bonifácio, Edna
Dias Canedo, Márcio Ribeiro, & Eduardo
Monteiro. (2023). An Investigation of
confusing code patterns in JavaScript. Journal
of Systems and Software, 9.

[37] Isakovic, A. (2020). International Scheme
[Computer software]. https://github.com/
metaphorm/international‑ scheme/

[38] Raymond, E. S. (2003). The Art of Unix
Programming.
http://www.catb.org/esr/writings/taoup/html/

[39] Bartlett, R. (2022). A new CMake Scripting
Language?. https://www.osti.gov/servlets/purl/
2003320

[40] Pizlo, F. (2020). Speculation in
JavaScriptCore.
https://webkit.org/blog/10308/
speculation‑ in‑ javascriptcore/

Jemimah Nathaniel, Mowete Fumnanya Kavan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 200 Volume 10, 2025

