

Feed forward network with ST neurons - implementing XOR function

PAVEL STOYNOV, NIKOS MATSORAKIS
Technical university of Sofia,

Clement Ohridski 8, Sofia, 1000
BULGARIA

Abstract:—In this article we apply ST-based neurons in neural networks and check efficiency of these networks for realizing
XOR functions.

Keywords:—neural networks, neurons, ST neurons, activation function.

Received: March 15, 2024. Revised: November 11, 2024. Accepted: December 14, 2024. Published: January 29, 2025.

Pavel Stoynov, Nikos Matsorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 1 Volume 10, 2025

1. Introduction

N this article we apply ST-based neurons in neural networks

and check efficiency of these networks for realizing XOR

functions. The article is further development of the research

in [1]–[3].

The most natural way to introduce nonlinearity into neural

networks is through the nonlinear activation function of the

neurons' output.

An overview of the different activation functions used in

neurons is for example done by [4].

Among the most commonly used are ReLU (Rectified

Linear Unit), sigmoid, hyperbolic tangent, Swish [5], [6] and

others.

If
ktn is the internal output (the output before applying the

nonlinearity) of the neuron k at time ,t then the ReLU

function has the form

.),0max()( ktktkt nnnL (1)

The sigmoid function has the form

.
1

1
)(

ktnkt
e

nL



 (2)

The hyperbolic tangent function is defined by the equality

.)(
ktkt

ktkt

nn

nn

kt
ee

ee
nT








 (3)

The Swish function has the form

.
1

)(
ktn

kt

kt
e

n
nL




 (4)

The cumulative Gaussian function is given by the equality

.
2

1
)(

25,0 dxen x

n

kt

kt








 (5)

2. ST Neurons

A new proposal to use the so-called ST activation function,

which uses the density of the probability distribution of

switches (Switch-Time – ST) is presented in [7].

A random variable  with a switching distribution ST(n,ß)

has a density












,0,0

0,)1(),(
)(

x

xxenC
xf

nx




 (6)

where),(nC are normalization coefficients for which

),(

1
),(




nI
nC  (7)

and

.)1()1(
)1(

1
),(

00








 


 dttedttenI ntnt  (8)

In private cases when ,0n 1n and 2n the

equalities ,),0( C
1

),1(
2






C and

22
),2(

2

3







C apply accordingly. The first and

second case are exponential and Lindley distribution

correspondingly.

A random variable  with Lindley distribution has density
















.0,0

0),1(
1)(

2

x

xxe
xf

x

 


 (9)

 Using the ST distribution thus represented, an ST activation

function with a threshold of zero can be introduced where

I












 



.0,0

,0,)1(),(
0

kt

kt

n

nbt

kt

n

ndttebnC
N

kt

 (10)

This function depends on two parameters - parameter n and
parameter .b Standard ST activation functions can be
obtained by certain selection of these two parameters.
 The double ST distribution (DST distribution) has the
density function


















.0,)1(),(
2
1

,0,)1(),(
2
1

)(
xxebnC

xxebnC

xs
nbx

nbx



 (11)

 This distribution makes it possible to define non-threshold
activation functions. The general appearance of the non-
threshold ST activation function is:

































.0,)1(),(
2
1

,0,)1(),(
2
1

2
1

)(

0

kt

n

nbx

kt

n

nbx

n

kt

ndxxebnC

ndxxebnC

dxxsN

kt

kt

kt

 (12)

 The neurons using ST and DST activation function we call
ST and DST neurons correspondingly. The neurons using
activation functions combining ST and DST with other
activation function we call ST-based neurons.
 In some of the types of ST neurons, the speed of
convergence of the activation function is lower, and therefore
a larger number of iterations is needed when training the
neural networks.
 Therefore, when a higher convergence rate is sought, ST
neurons are more useful in combination with neurons with
other activation functions, such that ST neurons can be used in
the output layers of the network, while the hidden layers can
use, for example, a hyperbolic tangent as activation function.
 Another possibility is to combine an activation function of
type ST with popular types of activation functions such as
RELU. Thus, the activation function of a DST01LU neuron is
set by the equality


















.0,
2
1

2
1

2
1

2
1

,0,

kt

n

n

x

ktkt

kt
nedxe

nn

N
kt

kt
 (13)

 DST01LU neurons and similar to them are interesting
alternatives of the standard conventional neurons used today in
neural networks.

3. Using neural networks with ST

neurons and their derivatives for

implementing XOR function

 As an example of using ST neurons in conjunction with
other types of neurons, we consider a neural network including
hyperbolic tangent neurons in the inner layer and a DST01
neuron in the output layer to implement the XOR (exclusive
or) function.
 As an example of neurons that combine ST and other
activation functions, we discuss the use of DST01LU neurons
to implement the XOR (“exclusive or”) function.
 As a benchmark, a network with hyperbolic tangent neurons
as the activation function is used.
 Functional model. We implement "exclusive or" (XOR)
function using ST neurons and their derivatives and the
effectiveness of such a network to the effectiveness of a
forward network with the same structure, but different types of
activation functions. The functional model is presented in
Figure 1.

Fig. 1. Comparing the effectiveness of neural networks using ST-based
neurons to the effectiveness of standard feed forward neural networks when

implementing “exclusive or” (XOR) function. Source: the author.

 Experiment scenario and structure of the experimental

set-up. The experiment scenario includes the following steps:
 1. Simulation of a feed forward neural network with two
inputs, three neurons in the hidden layer, and one output
neuron. The activation function of the neurons is different
considering three cases:
 1.1. The activation function of all neurons is a hyperbolic
tangent.
 1.2. The activation function of the hidden layer neurons is
a hyperbolic tangent, and the output neuron is a DST01
neuron.
 1.3. All neurons in the network are DST01LU neurons.
 2. The neural network is trained for 1000 iterations in each
of the three cases.
 3. The obtained results are analyzed.
The structure of the experimental setup is presented in Figure
2.

Fig. 2. The experimental setup to test the performance of neural networks
with ST-based neurons in realizing the XOR function by comparing it with
the performance of conventional feed forward neural network. Source: the

author.

Feed forward
neural network

with different types
of activation

function

Realization

of XOR

Comparison
of

predicted
results

Realization
of the
neural

network

Training of the
neural network

and predicting in
three cases

Analysis of the
results with the
three cases for

activation
function

Pavel Stoynov, Nikos Matsorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 2 Volume 10, 2025

Carrying out the experiment.

 The network is implemented in the Python language and is
then trained and tested for each of the three cases considered.
 1. Feed forward neural network with hyperbolic tangent
neurons as activation function. Python code used:

#xor training data
x_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]])
y_train = np.array([[[0]], [[1]], [[1]], [[0]]])
network
net = Network()
net.add(FCLayer(2, 3))
net.add(ActivationLayer(tanh, tanh_prime))
net.add(FCLayer(3, 1))
net.add(ActivationLayer(tanh, tanh_prime))
train
net.use(mse, mse_prime)
net.fit(x_train, y_train, epochs=1000,

learning_rate=0.1)
test
out = net.predict(x_train)
print(out)

The results are presented in Table 1.

2. Feed forward neural network with neurons in the hidden
layer using hyperbolic tangent activation function and DST01
output neuron.

Table 1. Realization of XOR with feed forward neural network with neurons
with hyperbolic tangent as an activation function. Source: the authors.

X1 X2 XOR
Value calculated by the neural

network with hyperbolic tangent for
activation function

0 0 0 0.00085202
0 1 1 0.97670355
1 0 1 0.97801807
1 1 0 0.00161211

 The following code in Python is used:
 #xor training data

x_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]])
y_train = np.array([[[0]], [[1]], [[1]], [[0]]])
network
net1 = Network()
net1.add(FCLayer(2, 3))
net1.add(ActivationLayer(tanh, tanh_prime))
net1.add(FCLayer(3, 1))
net1.add(ActivationLayer(DST01, DST01_prime))
train
net1.use(mse, mse_prime)
net1.fit(x_train, y_train,

 epochs=1000, learning_rate=0.1)
test
out1 = net1.predict(x_train)
print(out1)

 The results are presented in Table 2.

Table 2. A feed forward network for implementation of XOR function with
neurons with hyperbolic tangent activation function in the inner layer and

DST01 neurons in the output. Source: the authors.

X1 X2 XOR
Value from a neural network

with DST01 neuron in the
output layer

0 0 0 0.000399618
0 1 1 0.96248401
1 0 1 0.96640301
1 1 0 0.01713484

 3. Feed forward neural network with DST01LU neurons.
Python code used:

#xor training data
x_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]])
y_train = np.array([[[0]], [[1]], [[1]], [[0]]])
network
net2 = Network()
net2.add(FCLayer(2, 3))
net2.add(ActivationLayer(DST01LU,

DST01LU_prime))
net2.add(FCLayer(3, 1))
net2.add(ActivationLayer(DST01LU,

DST01LU_prime))
train
net2.use(mse, mse_prime)
net2.fit(x_train, y_train,

epochs=1000, learning_rate=0.1)

test
out2 = net2.predict(x_train)
print(out2)

 The results are presented in Table 3.
 Analysis of results and conclusions.
 Comparing the results in Table 1, Table 2 and Table 3
shows that DST01 neurons can be used in combination with
conventional neurons. Also, DST01LU neurons produce
results comparable to those of conventional neurons with
hyperbolic tangent as the activation function.

Table 3. Realization of XOR using feed forward network with DST01LU
neurons. Source: the author.

X1 X2 XOR Value from neural network with
DST01LU neurons

0 0 0 0.000000055
0 1 1 1.000000100
1 0 1 1.000000390
1 1 0 -0.000000024

 The main conclusions of this experiment are:
 1. Neural networks with neurons that have a hyperbolic
tangent activation function in their hidden layer and DST01
neurons in their outer layer successfully model an XOR
function.
 2. Neural networks with DST01LU neurons successfully
model XOR function

Pavel Stoynov, Nikos Matsorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 3 Volume 10, 2025

4. Conclusion

Neural networks with ST-based neurons can be applied

successfully for realizing XOR function. Further research
could be applied to check efficiency of neural networks with
ST-based neurons for solving different applied tasks.

References

[1] P. Stoynov, “Switch Time Family of distributions and
processes and their applications to reflected surplus
models,”. Annual of the Faculty of Economics and
Business Administration, Sofia University “St. Kliment
Ohridski” - Sofia, 2016, pp. 255-285.

[2] P. Stoynov, “Applications of ST Distributions to Neural
Networks and Regression Models,” Proceedings of Eighth
International Conference on New Trends in the
Applications of Differential Equations in Science
(NTADES’21), 6-9 September 2021, St. Constantine and
Helena, Bulgaria.

[3] P. Stoynov, “Switch Time Activation Function and Stopit
Regression – Some Examples,” Proceedings of XXXI
International Scientific Conference Electronics-ET2022,
13-15 September 2022, Sozopol, Bulgaria.

[4] T. Szandala, Review and Comparison of Commonly Used
Activation Functions for Deep Neural Networks. arXiv.
Cornell University, 2019
https://arxiv.org/ftp/arxiv/papers/2010/2010.09458.pdf

[5] P. Ramachandran, B. Zoph, V. Quoc, “Searching for
activation functions,” 2017. CoRR, arXiv, vol.
abs/1710.05941. https://arxiv.org/pdf/1710.05941.pdf

[6] P. Ramachandran, B. Zoph, V. Quoc SWISH: a self-gated
activation function. CoRR, 2017. arXiv,
https://arxiv.org/pdf/1710.05941v1.pdf?source=post_page

[7] P. Stoynov, “Switch Time Neurons. Definition and
Types,” Proceedings of XXXII International Scientific
Conference Electronics-ET2023, 13-15 September 2023,
Sozopol, Bulgaria. Accepted for printing.

Pavel Stoynov, Nikos Matsorakis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 4 Volume 10, 2025

https://arxiv.org/ftp/arxiv/papers/2010/2010.09458.pdf
https://arxiv.org/pdf/1710.05941.pdf
https://arxiv.org/pdf/1710.05941v1.pdf?source=post_page

