

Enterprise Transformation Projects-A Generic Data Storage Concept-

The Implementation (GDSCI)

ANTOINE TRAD
Transformation Projects

IBISTM
Paris La-Defense

FRANCE

Abstract: Data and Data-STorages -Base (DST) related technologies support and enable the implementation
of common, technical, and business requirements, transformational-changes’ activities, and enterprise-wide
evolution. This evolution is a long-term and well-planned evolution that has to predict major risks. These major
transformation-initiated disruptions need a GDSCI [1,36], because most enterprises and organizations (simply
Entity) are DST-Centric (DSTC), but such Entities use and apply different types of DSTs. Therefore, Entities
must implement Entity transformation projects (simply Project) that enable profound changes and at the same
time abstract by unifying of DSTs and their DataSets (DS). A GDSCI depends on and results from a robust and
performant Digital-Transformation’s (DT) phase (known as Digitization) that depends on the hyper-evolution
of various types of technologies, employees’ Polymathical-skills, and clients’ demands. Projects are very
complex and their implementation-teams must be capable of implementing a GDSCI that results in a concrete
and sustainable DSTC and GDSCI. The GDSCI offers a set of applicable-DST management-patterns and
building blocks that are used by the Project and is also used for Day-to-Day (D2D) Automated Development
and Operations (ADevOps) activities, like managing DST Models (DSTM) [2]. As the GDSCI and its
implementation (the GDSCI) are critical for Projects and Digitization, there is a need to use existing legacy
components and to offer workable-patterns to interface external modules. This article will try to present such
DST-management patterns and show how they can be implemented using the latest avant-garde technologies
and an adequate Enterprise Architecture Models (EAM) and approaches.

Key-Words: Data-Storages, Data-Bases, DSTC implementations, GDSCI, Mathematical-Models, Artificial
Intelligence, Business and Common Transformation Projects, Weightings-Concepts, Polymathical Information
Systems, Meta-Models, Enterprise Architecture, Enterprise Agile-Methodologies, Organizational
(re)engineering, Factors, and Indicators.

Received: April 11, 2024. Revised: December 22, 2024. Accepted: January 16, 2024. Published: April 9, 2025.

1 Introduction

Dynamic Entities and competition force them
to change and transform their Distributed

Communication Systems (DICS) fast and adapt to
new challenges and realities, where there is the
need to completely (re)think their DICSs, GDSCI,
DSTs, Project-based strategies, business models,
(re)structure their organizational-models, review

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 33 Volume 10, 2025

working models, and transform their information-
platforms, and design models concepts. Projects
are very complex, because of the lack of structured-
generic approaches, heterogeneous Information
and DICS modules and environment(s), various
types of (in)compatible DSTs systems, fast and
unnecessary DICS hyper-evolution, chaotic
combination and relations of different APplication
Domains (APD), and the lack of adoption of
Polymathic-concepts, like the GDSC4AI [1,36],
and GDSCI which and use a DST-first-approach
[39,40]. DST-first-approach is also compatible
with Code-first-approach, and Polymathics
privilege interdisciplinary approaches for Projects’
and GDSC4AI’s implementations, which in this
work is based on the GDSCI and Mathematical
Models (MM). The Project and GDSCI use (the
author’s) Applied-Holistic and Polymathical MM
(AHMM) for GDSCI (AHMM4GDSCI), which is
mainly used for DSTs’ and GDSCI’s modeling and
integrity-validity checks.

The AHMM4GDSCI supports the Polymathic
Enterprise MetaModel (PEMM4D) for DST
(PEMM4D), Projects, and common modules. In
this section the author makes a summary of the
RDP and the implemented sections of the
Internally Implemented (II) Polymathical
Transformation (IIPT) Framework (IIPTF) and the
previously developed modules. II is also referred to
an In-House Implementation (IHI).

1.1 The IIPTF and its Parts

The IIPT Sections (IIPTS) are the following
(shown in Fig. 1): 1) Is implemented to support
Projects; 2) It uses a real-world IIPT Platform
(IIPTP); 3) It is described using the IIPT Case
(IIPTC); 4) It offers sets of Blocks (like patterns)
in the context of the II IIPT Blocks and (compound)
Patterns (IIPTB); 5) It offers the IIPT Dictionary
(IIPTD); and 6) It offers a concrete implemented

IIPT Environment (IIPTE).

Fig. 1. The IIPTS.

A Project needs the IIPTS that includes:

 The IIPTB delivers sets of Blocks (like
patterns), and standard EA methodologies
artefacts, like The Open Group’s (TOG)
Architecture-Framework (TOGAF).

 The IIPTC describes a Project’s typical
Applied Case-Study (ACS) that can be in
Conceptual Proof of Concept (CPoC).

 The IIPTD is a basic Project-dictionary.
 The IIPTE offers a real-world

implemented Environment (that is
implemented using Microsoft .NET).

 The IIPTF manages the Project and
abstracts various DICS-technologies and
related methodologies.

 The IIPTP presents the Project’s
heterogeneous DICS-platform(s) and
infrastructure.

For the GDSCI all the mentioned sections need
to be implemented.

1.2 The GDSCI and the IIPTB

The IIPTBs usage depends on the orientation
and the approach that was chosen, like:

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 34 Volume 10, 2025

 GDSCI (or the DST and DST-first-
approach) and DST Compound Patterns
(DSTCP) are this article’s another
important focus.

 DSTCPs contain needed DST-access or
repository-patterns.

 Adopts the Code-first-approach that
automates DST’s manipulations and
modifications.

 The classical and recommended IIPTF
Methodology (IIPTFM), CModels, EA
Methods, and Design-first-approach are
automated and refined.

 ….

For the GDSCI, CModels (and especially
ERMs and UMLs) are developed to make them
available for EA-Specialists.

1.3 Disassembling, Blocks, IIPTFM, and Views

Fig. 2. IIPTB’s categories of Project patterns.

Disassembling processes deliver Building

Blocks (BB), Composite BBs (CBB), Compound
Design Patterns (CDP), and DICS’ artefacts (like

Services) that are the gluing substance which
creates the future DICS and its major components
like DSTs’ interfaces and avoid the classical siloed-
approaches that result in major Very High Failure
Rates (VHFR). The Entity’s Disassembling
Processes (EDP) is a series of unbundling (or
Disassembling) processes that transform and
change: Monolithic (or legacy) DICS’ resources,
DST(s) structures, DICS’ and DSTs’ administration,
Data-Assets/Resources, Applications (and related
Services), Business Processes (BP) Modelling
(BPM), and Interaction (internal/external)
scenarios. An EDP shown in Fig. 2, generates
repositories of reusable/heterogenous CBBs which
are applied for modelling Architectural BBs (ABB).

EDPs encounter problems, complexities, and
resistances when interacting with various
implementation and transformation components
like GAP Evaluations (GAPE), Polymathic/Rating,
and Weighting-Concept (PRWC)... [35]. The IIPTF,
GDSCI, and GDSCI use the IIPTF, IIPTFM, and
the Polymathic Transformation Development
Method (PTDM) to synchronize and coordinate
CBBs, generated-Blocks, and patterns that are
applied for implementing APD’s architecture,
modeling, and implementation activities. The
IIPTFM supports CPDs to be used by the Project
and standard methodologies, like TOGAF, Unified
Modelling Language (UML), Domain-Driven
Design (DDD), Entity Relational Modelling
(ERM)… There is a critical need to align various
types of methodologies and frameworks [28],
where the Project results in a pool of DSTCPs and
common-patterns; these patterns can have the
following views: Static, Methodological, or
Dynamic [1], as shown in Fig. 2. A successful
Project results in a pool of Blocks that are the base
of Ready to Transform (R2T) patterns [32,33,36].
The IIPTB includes the description of Project’s
(and Entity’s) used categories of CPDs:

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 35 Volume 10, 2025

 Basic Standard-Patterns.
 PEMM4D-Patterns.
 DST and Data-Management Patterns.
 API-Patterns.
 AI-Patterns.
 CPDs’ Interfaces.
 Project Transformation-Patterns.
 …

For the GDSCI, CPDs are modeled, designed,
and implemented (this is considered as the
methodological view). In this view and phase a
DST Oriented Integrated Development
Environment (DOIDE), the DOIDE includes
libraries and DST modules for a GDSCI Oriented
Framework (GDSCIOF).

1.4 Using the GDSCIOF

The GDSCIOF like Microsoft’s Entity
Framework (MEF) includes and supports [42]:

 The Dynamic Object Relational Mapping
(DORM) enables developers to work with
Relational DSTs (RDST) using APD-
specific classes/objects, as shown in Fig. 3.

 Maps to the central Distributed Model
View Control (DMVC) pattern.

 Reduces sources-code’s volume(s).
 Is based on Microsoft’s ADO.NET which

supports DST-oriented software
applications and requirements’ mapping-
mechanisms.

 Abstracts the applied DST (rows and
columns) in which data are persisted.

 Uses dynamic-concepts (Give-life) to
models: APD-model, Logica- model, and
Physical-model.

 The Code-first-approach, applies a Data
Conceptual-Model (DCM) which is
mapped to a DST-models found in
Project’s source-files.

 Interfaces Project’s DST-Modelling
environments, the applied DCM, the data-
persistence-model, and needed maps.
These maps are implemented using
eXtensible Markup-Language (XML)
Schemas (XMLS).

 The Tuple Data Model’s case-
environments generate dynamic In-
memory DataSet (IDS)/data-types (like a
class) which are founded on the DCM.

 Using the Mapping-Specification-
Language (MSL) that is used to map data-
storage-elements and DCMs.

 Mapping types (or a class) to IDS/data that
reflect the RDST’s table structures.

 Enables the access/change DST’s entity
data.

 Enables the interaction between DICS’
client IDS-Providers and connections, to
convert DCM-Queries to data-sources
Queries, and outputs usable IDS.

 Entity Framework Architectural Diagram
that includes data-providers, links to
various types of patterns like
infrastructure-patterns…

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 36 Volume 10, 2025

Fig. 3. MEF’s components [42].

For the GDSCI the MEF is used as a layer for
all DST and DSTCPs implementations.

1.5 The Infrastructure and Other Support-

Patterns

The needed infrastructural-patterns include the
following sets of CDPs to wrap:

 Operating Systems (OS) integration and

management, like Unix (and Linux),
Windows, Windows System for Linux
(WSL), Containers...

 A Cloud platform components’ interfacing
mechanism.

 Messaging frameworks, like Kafka.
 …

The Project must establish a GDSCI and has
to check its feasibility and analysis of the
platform’s integration [1].

1.6 GDSCI’S Outcomes

This section presents GDSC4AI’s analysis

outcomes [1,36], in which CSAs’ Data-Objects
Weighting and Rating Enumerator (CDOWRE)
ranges-limits is shown in Fig. 4.

Fig. 4. The CDOWRE’s values.

The most important outcomes were [1,13,29,36]:

 Modules like the PRWC, GAPE, GDSCI,
were used.

 The transformed DICS improves data-
quality and Factors’ evaluations.

 Using a previous professional Project in
which an international insurance company:
transformed the legacy DICS into an
XML-based Object Mapping System
(OMS).

 A third and actual ACS is related to the
transformation of the legacy system using
GDSCI, DSTCPs, and other types of
CDPs; which can be considered as a P4TT-
based project. P4TT is DST-centric and
was done for the Ministry of Education in
the European Union.

 A CDP ensures that multiple DICS
components work together to perform a
unique task.

 Processing and estimating CSA_DTs,
applies that the GDSC4AI uses
Intelligence (and PRWC/Factors) whose
results are shown in Table 1, and using the
CSA_DT’s CDOWRE that is shown in
Fig. 1.

 Selected Factors were related to a targeted
node of the HDT.

 Table 1 presents GDSCI’s Phase 1 results
that propose that it is “Feasible”.

 Uses relationships that link the GDSCI,
requirements, Blocks, Factors, and Global
Unique IDentifiers (GUID).

 Phase 2 or the “Solving a Concrete
Problem-type” phase showed how to solve
a real-world problem-type.

For the GDSCI and GDSC4AI, the CSA_DTs

showed that DST and DSTCPs implementations
are “Feasible”. And it is recommended to refer to
the GDSC4AI work [1] for more information on
the mentioned phases.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 37 Volume 10, 2025

Table 1. The RDP’s outcome is (rounded) 8.80

[1,36].

1.7 Implementation Phases and Categories

GDSCI’s main phases and actions are [1,36]:
 Finalizing EDPs that deliver CBBs,

Blocks, basic CModels...
 Implementing DSTCPs’ Catalogues,

Dictionaries, and repository of Blocks.
 Integrating DST/Data-Modelling to

generate CModels, by using
methodologies (and IIPTFM).

 Integrating embedded DICS/system data
sources, which are block box tools.

 Interface and integrate CDPs like AI
patterns.

 Implements a pseudo Strangler-pattern.
 Apply model-transformation DPs.
 Integrate DSTCPs with other CDPs.

For the GDSCI the repository of CBBs and
CModels is ready.

2 GDSCI’S Implementation

2.1 Basic and Previous Implementations

The Project adopts and II which is an Anti
Locked-in Strategy (ALS) tries to define a GDSCI
based concepts, strategies, and defined goals to
support the Entity’s activities related to business,
DST/data-management, and DICS’ autonomy from
commercial solutions. Therefor there is a need to
respect market-standards and to try to use its own
loose coupled ALS DSTCPs; which is basis for

Project’s patterns. A Project has to try avoid the
usage of various redundant standards and
conventions, and has to try to build its II unique
CModels and EA approach in order to support its
long-term ALS. The Project-team selects the
applied set(s) of main and necessary patterns’
types, to develop DSTCPs. That invokes various
Project’s critical-requirements, and offers
implementation’s generic-concept that is based on
patterns (and types) and are classified in
categorized-groups. As already mentioned, the
GDSCI and GDSC4AI (and related modules) were
implemented in previous professional-projects like
[29,36]:

 Patterns for Transformation Technics
(P4TT)-DSTC Centric Patterns.

 Building an XML based OMS.
 Various Projects that used Object DORM

Framework (DORMF) like MEF.
 And many others.

All these implementations are RDST and
DSTCPs based; and support II and ALS
implementations, solutions, and concepts which
can be iteratively changed/transformed in the
Entity’s internal (or external) DICS, without the
need to use colossal-investments in buying and
trying to integrate external commercial-products.
RDSTs and GDSCI support Projects, because
RDSTs are used in all DICS DST-accesses,
operations, and subsystems. RDST’s evolutionary
architecture is assisted by Real-time (RT)
traceability, which is a real challenge for Projects
and its team; and in the same time traceability is
used for D2D-operations. For such Projects and
transformation-phases a possible solution would be
to implement a PEMM4D-based RDST’s
architecture. Such and architecture is generic and
evolutive, uses patterns which maintains DICS’
Blocks traceability; in fact the Blocks that are
involved in RDST’s execution, maintenance, and

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 38 Volume 10, 2025

development processes.
RDST’s architecture is generic and

independent of specific modelling-techniques and
it includes a specialized component(s) that are
devoted to persisting and translating conceptual
schemas to logical-schemas. These DICS’
components, various types of modifications that
are done to conceptual-schemas, and are traced,
without the need to (re)generate original-schemas
to go back to initial-stages. And afterwards to
propagate these modifications to the physical and
extensional-levels [10]. RDSTs contain the needed
meta-data/information, structures, integrity-
checking mechanisms, PEMM4D’s relations,
usage of an AHMM construct, and the definition of
the Project’s vision and the related levels-of-
granularity [1,35].

2.2 Project’s Vision and Levels of Granularity

The Project’s needed vision and levels-of-
granularity imply that [30,31].

 The need to apply an atomic BB
architecture that adapts easily to actual
dynamic DICSs, DSTs, and supports
Entities’ business and operational
activities.

 Fierce competition needs a loosely-
interconnected GDSCI that operates in a
wide-networked business-environment.

 An Entity needs a robust DICS and DST
system, in order to ensure its sustainable
business-goals and critical-transactions.

 GDSCI based transactions adapt easily to
very frequent business (and common)
transformation’s change-processes.

 Levelling to such cases Blocks-based
solutions support GDSC4AI and GDSCI’s
actions, but they have to define the optimal
levels-of-granularity.

 A BB and Blocks-based Project’s goals
and implementation strategies (for highly
frequent changes) demands sets of
GDSC4AI and GDSCI activities that
support Entity's resources-management.

 The Project is decoupled in the phases of
design, implementation or re-engineering.

 A fundamental architectural requirement
and constraint is to have an automated and
agile DICS platform that is supported by
the IIPTF and which can generate
CModels.

 The IIPTF and IIPTFM include various
categories of patterns that can be Just-In-
Time (JIT) implemented.

 The IIPTF proposes an atomic DICS
architecture's vision, concept and applied
sets of patterns which are of strategic value
for the Project’s implementation phase.

 Transformed patterns are used in a JIT-
way, by using Blocks.

 The Project must implement a controlled
governance concept for DICS
architecture's patterns and DSTCPs; but
that is a very complex process…

 The transformed repository of patterns,
catalogues, and dictionaries is needed for
the EDP(s).

For the GDSCI the vision and levels-of
granularities are defined and implemented in
CModels.

2.2 Entity’s Repository of Patterns, DST-

Catalogues, Dictionaries, and EDPs

Projects use CDPs like the DMVC, which is a
popular and central pattern, and it offers interfaces
to DST’s data-models, CModels, and CBBs. The
DMVC is used to decouple [20]: 1) Data-models,
CModels, and the targeted APD; 2) View, phase or
presentation-layer; 3) Controller of messages and

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 39 Volume 10, 2025

other; and 4) Interfaces REpresentational State
Transfer’s (REST) Create, Read, Update, and
Delete, (CRUD) calls-operations. These CRUD-
operations are: POST, GET, PATCH, and DELETE.
CDPs abstract CModels, EA artifacts, software-
engineering sources, business-engineering
implementations... There are various ways to
implement Holistic CDPs (HCDP) that inherit the
Holistic Enterprise Architecture Pattern (HEAP),
which can include used patterns to support
GDSC4AI, GDSCI, and DST’s data-catalogues
[32,32]. Projects have various insights on siloed-
data-sources and have to leverage DST’s IDSs as
central artefact (or resource). DST’s Data-catalogs
support such activities like metadata-management.
DST’s IDS-catalogues calls-function as an
interface (and indexed) and which is searchable for
DST’s IDS/data; which ensures successful IDS’
searches. Efficient search-functionalities are
integrated into DST’s data-catalogs that enable
Project’s data-engineers in finding requested IDSs
or data-objects [18]. Such operations are complex
and therefore, it is recommended to use the
DORMF like the MEF which includes the
following capabilities [24,32,33]:

 Schema changes that include changes to:

Table name, Column types, Delete/merge
columns, Using and removing views,
Changing RDST’s data-types, Changing
DST’s interfaces, and many other features.

 Linking RDSTs pointers, GUIDs, or
relational-keys to Object Oriented (OO) or
CModels relations, enabling software-
refactoring and EDPs…

 Managing DSTs’ data timestamps.
 Enables DST’s data-values

transformations.

 Automating tests for GDSC4AI and
GDSCI’s and asserting-successful
orchestrations.

 Synchronization between OO Models
(OOM), ERM, CModels, and class-
diagrams.

 To use HCDP as a basic-construct for
classifying and implementing CModels
and more sophisticated patterns; and
asserting a Polymathical approach for
Projects’ implementations.

 The HCDP is founded on precisely
designed CDPs, and the patterns-models.

 The HCDP based CModel is applied as a
structure for JIT CBBs’ creation and the
creation of different types of Projects’
modules (and components).

 An HCDPs-based IIPTFM offers Blocks,
like in engineering APDs, and that support
flexible, and complex Projects.

 Complicates Projects, need to create a
common-denominator-pattern, to integrate
standard and external patterns. The HCDP
is GDSCI’s and GDSCI’s backbone.

 Blocks, HCDPs, DSTCPs, catalogues
support DST’s data-modelling and to
generate CModels and diagrams.

For the GDSCI the HCDPs and CModels were
implemented and tested.

2.3 DST’s Data-Modelling Diagrams

There are various approaches for data-modelling
[24,25,26]:

 Unifying OOMs, ERMs and ER Diagrams
(ERD), and class-diagrams, by using
IIPTFM and generating CModels.

 An ERM and ERD describe interrelated
OOM’s tables and are composed of

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 40 Volume 10, 2025

various object formats/types and
relationships.

 DSTCPs use ERMs and ERDs to represent
OO artifacts for various types of HCDPs
and abstract data-modeling and used
interfaces.

 DSTCPs use DST/data-architecture
Viewpoint that includes different
conceptual views; like the Data
Dissemination View (DDV).

 DDVs show relationships within the
DSTCP’s: 1) IDS/data classes; 2) APD
IDS/data blocks; and 3) Modules’ Blocks.
Which enables a flexible architecture of
DST/data sources.

 Diagrams like the Data-Migration-
Diagram (DMD) show the inter-flow of
IDS/data between DICS’ various DST’s
IDSs and sources; it is also used to view
Project’s IDS/data audit and traceability
maps.

 The Data-Security-Diagram (DSD)
presents the Project’s actors’ roles needed
for DST/data-transformations.

 Interfaces to embed various types of
DST/data-sources.

EDPs contain rules that use calculus of
refinement-processes that deliver CModels that
include data-models and HCDPs like the state
pattern that is used in DST activities [43]. An EDP
and related refinement-processes, include
integrated DST/data-sources. For the GDSCI,
DST’s data-models CModels were implemented
and tested.

2.5 EDPs and Integrated DST’s Data-Sources

CModels interface various (internal and

external) modules, components, and
methodologies, by using DSTCP’s interface-

patterns, which enables mappings to business,
information, application, and infrastructure layers
and artefacts/elements, like [39,40]:

 For business-interfaces actors, roles,
components’ processes (and functions),
and events are used.

 For application-interfaces process
components, like the Configuration
Management System (CMS), service
Knowledge Management System (SKMS),
or Availability Management Information
System (AMIS), are used.

 For infrastructure we have the DSTs like,
the Configuration Management Databases
(CMDSTs) or the Known-Error-DST
(KEDST)…

 There are also interfaces like the business-
objects, data-objects and DST-artefacts;
which are used as interface-Blocks. And
they are associated by using service-
concept.

 To implement CModels frameworks can
be used, like OOM, UML, or Archimate.
These models can be extracted.

 GDSC4AI and GDSCI refinement-
processes use existing HCDPs like the
Stangler-pattern.

For the GDSCI, DST’s data-sources were
integrated.

2.6 The Strangler-Pattern

To avoid VHFR and very agile Projects, an

evolutionary approach is optimal. A well-
synchronized agile-approach is necessary for the
iterative GDSC4AI and GDSCI implementations.
Evolutionary approaches focus on targeted
components and then refine them; which is a safe
iterative replacement of legacy components. The
proposed iterative and well-designed approach

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 41 Volume 10, 2025

offers an evolutive GDSC4AI and GDSCI based
Project roadmap and plans’ controls possible.
Managing GDSCI problem-types, by reducing the
Project’s risks that are linked to frequent-changes.
That in-turn promotes a value-back-approach for
Entities in offering agile-delivery of innovated-
features, this process is recommenced up to the
complete transformation of legacy components.
Ensuring that they are sufficiently mature to be
used and to replace this monolith-legacy
component. Such a concept is a standard concept;
and was incented and applied by Chris Stevenson
and Andy Pols. Another pioneer, Martin Fowler,
applied the Strangler pattern and hammered it as:
“The Strangler Application”; which strongly
impacts the GDSCI. The crucial concept is to
unbundle-break legacy monolithic modules into
atomic of smaller chunks. Such a breakdown needs
precise design and architecture activities; which it
result in a light/smooth change and transformation
processes and which improve Entity's sustainable
business results and solve ever-changing Project
problems and requirements.

Fig. 5. The Strangler pattern [21].

Such an HCDP requires that the Project

includes can unbundle-transform monolith-legacy
DICS’ parts and components, by [7,16,21]:

 Continuous (and gradual) evolution
of monolithic modules to services
architectures by applying the
strangler-pattern, as shown in Fig. 5.
The roles of incremental-EDPs and
refactorings of DSTs, DSTs, and
associated software-components, are
determinants.

 EDPs extract code and DST-
interfaces blocks: This approach is
based on copying bits of sources-code
around in the transformed
component, which is the default
modus. This modus or option can
generate problems, issues like bugs,
from the legacy DICS.

 Rewriting DICS’ capability: Initially,
this approach is an expensive
approach compared to copying
source-code, but there are advantages
of rewriting by capability, which
improves the Return On Investment
(ROI).

 Event-tapping: Is also known as
Event-interception, in which DICS’
event-driven-components (or
capacities) are tapped-in to the collect
and stream of events. Then it begins
to implement (or replaces) call-back-
functions for the captured-events.
This HCDP also enables the
implementation of parallel-DICSs to
ensure Entity’s business-continuity.

 Asset-capture: Where each module or
component manages a set of
functional or common objects (or
assets), like, user-accounts, different
types of transactions, historical-
records, or product-orders. The
transformation DICS’ capability of

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 42 Volume 10, 2025

managing Entity’s assets
independently by using the strangler-
pattern-based Blocks.

 Service bubbles: Almost the majority
of DICS’ applications, services, and
components use/consume sets of
APIs. Therefore, the Project team
explores EDP’s chunking and
refactoring of DICS’ legacy
monoliths into a service-architecture
concept.

 The Branch-by-abstraction-pattern which
was developed to solve problem-types that
result from long-lasting changes on DICS’
components without the Project’s
disruptions.

The Strangler-pattern based strategy checks
the Entity’s capabilities, to transform the legacy
DICS and DSTs, and to create small Strangler
based services. These services encapsulate the
behavior and logic of all capabilities in loosely
coupled CModels that use Models for
Transformations (M4T) by using HCDPs
(M4THCDP). For the GDSCI, the Stangler-pattern
was implemented and is assisted by the M4THCDP.

2.7 The M4THCDP

M4THCDPs have the following characteristics
and constraints [14]:

 Includes a HCDP-language that can inter-

relate various types of patterns, as shown
in Fig. 6.

 Includes a repository and catalogue of
common, and standard CDPs which are
applied by team-members, and includes
directives, descriptions, and application
templates.

 The mentioned catalogue includes:
Fundamental M4T-patterns, which are
common patterns to be used by DICS’
applications in various APDs, Project
domains, and M4T-languages, and are
specialized in other M4T-patterns.

 Modularization-patterns, are patterns that
are used for (re)structuring and the
decomposition of DICS’ modules.

Fig. 6. Interaction of various M4THCDPs [14].

 Optimization-patterns are used to improve

the Project’s transformation activities and
efficiency.

 Model-to-Text (M2T) patterns, are
specialized-patterns for documenting
transformations’ activities.

 Expressiveness-patterns provide technics
to expand and improve M4T-language’s
capabilities.

 Architectural-patterns identify methods to
(re)organize DICS’ components and
subsystems.

 Bidirectional-transformation-patterns
propose techniques for implementing
categories of transformational-patterns.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 43 Volume 10, 2025

For the GDSCI, the M4THCDPs were
implemented and is assisted by the global HCDP.

3 Integration of the Global HCDP

3.1 Basics

The Global HCDP (GHCDP) that is applied to
change DST’s schema, DSTCPs, and to
refine/refactor associated software-components
when the DICS’ receives a static (or dynamic)
change-request.

Fig. 7. The DSTRR [19].

The GHCDP supports Projects in the following
activities:

 Is applied in methodological, static, and

dynamic, transformation-activities: 1) In
Methodological-phase(s), CDPs are
designed and implemented by using
IIPTFM’s defined notations, like OOM,

UML, or Archimate; 2) Static-activities
refers to classical-implantations of CDPs;
and 3) Dynamic-activities refer to the
injection of CDPs.

 Automated DST-based transformations
using CDPs.

 By using existing frameworks and
concepts, like the MEF, and related IDSs
or Datatables, which can be easily
refined/refactored.

 Using the DMVC-pattern to map and
refine: 1) M-variables; 2) V-variables; and
3) C-variables.

 GHCDP-based transformations based on
refactoring and refinements.

 PTDM, ADevOps, and Project’s
implementation’s activities
synchronization.

 And other components’ related activities.

DSTCPs support continuous and synchronized
DSTs’ based-transformations, integration-activities,
and agile-implementation activities. They offer
abilities to change DICS’ and DSTs’ components in
static (or in JIT-runtime). DSTCPs support also
continuous-activities that enable Project-teams to
refine DSTs’ artefacts, like source-code; this is
considered a Polymathical concept of refactoring
and refinement of DSTs. The mentioned facts
support the following GHCDP-based DST
transformation operations [9,19]:

 Verifying DST’s Refining and Refactoring

(DSTRR) statuses (if they are appropriate),
as shown in Fig. 7.

 Deprecate original-legacy DST-schemas
and apply testing scenarios.

 Modification of DST-schemas and the
migration of related DST’s source-data.

 Applying continuous ADevOps and the
integration of version-control systems.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 44 Volume 10, 2025

 Extracting and refining DST-scripts and
the automation of DST-schema’s creation
or modifications.

 The creation, removal, update, and reading
artefacts/objects in DSTs.

 The modification of external access
software-components and applying
regression-tests.

 The removal and (re)creation of DSTs
components by using ADevOps.

 To simplify DICS’ Project’s developers'
activities related to the manipulation of
DSTs.

 To integrate all ADevOps check-in and
naming Natural Language Programming’s
(NLP) scripts.

 Automating DSTs’ transformations NLP
script for creation activities.

 Implementing DSTs’ version-
control/checking, and deployment
processes, to support continuous-delivery
of transformed components.

 The mentioned Project’s operations need
the refinement and refactoring of legacy
software-components; which needs also to
refine CModels’ design without the change
their structure and semantics.

 DSTRR’s operations are light
modifications of DSTs’ schemas (which
are tables-structures, data-values, stored-
procedures, triggers…); which improve
CModels’ design without the change of its
semantics, and DICS’ performances.

 The DSTRR supports evolutionary
implementations of DSTs’ related
processes, using an iterative (and
incremental) approach that is coordinated
by the PTDM.

 DSTRR is riskier and more complex than
basic refactoring of software-modules,

because, it the DSTRR must maintain
informational-semantics and not just the
behavioral-semantics.

 GHCDP-based DST transformations,
mean that all DSTs modifications and
transformations are done through
GHCDPs.

 GHCDPs manage DST’s complex changes
and trace their impacts on quality of data,
and security, by using specific CDPs.

 GHCDPs manage DST’s statuses and
changes’ impacts on various types of
performances, availability, scalability...

 GHCDPs manage DST’s attributes
(columns and rows from ERM data-
sources) and various types of attribute
changes.

 GHCDPs manage DST’s data-values
transfers and related changes.

 GHCDPs manage DST’s DICS source-
locations changes.

Fig. 8. CPoC’s section for setting-up the basic

functionalities.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 45 Volume 10, 2025

GHCDP-based refinements include the following
activities:

 Synchronizing related DORM software
components and their refactoring.

 Related CModels, OOM’s class-
Diagrams, ERMs, EAMs, choreographies
(and BPMs), CDPs, and other models are
refined.

 Related CBBs and services’, Blocks and
APIs are refined.

 CModels (and other)
relations/associations, pointers, and DST’s
GUIDs (or keys) are refined.

 DSTRR supports relations (and
associations) in Project’s transformation-
processes.

As shown in Fig. 8, the CPoC basic parts were
implemented using Microsoft Visual-Studio
and .NET (MVSNET). For the GDSCI, the DSTRR
and MVSNET were setup.

3.2 Relations-Associations, and DSTRR

As elements like CModels, CBBs, Blocks, and

other, are refined and refactored, their relations and
associations (and other types of links) are also
refactored and refined. The DSTRR applies
processes which use CDP-based technics for
refactoring to refine [6]:

 Association, links, pointers, and
relationships.

 OOM’s various types of relations like in
programming-languages like JEE, C/C++.

 Programming-languages artefacts like
C/C++ pointers and classical-structures.

 The refactoring of 2nd and 3rd generation
programming-languages like COBOL,
ALGOL, PLI…

 DST’s GUISs, keys and Views.

 NoSQL based DSTs and their OO-
relations.

 Programming-languages JIT compilations.
 …

For the GDSCI, the DSTRR was used to refine
relations and associations.

3.3 The DSTCP, GHCDPs and Views

The DSTRR, DSTCPs, and GHCDPs are

applied to refine CDPs like the DMVC pattern. It
ensures also its integration, and when a change-
request (or event) is issued. The transformed
artefacts and elements are:

 Artefacts specific to the View (Static,

Dynamic, or Methodological) and
quantifies possible impacts and
implications.

 The DICS, EA/IIPTFM, and
cartographies/BPMs are dynamically
generated, implemented, and maintained.

 All related CModels are refined.
 All related cartographies/BPMs are

refined.
 The integrated CBBs, Blocks are refined.
 Interaction and evolution of DMVCs.
 ….

For the GDSCI, the Views were setup to
abstract various DSTs’ data-sources.

3.4 DSTCP’s and DMVC’s Integration and

Interactions

DSTCPs are used to modify and change the

DMVC-pattern, when an event is captures. The
transformed artefacts are:

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 46 Volume 10, 2025

 The DORM (or in this case the MEF)
synchronizes DMVC, CPDs,
CModels/ERMs, and OOM related
changes (and associated software-
components).

 DORM/MEF, IDSs and Data-Tables are
refactored.

 DMVC-pattern’s mapped M-variables are
refactored.

 DMVC-pattern’s mapped V-variables are
refactored.

 DMVC-pattern’s mapped C-variables are
refactored.

 DST’s attributes (column and/or rows) are
refactored and changed.

 DST’s data-values transfers are
implemented.

 DST’s attribute-formats are changed.
 Related DORM software-components are

refactored.
 CModels like ERMs, are refined.
 ...

MEF supports DMVC’s, DSTCPs, and
CModels (ERMs and OOMs) integration and
interactions. MEF is inspired from DORM and
supports the interactions between DMVC, DST(s),
and OOM software-components.

Fig. 9. The EndClientConfiguration class.

It is a combination of model-first, code-first, or
DST-first approaches; but it is nevertheless a
classical DST-ERM concept and sets of features.
MEF is a framework that support routine DST-
operations, migrations, and complex
transformation-activities. These transformational-
activities are tuned to automate-changes and to
avoid data-losses, because during DSTRR
operations (like refactoring and refining) data-
values are lost and wrongly modified.

MEF models DSTs in their actual-state(s), and
enable transformational-activities related to DSTs
in an iterative-manner. MEF’s API is adapted to the
code-first-approach and generates Plain Old Class
Objects (POCO) from DST(s) and by simply
accessing software-components, as shown in the
example in Fig. 9, which illustrates the creation of
a configuration-class which derives from the
EntityTypeConfiguration-class.

The transformation is applied by the MEF and

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 47 Volume 10, 2025

through its APIs:
modelBuilder.Entity<ClassName>().ToTable("D

STTableName", DSTSchema"). That is also one to

the Project’s codebases. For the GDSCI, the
DMVC pattern was applied in all the Project’s
codebases.

3.5 The DSTCP, Codebases’ and Platforms

Interactions

As mentioned, the DSTCP is a compound

pattern that modifies the DMVC-pattern, when
receiving change-request (or event). And the
transformed artefacts and elements are:

 Codebases are refactored.
 All related CDPs are refined.
 Error-management is modified.
 All types of CBBs, Blocks, CModels, and

APIs are refined.
 ADevOps is synchronized and adapted.
 Estimates DST’s changes impacts on

DICS’ security, performance, and
availability...

 …

For the GDSCI, the codebases and platform
interactions were optimized.

4 Global HCDPS In APDs

4.1 The Enterprise Application Architecture

Patterns (EAAP)

EAAPs are sets of pattern-groups that are

applied to design Entity’s activities; and these
groups are [11];

 Domain-Logic Patterns: Are associated
with Transaction-Script, Domain-Model,
Table-Module, and Service-Layer.

 Data-Source-Architectural-Patterns: Are
associated with Table-Data-Gateway,
Row-Data-Gateway, Active-Record, and
Data-Mapper.

 Object-Relational-Behavioural-Patterns:
Are associated with Unit-of-Work,
Identity-Map, and Lazy-Load.

 Object-Relational-Structural-Patterns: Are
associated with Identity-Field, Foreign-
Key-Mapping, Association-Table-
Mapping, Dependent-Mapping,
Embedded-Value, Serialized-LOB,
Single-Table-Inheritance, Class-Table-
Inheritance, Concrete-Table-Inheritance,
and Inheritance-Mappers.

 Object-Relational-Metadata-Mapping-
Patterns: These are associated with
Metadata Mapping, Query Object, and
Repository.

 Web-Presentation-Patterns: Are associated
with MVC, Page-Controller, Front-
Controller, Template-View, Transform-
View, and Two-Step-View.

 Distribution-Patterns: Are associated with
Remote-Façade, and Data-Transfer-
Object.

 Offline-Concurrency-Patterns: Are
associated with Optimistic-Offline-Lock,
Pessimistic-Offline-Lock, Coarse-
Grained-Lock, and Implicit-Lock.

 Session-State-Patterns: Are associated
with Client-Session-State, Server-Session
State, and DST-Session-State.

 Base-Patterns: Are associated with
Gateway, Mapper, Layer-Supertype,
Separated-Interface, Registry, Value-
Object, Money, Special-Case, Plugin,
Service-Stub, and Record-Set.

For the GDSCI, the EAAPs were
implemented and they support the Enterprise

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 48 Volume 10, 2025

Design Patterns (EDP).

4.2 The EDP

EDP delivers sets of pattern groups that can be

used to design enterprise activities, and these
groups are [12]:

 Behavioural-Patterns: Are associated with

Human-Interest, Nurtured-Trust,
Powerful-Questions, Listening-to-
Understand, Hint, Tangible-Presence, and
Walking-Your-Talk.

 Practice-Patterns: Are associated with
Evidence, Outside-Inspiration,
Hypotheses and Validation, Wearing-
Their-Shoes, Dancing-to-Enterprise
Rhythms, Corporate-Politics, Focus, Shift,
Refocus, Just-Enough-Design, and
Unintended-Consequences.

 Creations-Patterns: Are related to Human-
Languages, Captured-Cases or Stories,
Depicting-Shared and Understanding,
Moments In-time, Toolkits-Sparking-
Change, Beauty, Tangible Futures, and
Management Instruments.

 Entity’s DICS(s) and its software
components transformations use the
strangler-pattern.

For the GDSCI, the EDPs were designed and
implemented; and they support CModels and
EAMs for different APDs.

4.3 CModels and EAMs for APDs

For a long period decades XML based

architecture models were dominant in various
APDs like in finance, insurance, education, and
other. The XML based models were used to
transform Entity’s legacy-DICS and create XML

based OMS that supported [29]:

 The integration-inclusion of DORM,
PPM/ERM, DSTCPs, and DSTs related
transformation-scenarios.

 GDSCI for classical client-server-
architectures created a deep shift in avant-
garde DICSs associated domains.

 The transformation and then replacement
of legacy-monolithic mainframe-based
DICSs into CBBs and CModels-based
DICS were deployed across different
platforms.

 Stateless DST/data objects represented by
XML-strings supported agile EAMs.

 Stateless DST/data objects (in various
formats) unbundle DICS’ applications into
independent CBBs, EAMs, and CModels
that interact across Entity’s DICS-
network(s), using adaptable interfaces.

 The OMS-based architecture template
supports EAM practitioners, architects,
and designers in transforming the DICS.

 Supports CModels-based Distributed
Transactions Patterns (CDTP).

For the GDSCI, EAMs and CModels were
designed and implemented; and they support the
integration of CDTPs.

4.4 Integrating CDTPs

CDTPs use CBBs-based CModels, but is a

complex approach because how can a Project
manage CDTPs across multiple DICS-nodes and
accessed platforms. The solution is to apply
DSTCPs and GHCDPs. When GDSC4AI and
GDSCI are used in a DICS to support the CDTP as
shown in Fig. 10.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 49 Volume 10, 2025

Fig. 10. A CDTP Sequence [41].

Legacy transactions in legacy-DICS have to be
converted in CDTP which is a multiple sequence of
CBBs, like in the case of EndClient’s order
example. This example illustrates the context of a
legacy-DICS as shown in Fig. 10. CDTP use the
Two-Phases-Commit (2PC) that: 1) In phase 1:
Prepares commit-operations; and 2) Is the commit
phase. In the preparation-phase, all CDTPs (and
associated CBBs) enable DST/data-change(s) that
are done with an atomic-level-of-granularity.
When all CDTP are ready, the commit-phase
directs CBBs to execute the changes. These
operations need to control and hence they are
centralized, therefore, the Project sets up ADevOps
coordination for maintaining CDTPs’ lifecycle,
and to managed requested CBBs (in both phases
preparation and committing) [41]. To perform
CDTPs’ transformations, the Project must prepare
DSTCPs and other CDPs the Saga-pattern, as
shown in Fig. 11; the Saga-pattern offers [38]:

 A CBBs-based architecture and CModels,

which support the DST-per-service
concept. Which enables that each APD (or
functional domain) service use a DST
which best-serves the associated CModels
or ERMs.

 The atomic DST-per-service concept, and
DSTs (or DSTs) can be integrated and
scaled independently.

 If the DST fails (or is locked), then the
failure is isolated from other CDTPs and
related CBBs.

 CDTPs’ integration is very complex
because the related transformational-
processes need to perform parallel-
transactional-operations, so, CDTPs have
to be Atomic, Consistent, Isolated, and
Durable (ACID).

 Atomicity (a term related to granularity) is
a set of operations that can happen
simultaneously (or none).

 Consistency for CDTPs transfers IDSs
from one valid state to another state.

 Isolation enables concurrent CDTPs to
produce same IDS’ state which can be
executed-sequentially.

 Durability supported CDTPs committing
operations and that they remain consistent
and credible when errors happen or when
DICS fails.

 ACID in a single-service, is not a
complicated-issue; but when applying
CDTPs across various DICS-nodes, then
CDTPs becomes difficult to manage.

 CDTPs require that all its tasks and related
CBBs, to commit (or roll back) before that
all related operations can continue; and all
types of DSTs support such features.

 A DICS’ Inter-Processes-Communication
(IPC), allows separate-processes to share
DST/data, and in this case, CDTPs are then
ready to commit.

 An optimal-approach is to implement
standard-patterns like the Saga-pattern,
which enables DST/data-management and

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 50 Volume 10, 2025

consistency across CDTPs and related
scenarios.

 A Saga is a consistent set of CDTPs that
update IDSs and then they publish
messages (or events) to trigger the next
operation. If any operation fails, Saga
performs a compensating action that rolls
back the preceding CDTP that has
succeeded.

 CDTPs are mainly ACID-transactions and
that has to be taken into account when
using the Saga-pattern.

 CDTPs are single-unit-of-work which is a
set of operations. In a CDTP, events
change states on DST conditions and
commands-capture all DST/data required
to execute an action on a DST-object.

 The Saga-pattern use sets of local
transactions (or transactions called from a
CBB); where each of these local
transactions modifies the DST, and then
emits messages (or event) to trigger the
next local-transaction in the saga.

 When local transaction has errors or fails,
the service within Saga executes a
compensating transaction that undoes
previous changes.

 Compensating CDTPs are in fact
transactions which that be reversed by
launcher other CDTPs.

 Implementing pivot-transactions, when
committed, then saga persists running until
CDTPs related processes finish. These
CDTPs cannot be stopped (or
compensated).

 Retriable CDTPs come after pivot-
transactions, and are committed to
succeed.

 Saga-patterns use choreography (or
orchestration-operations).

Fig. 11. The Saga pattern [38].

For the GDSCI, Saga-patterns were designed

and need a set of choreographies.

4.5 Choreography Operations

The GDSCI and its related CBBs and DSTCPs

can coordinate CDTPs and sagas, as shown in Fig.
12, and they support the events-exchange without
the using a single centralized point-of-control.

Fig. 12. Choreography activities [38].

Each legacy local-transaction publishes APD

related events which trigger CDTPs in other
business-activities. This concept is optimal for
basic-workflows that use limited sets of CDTPs or
CDPs in the Saga-pattern and they should not be
coordinated. In the same time it does not use the
Single Point of Failure (SPF) approach, because
related responsibilities are distributed across saga,
and choreography’s implementations do not need
extra- CBBs’ implementations, integration, or

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 51 Volume 10, 2025

https://media.dev.to/cdn-cgi/image/width=800,height=,fit=scale-down,gravity=auto,format=auto/https:/dev-to-uploads.s3.amazonaws.com/uploads/articles/d0cxmynz9r3ciu1y8q7m.png

maintenance efforts.
However, complex CModels and GHCDPs’

integration are difficult to track with Saga-nodes
(or participants). For that there is the need to listen
to all commands, and each CBB in the saga
depends on each other and in Project cycles; since
they need to consume each other's tasks, and
commands. Integration-testing becomes complex,
as all CBBs and CDPs will need to be executed to
simulate CDTPs [38].

For the GDSCI, choreographies were
designed and need a set of orchestrations.

4.6 Orchestrations Implementations

Another possibility is to coordinate Project’s

sagas, by applying a central-controller that
manages (and controls) needed CBBs and CDPs.
These CBBs and CDPs are used by sagas and are
executed by CDTPs; and they support the
following operations, as shown in Fig. 13 [38]:

 The orchestrator manages-handles all

CDTPs and informs all used CBBs and
CDPs in sagas, which operations they need
to execute (and that depends on the
received-events), and in the same-time
interprets the each task’s state, as well as
handling-errors and failures with
compensating CDTPs.

 Such a concept is optimal for workflows
that have many CBBs and CDPs in sagas,
and when it is upfront CBBs and CDPs that
more CBBs and CDPs will be coupled (or
added).

 Cyclical dependencies must be removed
(they are problematic for choreographies),
because orchestrators depend on all
participants in sagas.

 Used CBBs and CDPs in sagas have no
information about other CBBs and CDPs,
and they insure the separation-of-concerns.

 Unfortunately, this fact introduces more
complexity, as CBBs and CDPs
implementations require coordination, and
insert additional point-of-failures, because
orchestrators manage workflows.

 EAM and CModels support the
implementation of Saga-patterns, which
are complex in Project’s implementation
phase.

 CDTPs are not local, but are distributed,
which is hard to coordinate and manage.

 Saga patterns are complex and hard to
debug and test, as the more CBBs and
CDPs are added, and the complete concept
can become complex.

 DST/data cannot be rolled-back in Saga-
pattern because CBBs and CDPs commit
changes to their local DSTs.

 EAMs are used to handle transient errors
and failures; while idempotency are used
to handle DST/data-consistency.

 The used sagas can potentially be made-up
of sets of CBBs and CDPs, and there is the
need to implement other components to
observe all used CBBs and CDPs and
ensure the ability to track the workflows
used by the implemented sagas.

 Saga-patterns become complicated when
having DST/data-durability problems or
issues, like unfound-updates, dirty-reads,
and non-repeatable reads can occur within
sagas.

 Implementing semantic-locks,
pessimistic-concurrency, versioning, and
commutative-update to reduce errors and
anomalies.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 52 Volume 10, 2025

 It is important to know when and where to
use the Saga-pattern, like in the case of
ensuring data consistency in EAMs or
DSTCPs, or when there is a roll-back or
compensate operation related to a CBBs
and CDPs, and the Saga-pattern supports
both operations.

 But, if there are cyclic dependencies
CDTPs, CBBs and CDPs, tightly coupled
CDTPs or compensating CDTPs that can
happen in earlier phase of a CBB in a Saga-
pattern-based workflow, then the Project
should use alternatives.

 DSTCPs interface Saga patterns in 2 ways.
 DSTCP enforced by a Saga-pattern can

support complex fields like AI
Subdomains (AIS).

Fig. 13. The Saga pattern orchestration [38].

For the GDSCI, orchestrations were designed

and need a set of AISs.

4.7 AIS’s Integration

The GDSCI and GDSC4AI offer an II

interfacing-concept for DICS, IDSs, and DSTs’
components; and they systematically use DSTCPs
that are applied all AISs. Where AISs are
integrated in various APDs and are critical for
Entities. But AISs are complex and actually
Machine Learning (ML) is just a field in AIS. To
support Project’s and GDSCI’s clear and structured
use of AI Models (AIM), EAM, CModels, CDPs,
and efficient-implementation techniques,
standardized Blocks support the reuse in IIPTFM
modelling and design activities that in turn use
DSTCPs in AISs to improve traceability and
Polymathic system design. The most popular
DSTCPs for AISs are [23]:

 A Pattern is defined as a proven and
established structure or template for
solutions for recurring design problems
that modeled in a DICS agnostic format.

 The idea of patterns originated from
building architecture, and has been
adopted by DICS practitioners, like GoF.

 CDPs abstract AIS-experts’ knowledge
and enable design-decisions. There are
many existing CDPs sets for AIS, and
some of them are unique CDPs used for
AID.

 Common, standard patterns, and CDPs, are
supported by patterns like the Adapter,
Factory method, Observer, Strategy and
State.

 It is effective for Entities that require
tailored CSPs-based AIS solutions.

 GHCDPs can be used for various AISs
like, Data Analytics (DA), Data Sciences
(DS)…

 DSTCPs enables design adaptability, by
promoting modular AIS that is
dynamically-reconfigured and improves
problem-solving performances.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 53 Volume 10, 2025

https://media.dev.to/cdn-cgi/image/width=800,height=,fit=scale-down,gravity=auto,format=auto/https:/dev-to-uploads.s3.amazonaws.com/uploads/articles/xk3wub7lz4h6lmgm94ty.png

 Using generic and unified engines like
Apache Spark Ecosystem (ASE) [3,4,5].

For the GDSCI, needed AISs were designed

and need a generic and unified engine.

4.8 Generic and Unified Engine

Using a generic and unified engine like the

ASE can support II DST and AIS-based solutions
and have various features like [3,4,5]:

 Batch management and streaming large-

volumes of data.
 Manages DSTs processing in scripts,

batches, and enables real-time-streaming.
 Applying existing programming-

languages like: C++, Python, (No)SQL,
Scala, JEE or R.

 SQL-analytics supports and the run of fast,
clustered ANSI-SQL queries for filling
dashboards and JIT reporting.

 More efficient than other data-warehouses.
 Supports DA/DS with scaling and

Exploratory DA (EDA) on voluminous
IDS/data without the need for down-
sampling.

 Supports ML, DL, and related training-
processes (enforced with algorithms) and
enables the use of the same components to
scale to fault-tolerant clusters of a huge
number of DICS nodes/servers.

 Supports ANSI-SQL and to use the
specific editor SQL.

 Offers a distributed-SQL-engine for large-
scale DST/data-management.

 Offers an adaptive-query execution to plan
at runtime, such as automatically setting
the number of reducers and join
algorithms.

 Supports structured and unstructured-data,
that interfaces structured-tables and
unstructured data such as JSON or images.

 Uses IDSs which is a distributed collection
of data; and offers the Resilient Distributed
IDS (RDIDS).

 The RDIDS offers strong typing, ability to
use powerful lambda functions with the
benefits of Spark SQL’s optimized
execution engine.

 An IDS can be constructed from JVM
objects and then manipulated using
functional transformations (map, flatMap,
filter…).

 The IDS API is available in Scala and Java,
but Python does not have the support for
the IDS API.

 RDIDSs facilitate global-refactoring
processes.

 All previously mentioned activities need a
global-EDP.

For the GDSCI, needed AISs were designed
and need a generic and unified engine.

4.9 Global Refactoring Processes-The EDP

The EDP and its global refactoring ane

refinement processes support applications and
DSTs refinements by [15]:

 Applying fast-evolution (changes) of
software and DST-components and their
implementations; are Project issues during
Project’s phases; and has important
impacts on all Project’s lifecycles.

 The evolution’s of severity depends on the
frequency-of-changes which has to be
adapted to the Project’s realities and
DST’s components that can be impacted.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 54 Volume 10, 2025

 Refactoring is a popular-practice in OOM
and DORM based DICS for evolving the
software and DST-components and
EAMs.

 The evolution of DST-schemas and
DST/data is autonomously developed from
unbundled-components, such changes
have impact on applications.

 DORM complaint frameworks like MEF
support the propagation of the evolution
from an application to a DST. But such
frameworks are not capable of solving
complex refactoring cases nor they migrate
data (values) properly as shown in Fig. 14.

 The problem of applications’ modules and
DSTs transformations and evolutions has
to be taken from a technical-viewpoint and
the formal-model of applications’
refactoring processes and their impacts are
shown in Fig. 14.

 The Project’s implementation uses a model
of a persistence layer, which can be
transformed into a model of a DST-
schema; or directly into a DST-schema.

 The needed-changes of application’s-layer
can be represented as a sequence of
transformational-steps.

 These transformational-steps affect the
structure of the application-layer and/or
DST-schema.

 This article (and its CPoC) shows how
these transformational-steps are used, not
only for a structural-changes, but also for
an automatic-dynamic generation of
DST/data-migration-scripts.

 Basic-refactoring-processes and cases are
complex ones and are created as sequences
of the basic-refactoring-steps.

 Capabilities of the proposed formal-
models are common-refactoring-patterns.

 The evolution of the Entity’s software-
modules is based on atomic-
transformations specific for each software-
modules.

 The GDSCI instructs how refactoring-
processes are used to change software-
modules.

 The basic-iterative and evolutionary-
transformation of software-modules is
based on basic evolution of an application-
module.

 GDSCI’s analysis impact(s) application’s
refactoring on DST-schemas and DST/
data.

 Basic-transformations of application-
modules and DST, are done on basic-
refactorings.

 The GDSCI assures structural-safe-
changes of application-modules and DST
data-safe migration of DST-schemas and
data.

 The GDSCI proposes a set of models and
transformation-rules; and that allows to
simulate the variants of possible
transformations-steps.

 The application-modules (or source-code)
and DSTs co-evolution, improve the
capabilities of DOIDEs and improves
implementors-efficiencies.

 The impact of advanced and refactoring-
processes on DSTs and stored DST/data,
are evaluated by the automated-co-
refactoring-processes that is possible for
basic and complex-changes of an
application- modules.

 Project-team members are wary about
complex-refactoring-scenarios, but due to
the fact that hand-crafting of mappings is
not necessary in most cases (mainly related
to associations is used as the mapping

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 55 Volume 10, 2025

function), the proposes model shows
advantages over hand-made migration-
scripts.

 Capabilities of defined transformations is
limited, because of the focus, which is on
DST data’s preservation or
transformation-concatenation.

 GDSCI-related transformations are
capable of handling many refactoring-
cases and are verified by using EDP’s
refactoring statistics (and choosing
transformations’ influencing-data).

 Refactorings common-cases are: 1)
Renaming, is the most used refactoring-
operation; 2) Move refactoring is used in
DOIDEs to move-properties from a class
to another-class within an inheritance
hierarchy or to move classes-between
software-modules; 3) Extracting-classes is
an often-used refactoring DOIDE’s
operation; 4) Moving-fields between
classes; and 5) Replacing data-values with
objects values is a refactoring-case and
process.

Fig. 14. Components related evolution-processes

[15].

All mentioned operations are supported by a
framework like ASE’s RDIDS which is presented
in the CPoC. This section presents the roadmap that
enables Projects to avoid major-problems like

performance. For the GDSCI, needed EDP
refactoring processes were executed and there is
the need to manage performance barriers.

4.10 Performance Barriers

Zzzz A major issue and problem for Projects
and DICS is the application of various typologies
that are based on a variety of CDPs, is the problem
of the end-DICS’s performance. That can be solved
by applying and iterative-method like the PTDM
combined with ADevOps; and by major iteration,
the performance of the end-DICS is evaluated.
That can be improved by using Distributed Digital
Integration Hubs (DDIH). As shown in Fig. 15, a
DDIH is an advanced platform architecture that
aggregates multiple-back-end sub-systems and
DSTs, in a low-latency and shared-unique DST.
The DST caches and persists IDSs dispersed across
various siloed-back-end DSTs. The DDIH makes
DSTs available to the end-system’s applications
through high-performance APIs. Applications
access the DDIH, by using API-service-layer and
enables important performance-improvements by
requesting DST/data from only one DDIH
interface to the distributed-store [3,4,5].

Fig. 15. The DDIH interaction with various DSTs

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 56 Volume 10, 2025

[3,4,5].

Gartner declares that the DDIH as an avant-
garde application architecture that aggregates
multiple back-end DICS of record DSTs, int a low-
latency and scale-out, high-performance DST. A
DDIH typically supports access to data via an API-
services-layer. The high-performance DST is
synchronized with the back-end sources by using
the combination of event-based, request-based, and
batch-integration-patterns, as shown in Fig. 16 [17].

For the GDSCI, evaluates need performances
levels.

Fig. 16. Gartner’s view on DDIH [17].

5 The CPOC

5.1 Setting Up Spark’s RDIDS for Complex

GDSCI Operations

ASE’s RDIDS offers virtual IDSs operations’

environment that supports GDSCI by [3,4,5,8,22] :

 Uses the Java Runtime Environment (JRE)
version for ASE’s integration.

 Setting-up MVSNET for ASE still that
uses also Java VM and NET-Spark runs on
top of Java runtime.

 Install Apache-Hadoop.
 Generic transformational-capabilities.
 The production of new RDIDS

(DST/dataframes/IDSs) from the
legacy/actual RDIDSs; where it inputs
RDIDS and outputs one or more
transformed RDIDSs.

 Inputted RDIDSs are static and cannot be
changed since RDIDS are immutable.

 Offering Narrow-Transformation
functions like map(), mapPartition(),
flatMap(), filter(), union()…

 Offering Wider Transformation like
groupByKey(), aggregateByKey(),
aggregate(), join(), repartition()…

 Offering actions that create RDIDSs from
existing-ones, and on them actions can be
performed, like collect(), count(), first(),
top()…

 That all supports complex GDSCI and
GDSC4AI operations in various APDs.

5.2 Complex GDSCI Operations for AISs

Complex GDSCI for AISs is based on [22]:

 Domains like Big Data Analytics and

other.
 The ASE is a generic, scalable analytical

DST data-engine that processes large-scale
-data in DICSs. And contains common-
interfaces for various languages like
Python, Java, Scala, SQL, R and
MVSNET (which is used in this CPoC).

 As shown in Fig. 17, ASE’s includes
various libraries, APIs and DSTs and
provides a whole (eco)system that

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 57 Volume 10, 2025

manages all sorts of AIS related DST/data-
processing and analysis capacities.

 ASE’s Core is the fundament of Spark that
is responsible for memory operations, job
scheduling, building and manipulating
data in RDIDSs…

 Supports In-memory Processing that
ensures that no time is spent moving DST
data or processes in or out to disk; that
makes Big Data Analysis (BDA) very-fast.

 Offers efficiency because it caches-
inputted-data in memory by using the
RDIDSs, which are fundamental-data
structures that support transformation-
processes and distributed-processing.

 Each IDS in RDIDS is partitioned
logically and each logical-portion are
processes on different DICS cluster
servers/nodes.

 Real-Time Processing supports streamed-
processing that supports DST/data
inputting and outputting in real-time.

 Offers a set of APIs to implement AIS
solutions.

 To setup for AISs like BDA in the context
of MVCNET environment.

 BDA is used in many APDs with colossal-
volumes of DST/data coming out from
billions of tweets, iMessages, Live
streams, Facebook and Instagram posts…
Terabytes (and petabytes) of data are
generated in minutes.

 Such volumes are not easy to handle and
the processing Big Data sets need to be
updated frequently. And therefore, for
BDA Entities use NoSQL DSTs, Hadoop
along, and various types of assisting
Analytics-tools like YARN, MapReduce,
Spark, Hive, Kafka…

 The mentioned environment and tools
make-up BDA’s ecosystem and cannot be
analyzed in one article.

Fig. 17. The ASE [22].

ASE’s architecture follows the driver-

executor concept, as shown in Fig. 18, where each
ASE-application has a driver and a set of workers
(or executors) that are managed by the cluster-
manager. The driver includes a user-program and a
spark-session. The session-controls user-program
and divides into smaller executable-chunks. Each
executor takes one of those atomic-tasks from the
user-program and executes it. The cluster-manager
manages the overall execution of the program.

Fig. 18. ASE’s architecture [22].

The CDTP uses an ASE-session to access

AISs and that is supported by a distributed-
processing environment.

5.3 Preparing Blocks to Use the GDSCI for

CDTP Operations

ASE and GDSCI based CDTP(s) can be

evaluated by the implementation of a concrete
ACS and context, and as shown in Fig. 19, CDTP’s

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 58 Volume 10, 2025

class-diagram, abstracts CDTP’s interactions in
Project’s context, and the used level of granularity
based on the ‘1:1’ mapping-convention.

Fig. 19. The atomic CDTP’s class diagram.

The logical-view of a series of transactions

based on the Service Oriented Architecture type or
approach was used as shown in Fig. 20, and the
consumption of an atomic web-service in a single
transaction. From the atomic business-transaction
activity-diagram, the resilience of events
exchanged during the transaction’s execution is
important.

Fig. 20. The CPoC’s CDTP.

All events are exchanged between various
DICS nodes require a strong encryption setting,
that are in the EAMs development phase. From a
technological-perspective, the atomic business-
transaction is composed of application-

components which are the fundamental business
CBBs of the DICS. A top-down combination of
TOGAF’s phases B and D resulted in the optimal
construction of a transaction, based on an atomic
web-services approach.
5.4 Block’s Generator

Fig. 21. The Blocks’ generator interface.

CBBs and Blocks’ generation, as shown in Fig.

21, produces the needed CBBs Blocks that aez used
by the GDSCI and DSTCPs. This CPoC assesses
GDSCI’s integration and has the following feature
and requirements: 1) To promote feasible DSTCPs
and GDSCI-strategy, and vision to finalize the
risky Projects and especially its implementation
phase; 2) To use external components like ASE;
and 3) To prove the application of ageneric
approach of the GDSCI. The CPoC was evaluated
through the implementation of ASE, GDSCI,
DSTCPs and a CDTP; and using MVSNET and
java development environments. The CPoC proved
that the GDSCI is feasible and that it is optimal for
GDSCI based Projects. The CPoC uses a Blocks
based CDTP that interfaces ASE’s RDIDS/IDSs
and in the mapping of artefacts, activities and tools
[30,31].

6 Conclusion

This RDP proposes a set of facts,

recommendations, patterns, and transformational
actions to support the implementation of IIPTF(M),
GDSC4AI, GDSCI, and DSTCPs for Projects, for
any APD type. The IIPTF and GDSCI use the

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 59 Volume 10, 2025

GDSCI, GHCDPs, DSTCPs, FMS, PRWC, GAPE,
and Factors to iteratively check Project’s feasibility
and possible VHFR; and because of the CPoC’s
successful termination, this article proposes the
following recommendations:

 IIPTF and GDSCI shows how to

implement an Anti-Locked-In (ALI)
transformation framework and related
DSTCPs and GHCDPs.

 This RDP uses a mixed concept
(qualitative and quantitative) and multi-
level-refinement; by using the EDP.

 The GDSCI PRLR proved the existence of
an important knowledge gap and the
reasons for VHFRs.

 The AHMM4GDSCI based HDT support
DSTRRs and GDSCI.

 Cross-functional/Polymathic skills are
needed.

 Projects need a GDSCI and such Projects.
 The GDSCI facilitates the integration of

IDSs, DSTs, and DSTMs.
 The IIPTF and GDSCI use and interfaces

existing frameworks, standards and
methodologies, like TOGAF, CModels,
ERM...

 The GDSC4AI and GDSCI use the DST-
first-approach-approach.

 The GDSCI uses DSTCPs, to interface
DSTs and enable architecture/design
activities.

 The Project has a pool of DSTCPs and
CDPs which can have the following views:
Static, Methodological, or Dynamic.

 The GDSCI is influenced by the Strangler
and Saga-patterns.

 DSTCPs are specific and specialized
GHCDPs which are used to change
DMVC’s integration elements.

 The GDSCI supports the CDTP.
 The Project can use a generic and unified

engines like the ASE.
 The ASE based CPoC or GDSCI checks

IIPTF and GDSCI’s feasibility.
 The IIPTF and GDSCI’s integration is

feasible.

References

[1] Trad, A. Enterprise Transformation Projects-

A Generic Data Storage Concept for Artificial
Intelligence (GDSC4AI). To be summitted.

[2] Tegborg, M. Keep your eye on the ball. 2024.
[3] Apache. Unified engine for large-scale data

analytics. Apache. 2024. https://spark.apache.
[4] Apache Spark. Apache Spark. Apache. 2024.
[5] Apache Ignite. Digital Integration Hub With

Apache Ignite. The Apache Software
Foundation. 2022.

[6] Ben Ammar, B., & Bhiri, M. Pattern-based
model refactoring for the introduction
association relationship. Journal of King Saud
University – Computer and Information
Sciences (2015) 27, 170–180. 2014.

[7] Bocanett, W. . Break the monolith: Chunking
strategy and the Strangler pattern-Build
decoupled microservices to strangle your
monolithic application. IBM, Tokyo Garage,
IBM Tokyo R&D Lab. Japan. 2022.

[8] c-sharpcorner. Spark RDD Operations. 2024.
[9] Datascientest. Refactoring Databases and

Code: comprehensive guide to the essentials.
Datascientest. 2023.

[10] Domnguez, E., Lloret, J., Rubio, A., & Zapata,
M.A. Medea: A database evolution
architecture with traceability. Data &
Knowledge Engineering 65(3), 419 – 441
2008.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 60 Volume 10, 2025

[11] Fowler, M., Rice, D., Foemmel, M., Hieatt, E.,
Mee, R. & Stafford, R. Patterns of Enterprise
Application Architecture. Addison Wesley.
2002.

[12] Goebl, W., Guenther, M., Klyver, A., &
Papegaaij, B. ENTERPRISE DESIGN
PATTERNS-35 WAYS TO RADICALLY
INCREASE YOUR IMPACT ON THE
ENTERPRISE. Intersection Group. Austria.
2020.

[13] Jonkers, H., Band, I., & Quartel, D.
ArchiSurance Case Study. The Open Group.

[14] KCL (2014). Model Transformation Design
Patterns IEEE Transactions in Software
Engineering. 2012.

[15] Macek, O., & Richta, K. Application and
Relational Database Co-Refactoring.
Computer Science and Information Systems
11(2):503–524 DOI:
10.2298/CSIS130610033M. 2014.

[16] Quan, L., Zongyan, Q., & Liu, Z. Formal Use
of Design Patterns and Refactoring⋆ T.
Margaria and B. Steffen (Eds.): ISoLA 2008,
CCIS 17, pp. 323–338, 2008. Springer-Verlag
Berlin Heidelberg. Germany. 2008.

[17] Pezzini, M. The Digital Integration Hub
Turbocharges Your API Strategy. Linkedin.
2018.

[18] Petrik, D., Untermann, A., & Baars, H.
Functional Requirements for Enterprise Data
Catalogs: A Systematic Literature Review.
Software Business. 14th International
Conference, DICSOB 2023. Lahti, Finland,
2023. November 27–29, 2023 Proceedings.

[19] Sadalage, P. Recipes for Continuous
Database Integration Kindle Edition. 2007.
Addison-Wesley Professional; 1st edition.

[20] Sidell, E.. Choosing the Right API Gateway
Pattern for Effective API Delivery. NGINX.
USA. 2020.

[21] Seifermann, V. Master Thesis: How to
Strangle Systematically-An Approach and
Case Study for the Continuous Evolution of
Monoliths to Microservices. Institute of
Software Technology. University of Stuttgart.
Stuttgart. Germany. 2021.

[22] Tahir, M. Big Data Analytics using Apache
Spark for .NET. Codeproject. 2019.

[23] Take, M., Alpers, S., Becker, Ch., Schreiber,
C., & Oberweis, A. Software Design Patterns
for AI-Systems. EMISA Workshop 2021.
CEUR-WS.org Proceedings. 2021.

[24] The Open Group. Data dissemination view.
TOGAF Modelling. 2015.

[25] The Open Group. Data lifecyle diagram.
TOGAF Modelling. 2015.

[26] The Open Group. Data migration diagram.
TOGAF Modelling. 2015.

[27] The Open Group. Data security diagram.
TOGAF Modelling. 2015.

[28] The Open Group. Alignment with Other
Frameworks. The TOGAF® Leader’s Guide
to Establishing and Evolving EA Capability.
The Open Group. 2022.

[29] Trad, A, & Kalpić, D. Building an extensible
markup language (XML) based Object
Mapping System (OMS). Croatia: IEEE.
2001.

[30] Trad, A. A Transformation Framework
Proposal for Managers in Business Innovation
and Business Transformation Projects-
Intelligent atomic building block architecture.
Journal: Procedia Computer Science. Volume
64. Pages 214-223. Elsevier. 2015.

[31] Trad, A. A Transformation Framework
Proposal for Managers in Business Innovation
and Business Transformation Projects-An
Information System's Atomic Architecture
Vision. Journal: Procedia Computer Science.
Volume 64. Pages 204-213. Elsevier. 2015.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 61 Volume 10, 2025

[32] Trad, A. & Kalpić, D. Business
Transformation Projects based on a Holistic
Enterprise Architecture Pattern (HEAP)-The
Basic Construction. IGI. USA. 2022.

[33] Trad, A. & Kalpić, D. Business
Transformation Projects based on a Holistic
Enterprise Architecture Pattern (HEAP)-The
Implementation. IGI. USA. 2022.

[34] Trad, A. Organizational and Digital
Transformation Projects-A Mathematical
Model for Building Blocks based
Organizational Unbundling Process. IGI
Global. USA. 2023.

[35] Trad, A. A Relational DataBase based
Enterprise Transformation Projects. Journal:
International Journal of Mathematics and
Computers in Simulation. Volume 17, Pages
1-11. Publisher: NAUN. 2023.

[36] Trad, A. Patterns to Transform (P2T)-
DataBase Centric Patterns. Ministry of
Education. European Union. 2024.

[37] Trad, A. & Kalpić, D. Business, Economic,
and Common Transformation Projects-The
In-House-Implementation of The Polymathic
Transformation Framework (IIPTF). E-
leaders. Slovakia. 2024.

[38] Valeida, W. What is the Saga Pattern? DEV.
2024.

[39] Vicente, A. In defense of extreme database-
centric architecture. Memoria Investigaciones
en Ingeniería. This journal is published by the
Facultad de Ingeniería of the Universidad de
Montevideo.

[40] Vicente, M., & Gama, N. Using ArchiMate
and TOGAF to Understand the Enterprise
Architecture and ITIL Relationship.
Conference Paper in Lecture Notes in
Business Information Processing · June 2013.
DOI: 10.1007/978-3-642-38490-5_11. 2013.

[41] Xiang, K. Patterns for distributed transactions
within a microservices architecture. Red Hat
OpenShift. 2018.
https://developers.redhat.com/blog/2018/10/0
1/patterns-for-distributed-transactions-
within-a-microservices-architecture#

[42] Microsoft. Managed Extensibility Framework
(MEF). 2023.

Antoine Trad
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 62 Volume 10, 2025

