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1. Introduction 

N this article we apply ST-based neurons in neural networks 

and check efficiency of these networks for realizing XOR 

functions. The article is further development of the research 

in [1]–[3]. 

The most natural way to introduce nonlinearity into neural 

networks is through the nonlinear activation function of the 

neurons' output. 

An overview of the different activation functions used in 

neurons is for example done by [4].  

Among the most commonly used are ReLU (Rectified 

Linear Unit), sigmoid, hyperbolic tangent, Swish [5], [6]  and 

others. 

If 
ktn  is the internal output (the output before applying the 

nonlinearity) of the neuron k  at time ,t  then the ReLU 

function has the form  
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The sigmoid function has the form  
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The hyperbolic tangent function is defined by the equality   
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The Swish function has the form  
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The cumulative Gaussian function is given by the equality  
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2. ST Neurons 

 

A new proposal to use the so-called ST activation function, 

which uses the density of the probability distribution of 

switches (Switch-Time – ST) is presented in [7]. 

A random variable   with a switching distribution ST(n,ß) 

has a density  
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where ),( nC  are normalization coefficients for which 
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In private cases when ,0n  1n  and 2n  the 

equalities ,),0(  C   
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second case are exponential and Lindley distribution 

correspondingly. 

A random variable   with Lindley distribution has density 
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 Using the ST distribution thus represented, an ST activation 

function with a threshold of zero can be introduced where 
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This function depends on two parameters - parameter n  and 
parameter .b  Standard ST activation functions can be 
obtained by certain selection of these two parameters. 
 The double ST distribution (DST distribution) has the 
density function 


















.0,)1(),(
2
1

,0,)1(),(
2
1

)(
xxebnC

xxebnC

xs
nbx

nbx



          (11) 

 This distribution makes it possible to define non-threshold 
activation functions. The general appearance of the non-
threshold ST activation function is: 
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 The neurons using ST and DST activation function we call 
ST and DST neurons correspondingly. The neurons using 
activation functions combining ST and DST with other 
activation function we call ST-based neurons. 
 In some of the types of ST neurons, the speed of 
convergence of the activation function is lower, and therefore 
a larger number of iterations is needed when training the 
neural networks. 
 Therefore, when a higher convergence rate is sought, ST 
neurons are more useful in combination with neurons with 
other activation functions, such that ST neurons can be used in 
the output layers of the network, while the hidden layers can 
use, for example, a hyperbolic tangent as activation function. 
 Another possibility is to combine an activation function of 
type ST with popular types of activation functions such as 
RELU. Thus, the activation function of a DST01LU neuron is 
set by the equality 
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 DST01LU neurons and similar to them are interesting 
alternatives of the standard conventional neurons used today in 
neural networks.  

 
 
 

3. Using neural networks with ST 

neurons and their derivatives for 

implementing XOR function 

 As an example of using ST neurons in conjunction with 
other types of neurons, we consider a neural network including 
hyperbolic tangent neurons in the inner layer and a DST01 
neuron in the output layer to implement the XOR (exclusive 
or) function. 
 As an example of neurons that combine ST and other 
activation functions, we discuss the use of DST01LU neurons 
to implement the XOR (“exclusive or”) function.  
 As a benchmark, a network with hyperbolic tangent neurons 
as the activation function is used.  
 Functional model. We implement "exclusive or" (XOR) 
function using ST neurons and their derivatives and the 
effectiveness of such a network to the effectiveness of a 
forward network with the same structure, but different types of 
activation functions. The functional model is presented in 
Figure 1. 

 
 
 
 
 
 

Fig. 1. Comparing the effectiveness of neural networks using ST-based 
neurons to the effectiveness of standard feed forward neural networks when 

implementing “exclusive or” (XOR) function. Source: the author. 
 
 Experiment scenario and structure of the experimental 

set-up. The experiment scenario includes the following steps: 
 1. Simulation of a feed forward neural network with two 
inputs, three neurons in the hidden layer, and one output 
neuron. The activation function of the neurons is different 
considering three cases: 
  1.1. The activation function of all neurons is a hyperbolic 
tangent. 
  1.2. The activation function of the hidden layer neurons is 
a hyperbolic tangent, and the output neuron is a DST01 
neuron. 
  1.3. All neurons in the network are DST01LU neurons. 
 2. The neural network is trained for 1000 iterations in each 
of the three cases. 
 3. The obtained results are analyzed. 
The structure of the experimental setup is presented in Figure 
2. 
 

 
 
 
 
 

Fig. 2. The experimental setup to test the performance of neural networks 
with ST-based neurons in realizing the XOR function by comparing it with 
the performance of conventional feed forward neural network. Source: the 

author. 

Feed forward 
neural network 

with different types 
of activation 

function 

 
Realization 

of XOR 

Comparison  
of  

predicted  
results 

Realization 
of the 
neural 

network 

Training of the 
neural network 

and predicting in 
three cases 

Analysis of the 
results with the 
three cases for 

activation 
function 

Pavel Stoynov, Nikos Matsorakis
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 2 Volume 10, 2025



 

 

 
Carrying out the experiment. 

 The network is implemented in the Python language and is 
then trained and tested for each of the three cases considered. 
  1. Feed forward neural network with hyperbolic tangent 
neurons as activation function. Python code used: 

#xor training data 
x_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]]) 
y_train = np.array([[[0]], [[1]], [[1]], [[0]]]) 
# network 
net = Network() 
net.add(FCLayer(2, 3)) 
net.add(ActivationLayer(tanh, tanh_prime)) 
net.add(FCLayer(3, 1)) 
net.add(ActivationLayer(tanh, tanh_prime)) 
# train 
net.use(mse, mse_prime) 
net.fit(x_train, y_train, epochs=1000, 

learning_rate=0.1) 
# test 
out = net.predict(x_train) 
print(out) 
 
The results are presented in Table 1. 

2. Feed forward neural network with neurons in the hidden 
layer using hyperbolic tangent activation function and DST01 
output neuron. 

 
 
 

Table 1. Realization of XOR with feed forward neural network with neurons 
with hyperbolic tangent as an activation function. Source: the authors. 

X1 X2 XOR 
Value calculated by the neural 

network with hyperbolic tangent for 
activation function 

0 0 0 0.00085202 
0 1 1 0.97670355 
1 0 1 0.97801807 
1 1 0 0.00161211 

 

 
  The following code in Python is used:  
   #xor training data 

x_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]]) 
y_train = np.array([[[0]], [[1]], [[1]], [[0]]]) 
# network 
net1 = Network() 
net1.add(FCLayer(2, 3)) 
net1.add(ActivationLayer(tanh, tanh_prime)) 
net1.add(FCLayer(3, 1)) 
net1.add(ActivationLayer(DST01, DST01_prime)) 
# train 
net1.use(mse, mse_prime) 
net1.fit(x_train, y_train, 

 epochs=1000, learning_rate=0.1) 
# test 
out1 = net1.predict(x_train) 
print(out1) 
 

 The results are presented in Table 2. 

 
Table 2. A feed forward network for implementation of XOR function with 
neurons with hyperbolic tangent activation function in the inner layer and 

DST01 neurons in the output. Source: the authors. 
 

X1 X2 XOR 
Value from a neural network 

with DST01 neuron in the 
output layer 

0 0 0 0.000399618 
0 1 1 0.96248401 
1 0 1 0.96640301 
1 1 0 0.01713484 

 

 
  3. Feed forward neural network with DST01LU neurons. 
Python code used: 

#xor training data 
x_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]]) 
y_train = np.array([[[0]], [[1]], [[1]], [[0]]]) 
# network 
net2 = Network() 
net2.add(FCLayer(2, 3)) 
net2.add(ActivationLayer(DST01LU, 

DST01LU_prime)) 
net2.add(FCLayer(3, 1)) 
net2.add(ActivationLayer(DST01LU, 

DST01LU_prime)) 
# train 
net2.use(mse, mse_prime) 
net2.fit(x_train, y_train,  

epochs=1000, learning_rate=0.1) 
 
# test 
out2 = net2.predict(x_train) 
print(out2) 

 
 The results are presented in Table 3. 
 Analysis of results and conclusions. 
 Comparing the results in Table 1, Table 2 and Table 3 
shows that DST01 neurons can be used in combination with 
conventional neurons. Also, DST01LU neurons produce 
results comparable to those of conventional neurons with 
hyperbolic tangent as the activation function. 
 

Table 3. Realization of XOR using feed forward network  with DST01LU 
neurons. Source: the author. 

X1 X2 XOR Value from neural network with 
DST01LU neurons 

0 0 0 0.000000055 
0 1 1 1.000000100 
1 0 1 1.000000390 
1 1 0 -0.000000024 

  

 The main conclusions of this experiment are: 
  1. Neural networks with neurons that have a hyperbolic 
tangent activation function in their hidden layer and DST01 
neurons in their outer layer successfully model an XOR 
function. 
  2. Neural networks with DST01LU neurons successfully 
model XOR function 
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4. Conclusion 

 
Neural networks with ST-based neurons can be applied 

successfully for realizing XOR function. Further research 
could be applied to check efficiency of neural networks with 
ST-based neurons for solving different applied tasks. 
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