
A Machine Learning Approach and Convolutional

Neural Networks for Industry 4.0

MAURO MAZZEI*

* National Research Council, Institute of Systems Analysis and Computer Science, LabGeoInf,

Via dei Taurini, 19, I-00185, Rome, ITALY

Abstract: The aim of this scientific paper is an experimental of artificial intelligence techniques using deep learning and in particular

convolutional neural networks (CNN) to optimize industrial processes. An application is presented that can recognize components

within an electrical equipment and verify their state. At the same time, the application attempts to identify the coding of industrial

components in order to be able to construct an enrichment of the component information. Using an optical character recognition

system for detecting and reading the component coding, a search is conducted for the technical specifications of the components. On

this aspect, an innovative category prediction system is presented that can recommend the best solution for possible modifications or

changes in the event of component malfunctions or failures.

Key-words: Artificial Intelligence, Machine Learning, Deep Learning, CNN.

Received: March 13, 2024. Revised: August 13, 2024. Accepted: September 16, 2024. Published: October 30, 2024.

1. Manuscript

1.1 General Instructions

In recent years, artificial intelligence has become an

integral part of our lives and can be found in many

sectors. Today, there are many applications that make use

of artificial intelligence. A strong use of AI, which

combines a kind of intellectual capacity with the ability to

interact, is undoubtedly the so-called 'Internet of Things.

The Internet of Things refers to several electronic

devices, equipped with software and able to connect to

the Internet, that have the ability to communicate with

each other and exchange data, giving the impression that

objects are recognizable and intelligent.

Also, within the Internet of Things, the theme of the smart

city is developed, referring to an urban area in which it is

possible to make infrastructures and services more

efficient in order to build a sustainable city capable of

ensuring a high quality of life for its citizens. This is

based on connected and integrated technological solutions

and systems. These technologies, include information and

communication infrastructures (such as 5G), 'big data'

analysis, sensors, energy monitoring systems, new

materials and solutions for sustainable building, new

hybrid and electric vehicles, urban planning models,

waste cycle management, and artificial intelligence.

Related to the smart city sector is the smart car branch. In

fact, cars are on the rise that already have certain safety

functions that use artificial intelligence, such as assisted

or autonomous driving systems that detect possible

dangerous situations and events, such as automatic

emergency braking or sensors for crossing the roadway,

connectivity-enabled services such as preventive

maintenance based on component monitoring and the use

of voice assistants, and smart speakers to interact with

one's car using one's voice.

The fourth industrial revolution, in fact, aims precisely at

the dissemination of artificial intelligence embedded in

objects, which are connected to each other through the

Internet and thus become intelligent.

We therefore speak of 'Industrial Internet of Things'

(Industrial IoT), the Internet of Things that involves

industrial processes in order to improve them in terms of

efficiency, productivity, and safety.

2. Machine Learning

Machine learning can be considered a subset of artificial

intelligence and is the tool that makes artificial

intelligence possible. Machine learning has recently

acquired a great importance in the technological context.

This interest in the topic is also driven by the fact that we

have recently experienced a massive digitalization of

everything.

It is the concept of 'data' that machine learning is based

on, i.e. the ability of a digital machine to process a large

quantity of data and learn rules or functions from it,

progressively correcting its algorithm as new data is

received. This essentially simulates the human being's

ability to learn from experience.

Therefore, machine learning uses a completely different

approach to classical programming. In machine learning,

the starting point is always input data, but unlike the

previous situation, known output data is provided in

addition to this. These input-output pairs are then 'studied'

by the machine, which this time will autonomously

attempt to understand the relationships between these

pairs, finally resulting in the algorithm model that best fits

the data.

Mauro Mazzei
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 60 Volume 9, 2024

The artificial neuron originates as an attempt to simulate

the biological neuron in the brain. Similarly, the artificial

neuron, bearing in mind the concept of perceptron,

receives inputs that are each multiplied by a coefficient

called weight, these weighted inputs are summed up and a

function is applied to this summation that will determine

the final output.

More precisely in mathematical terms the individual

perceptron is defined by the function:

Where wx + b defines the coordinates of a separating

hyperplane that changes position according to the values

of w and b. For example, a problem of predicting the

output between two possible values, the goal is to

calibrate the values of w and b so that the values are

correctly separated.

In the context of the perceptron, a problem related to the

fact that its output must be either 0 or 1 and not both, so

we realize that a small variation of w and b in the vicinity

of 0 could cause a drastic jump of the output from 0 to 1

or vice versa.

The most common activation functions are:

Sigmoid function, defined by equation.

Figure 1: Sigmoid function

Hyperbolic tangent function, defined by equation.

Figure 2: Hyperbolic function

ReLu function, defined by the formula.

Figure 3: ReLu function

3. Neural Network Learning

The fundamental characteristic of neural networks is their

training capability. The training of the network, known as

training, basically takes the form of autonomously

adjusting the value of the weights w and bias b. To

simplify, a neural network model is represented in figure

4, consisting of two inputs and one output. The two

different objects to be classified are represented by two

digits: 0 to represent the first object, 1 to represent the

second.

Figure 4: Simple neural network model

In general, by input of x1 and x2 and using the values w1,

w2 and b, the summary ∑ = x1 w1 + x2 w2 + b is defined,

this is given to the activation function (it is assumed that

the activation function is the sigmoid function) and a

prediction P = sig(∑) is returned. P will be a number

between 0 and 1 depending on whether the input data is

more likely to represent the first or second object.

Initially the neural network does not know the task it has

to solve so the weights and bias are random, the network

will have to learn the correct values through the

successive input of a set of x1 and x2 data from the

training set that determine the specific characteristics of

the two objects.

For the training phase, the neural network will use the

cost function, a function that returns a measure of how far

the prediction deviates from the expected result. The

closer the cost function is to 0, the more accurate the

prediction is.

A cost function that can be used is the quadratic error

function, defined as the difference between the prediction

P and the target result all squared:

c = (P- objective)2

This function then defines a trajectory and if the aim is to

minimise this error, then the derivative of this cost

function with respect to P calculated at the point

determined by the target value comes to the rescue:

The prediction P should therefore be modified so that,

with each new cycle of training data input, the cost

function gradually cancels out.

As is well known, the derivative of a trajectory calculated

at a point a geometrically turns out to be the tangent line

Mauro Mazzei
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 61 Volume 9, 2024

to the trajectory at the same point a. Therefore the cost

function cancels if the derivative is zero, i.e. if P is equal

to the objective, and consequently if the slope of the

tangent line is zero.

In order to cancel the slope of the tangent line, it is

necessary to subtract a fraction of the slope of the line

from the actual value of the forecast with the sign. Thus,

the next value of P is defined as:

The fraction mentioned is defined by the LR parameter,

called the learning rate, and is a measure of how fast

Psucc varies and is therefore crucial in determining the

network's learning rate. It is a value between 0 and 1: if it

is too low, P will converge to the target value too slowly;

if it is too high, Psucc will diverge, never reaching the

target value.

As seen above, the prediction P in turn depends, as far as

the neural network in figure XXX is concerned, on the

values w1, w2 and b; therefore, it is these parameters that

must be progressively updated in order to cancel out the

cost function.

The process of parameter updating, known as the

backpropagation-error algorithm, is divided into two main

phases:

Forward propagation, a phase in which the weighted sum

of the inputs and the activation function is computed layer

by layer, from the beginning to the end, of the neural

network, to provide the prediction P. In the final layer, the

cost function measures the error made in the outputs from

the network compared to the desired outputs.

Backpropagation, a phase in which the error calculated in

the output layer is propagated backwards layer by layer

and through the chain derivation rule, the gradient of the

cost function is computed for each parameter of the

network, which will then be updated until it is calibrated

with the best possible precision for the resolution of the

set task.

The following lines describe the main mathematical steps,

that accompany the backpropagation phase.

We will return to the formula defining the cost function:

c = −(P -)2

We develop the formula further by making P more

explicit:

The final aim is to minimise the cost function, so its

derivative is calculated:

This will be used to update the prediction P through the

formula:

Since P, as the neural network under consideration is

constituted, depends on the three parameters w1, w2 and

b, it is appropriate to specify for each parameter its

update function:

The relevant cost functions must then be calculated. We

now calculate:

By the chain rule, a rule for calculating the derivative of a

function composed of two derivable functions, we obtain:

The last expression is still a function composed of two

derivable functions; therefore, the chain rule applies

again. For simplicity, the following substitution is

applied:

At this point, the result is:

The calculation is now carried out:

Mauro Mazzei
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 62 Volume 9, 2024

Similarly, for parameters w2 and b we obtain:

These will be the cost functions for each parameter to be

entered into the functions for updating the values,

resulting in the updating of a new prediction P.

This procedure is absolutely generalizable also in the case

of artificial neural networks consisting of several nodes,

the chain rule would always be used but with more

derivatives to be computed. By repeating the two steps of

the backpropagation-error algorithm over and over again,

the parameters will be more and more accurate, allowing

for a gradually increasing accuracy. However, after a

certain number of iterations on the training data, the

generalisation stops improving, the results on the test data

stall and then begin to deteriorate. The model is in an

overfitting condition, a situation in which the model is

starting to learn patterns that are specific to the training

data but not relevant to new data. In the underfitting

situation, the model is not yet able to distinguish between

one class and another, so there is low optimization and

generalization.

4. Convolutional neural Netoworks

Convolutional neural networks (or CNNs) are artificial

neural networks specialised in solving problems in the

domain of image classification and computer vision in

general. CNNs can be considered the main example of a

deep neural network and an indispensable tool for the use

of deep learning: in fact, you can see how computer

vision and deep learning are now more interconnected

than ever.

Another advantage of CNNs is that they adapt very well

to the technique of transfer learning, a tool that makes it

possible to reuse previously trained networks on large

datasets to solve similar or more specific tasks. In this

way, it is not necessary to go and train all the parameters

of all layers of the network, but only the last layers, i.e.

those that deal with the actual classification.

Convolution is a very efficient solution to the problem of

the difficulty of processing images, as before CNNs, time-

consuming methods were used to extract the characteristic

features of the objects to be identified within the image

and the entire image had to be evaluated, while with

convolution it is possible to recognise specific patterns

delimited in a portion of the image.

Convolutional neural networks introduce new types of

layers that have the ability to learn to recognise specific

patterns in the image independently of their position, thus

being able to find them in other images in different areas,

and to decrease the complexity of the network through a

smaller number of parameters.

The typical layers that make up a convolutional neural

network are explained below.

An example architecture of a CNN is shown in figure 5.

Figure 5: Architecture of CNNs

First of all, as can be seen in figure 5, two main macro-

areas can be identified in the CNN. The first part is

responsible for feature extraction and is composed of the

input layer (the image to be processed) and a more or less

deep succession of hidden layers that are not necessarily

connected node by node. The last include layers that

perform convolution operations, often accompanied by an

activation function, including the ReLu function, and

layers that perform the downsampling operation called

pooling layers. These layers, within the network, can be

placed at will in the order and quantity that best suits the

task to be solved. The result generated by each layer is

called a feature map and this in turn contributes to the

input of the next layer.

The second part, on the other side, is to all intents and

purposes a classical neural network, essentially composed

therefore of Dense layers, also called Fully Connected

layers because of their structure of completely connected

nodes, and these layers take care of the actual

classification starting from the extracted features, which

will constitute the input of this neural network. This input

layer can be followed by any number of layers and at the

end there will be an output layer that will provide the

class, to which what is represented in the original image

belongs, with the highest probability.

The convolution layer is the fundamental layer of the

network and is normally the first layer to appear. Its

objective, as mentioned several times throughout this

chapter, is to identify features, patterns, which may be

curves, angles, lines, edges, textures, etc.

The convolution can be performed several times within

the network, each time focusing on identifying a feature

of the object in the image. The more times the

convolution is performed, the greater the complexity of

the feature.

We start from the fact that the input image is treated as a

set of pixels defined by numbers organised in a matrix of

three dimensions, with each dimension representing one

of the three colours of the RGB encoding. Suppose we are

dealing with 32 x 32 RGB encoded images: this means

that we will have matrices of size 32 x 32 x 3.

At this point, the convolution operation can be performed

using a small matrix, called a filter or kernel, normally of

size 2x2 or 3x3. This will run through the entire matrix of

the input image and at each step will compute the matrix

product between the input and filter pixels.

Mauro Mazzei
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 63 Volume 9, 2024

This operation allows the extraction of a specific feature

in each area of the image. Since it is repeated several

times, an even deeper pattern will be detected in the next

step. Once a pattern has been recognised, the

convolutional network will be able to recognise it

anywhere in the image.

The parameters that define the rules of how the kernel's

scrolling over the input matrix and the size of the output

(called hyperparameters) are essentially four:

Kernel size: typically the kernel is 2x2, 3x3, or 5x5

pixels. The size of the kernel determines the size of the

output;

Step (stride): defines the number of pixels the kernel

moves on the input matrix at each iteration. Higher values

move the filter with larger jumps and a smaller output

matrix is generated;

Depth: corresponds to the number of filters used on the

same input matrix to detect different features. If N filters

were used, the same procedure had to be repeated N

times, obtaining N feature maps, creating an output N

deep;

Zero-Padding: it has been said that kernel size and pitch

affect the width and height of the output volume: the

kernel goes through the input matrix anchoring itself to

the input cell with its centre; therefore, for example, as far

as the first cell at the top left of the input is concerned, the

filter matrix would be outside the input.

By configuring these hyperparameters, an output volume

is obtained, in which the height and width are calculated

from the relations:

Where Hout and Wout define the output height and width,

Hin and Win the input height and width, K the kernel

size, P the padding thickness, S the stride value. The

depth of the output volume (depth) is defined by the

number of filters used NF.

The values K, P and S must be chosen such that the

relations return an integer value. ReLu layer

The ReLu layer is a layer that is usually placed after the

convolutional layer and is responsible for applying the

ReLu activation function, thus introducing a non-linearity

factor to the network.

The layer receives as input the numerical values that are

produced by the output volume generated by the

convolution operation and applies the following function

to each one:

In this mode, a matrix of the same size as the previous

one is generated, all negative values are cancelled out

while the positive ones remain unchanged.

Introducing these ReLu levels, convolutional neural

networks perform much better: the network is able to train

much faster without significantly affecting the accuracy of

the results. Faster learning has a great influence on the

performance of large models trained on large datasets.

The pooling layer is a layer often alternated in models

with the convolution and ReLu layers and its objective is

to progressively reduce the spatial dimension of the

matrix. This operation is also known as downsampling,

indicating an under-sampling, i.e. a reduction in the

number of parameters to be processed and thus in

processing costs.

What is obtained from the succession of convolution

operations and the application of the ReLu activation

function is a matrix or matrices of values in which no

negative numbers are present and which faithfully

summarise the characteristics of the image. To make the

model even more precise, the pooling method can be

used.

The pooling operation takes place in a similar way to the

convolution operation, i.e. through a filter that sweeps the

entire input matrix, but the operation that is performed

between the input matrix and the pooling filter is to

aggregate the values within the filter by bringing out the

largest value among them. In this way, the next smaller

layer will include only the largest values among those

processed by the filter. The pooling operation is applied

separately to each feature map.

To be precise, this operation just described is the max-

pooling operation. As an alternative to the max-pooling

operation, the average pooling operation is sometimes

used, which instead of considering the maximum value of

the portion of the matrix considered, considers its average

value. In the most common cases, however, the max-

pooling operation is preferred to the average pooling

operation.

A lot of information is lost in the pooling layer, but there

are also a number of advantages for CNN. Pooling layers

help to reduce complexity, improve efficiency, and limit

the risk of overfitting.

The layer fully connected is, as mentioned before, a

traditional multilayer neural network, in which therefore

each neuron of the previous layer is connected to each

neuron of the following layer, which uses, in more detail,

an activation function called "Softmax" in the output

layer.

The output of the convolutional, ReLu and pool layers

represents the high-level features of the input image. The

purpose of the fully connected layer is to use these

features to classify the input image into various classes

according to the training dataset.

The output of the convolution and pooling layers

mentioned earlier are 3D volumes, a fully connected layer

on the other hand involves a vector of numbers. So first

the output of the final layer is flattened into a vector and

this becomes the input for the fully connected layer.

At the output layer of the fully connected layer, the

Softmax activation function is finally executed, which

takes a vector of arbitrary scores with real values and

"flattens" it to a vector of values between zero and one

Mauro Mazzei
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 64 Volume 9, 2024

that sums to one: thus, the sum of the output probabilities

of the fully connected layer is 1.

In the context of convolutional neural networks, to try to

counteract the problem of overfitting, a phenomenon

described in the previous chapter, the most popular

technique is to insert dropout layers between the hidden

layers of the network. Although the dropout method is

effective in preventing overfitting, it is not always

sufficient. This is because overfitting occurs when the

network trains on little data. The only way to avoid the

problem of overfitting is to have an infinite amount of

training data, in which case the network would be training

on every possible instance of the phenomenon.

Therefore, another method to reduce overfitting is to use

more training data, but in an image classification task

obtaining new data, i.e. new images, is not easy.

This is precisely what the technique of data augmentation

deals with: artificially increasing the size of one's dataset.

The technique involves, starting from an image, the

reproduction of further images through random

transformation of existing ones, which are subsequently

supplied to the model as input. The aim is not to make the

network process the same image twice, but to make it

analyze images in different positions and rotations to

improve its generalization capability.

The main transformations include operations such as

rotation, translation, reflection, zooming, image flipping,

but also cropping, adding noise, deformation, blurring.

5. Case Study

The work performed focused on computer vision

technologies from which knowledge and best practices

were extracted and transferred to the application domain.

In order to realise the goal of machine vision-based

electrical component detection, the idea was to identify

electrical components by category by creating an image

database as the foundation of deep learning-based object

detection. Collecting real photos containing most of the

electronic components to build a training dataset is

difficult. Moreover, even experts are sometimes unable to

identify all devices by categories by checking the

labelling. For these reasons, we thought of using virtual

components extracted from the network in order to have

additional information to better classify the components.

Electrical components come in a wide variety of

suppliers, shapes and sizes, so no universal dataset is

currently available. The labelling work will have to be

done through a GUI with even non-expert operators, so it

takes time and effort to complete the job. For these

reasons, it was decided to create management software to

prepare the environment for the collection of the valuable

data to be classified. The database of classified images

was used for training by combining real and virtual data.

The label information is clearly visible on all devices and

the text content is very complete, especially in the

accompanying information extracted from the network,

for our detection objective (identification of electrical

components) the screen-printed identification number is

sufficient, other information is sometimes redundant but

useful for links to datasheets.

Virtual images are visually almost identical to the real

thing. The synthetic data of the virtual image carries the

part identifier the name of the parts and the category;

therefore, for the labelling phase of deep learning it is

easier to classify them, even a user with no electrical

knowledge can directly name the label facilitated by the

searches and classification done on the network.

Combining virtual and real data to form a training dataset

can reduce the cost of data collection and improve the

generalisation of the learning model. For the hierarchies

of categories associated with the electrical component

identifier, it is also thought to evaluate similarity

reasoning techniques to be used in support of

classification algorithms to make category prediction, it is

believed that Lin's measure of similarity, previously

introduced by Resnik, between concepts based on the

notion of information content exploiting a taxonomy, or

domain ontology, can be used. A domain ontology, and in

particular a taxonomy of concepts organised using the

ISA hierarchy, and a lexical database are considered.

In the labelling phase, the bounding box is used to

describe the position of the target in the object detection.

The bounding box is a polygon that can be determined by

identifying the x and y coordinates of the upper left

corner and the height and width (bx, by, bh, bw). The

input image is divided into a grid of S × S cells for each

object in the image one grid cell is 'responsible' for its

prediction, each grid cell predicts bounding and category

probabilities.

In particular for both performance and network suitability

in the specific implementation goal, we evaluated the

YOLO V3 network which uses 53-layer Darknet-53 as a

feature extractor. The two most important parts of

Darknet-53 are Convolutional and ResNet. The 1 × 1

convolutional can compress the number of channels in the

feature map to reduce the model calculation and

parameters. Multiple 3 × 3 convolution results in non-

linear for a large filter convolution layer, making the

decision function more resolvable. ResNet can make the

network deeper, faster, easier to optimise, with fewer

parameters and less complexity than other models.

Therefore, it can solve the deep network problem in

degradation and learning difficulty. Darknet-53 performs

a total of five dimensionality reductions on operations.

The number of rows and columns belong to the feature

matrix of each dimension. The output for the reduction

becomes half while the depth doubles from the previous

one. The figure below shows the corresponding feature

output of the different dimension reduction modules of

the entire Darknet-53.

By means of the Darknet-53 feature output diagram, we

can see that each pixel on the feature map of different

layers represents different dimensions of the original

image. For example, each pixel in the 104 × 104 × 128

image represents the 4 × 4 size of the original 416 × 416

image. At the same time, each pixel in the 13 × 13 × 1023

Mauro Mazzei
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 65 Volume 9, 2024

image represents the 32 × 32 size of the original 416 ×

416 image. For this reason, the network chose 52 × 52 ×

256, 26 × 26 × 512 and 13 × 13 × 1024, three layers of

feature output for upsampling and feature fusion to detect

large, medium and small objects of different sizes. This

solution fits very well in our implementation goal as it

needs to detect components belonging to a large frame,

while the size of the components is small. In the

preprocessing phase, each image used for training has

different resolutions and different sizes due to the

different acquisition method. Therefore, before training,

the network resizes the image size to 416 × 416. This

facilitates the label content in the original image.

For the analysis of the entire assembly or electrical panel

to be monitored, we thought of using change detection

algorithms that are best suited to the verification of

generalised contexts without excluding the components,

but which return a change of state, in particular we are

evaluating two methods: deterministic and probabilistic,

both of which refer to a definition of image as a set of

random variables linked to regions of the plane, in the

case of 2D images.

The diagram below represents the proposed image

recognition pipeline, a training dataset is proposed

divided into two categories for the realisation of the

model learning dataset:

Figure 6: Model of methodology used

The first category is defined by real images taken in the

field in environments with different illumination and

different scenarios. The filming tools can be of different

types, and the images should contain differences in size

and resolution

The second category is defined by virtual images taken

from the online repositories of distributors selected by the

Lucana Sistemi partner (Bticino, Siemens, ABB, Gewiss,

Scheneider Electric, Lovato).

The two categories are used to train the deep learning

network, the error between the predicted value and the

actual value is calculated by the loss function (MSE,

MAE, Huber Loss), using the backpropagation of the

error in the neural network and constantly adjusting the

weight of each convolutional layer of the network to

complete the training of the model. With this process

schematised in the figure representing the algorithm's

pipeline, the loss function determines the direction in

which the model is trained.

In the context of evaluating similarity reasoning

techniques to be used in support of classification

algorithms for category prediction, it is believed that Lin's

measure of similarity, previously introduced by Resnik,

between concepts based on the notion of information

content that exploits a taxonomy, or domain ontology

[Resnik, Lin], can be used. This is illustrated below.

Let us consider a domain ontology, and in particular a

taxonomy of concepts organised using the ISA hierarchy,

and a lexical database such as, for example, WordNet

[Fellbaum]. In addition to nouns, WordNet contains

verbs, adjectives and adverbs, each associated with its

own natural language definition and frequency.

Frequencies are estimated using huge text collections,

such as the Brown Corpus of American English. In

WordNet, concepts are organised not only through ISA

relations, but also through Part-of relations, SynSet, etc..

Lin's similarity measure, in particular, exploits the ISA

relation. It is assumed that given a domain ontology of

concepts organised via the ISA relation, each concept c is

associated with a probability p(c) defined as:

p(c) = freq(c)/M

where freq(c) is the frequency of c for example in the

Brown Corpus of American English and M is the total

number of concepts in the corpus. Such an ontology, once

a probability has been associated with each concept, is

called a weighted ontology.

After the probabilities have been associated with the

concepts, the initial assumption of the approach is that the

information content of a concept c, IC(c), is defined as:
IC(c) = - log p (c)

i.e. as the probability of a concept increases, its

information content decreases, so the more abstract a

concept is, the lower its information content (the root of

the taxonomy is the most general concept that has

probability 1). According to this approach, the similarity

of two hierarchically organised concepts is given by the

maximum information content shared by the concepts, i.e.

the more information content the two concepts share, the

more similar they are. Given two concepts, the maximum

information content shared by them in the taxonomy is the

least upper bound (lub), i.e. the most specific

superconcept of both concepts in the taxonomy. Under

these assumptions, the similarity between two concepts c1

and c2, Sim(c1,c2), is defined by the information content

of the lub of the concepts divided by the sum of the

information contents of the concepts we wish to compare:

Sim(c1,c2) = 2 log p(lub(c1,c2))/(log p(c1) + log p(c2))

A number of natural language processing (NLP)

techniques such as word counting, latent semantic

analysis (LSA), word vector representation and character

Mauro Mazzei
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 66 Volume 9, 2024

sequence analysis can be used to calculate similarity

between lemmas.

Once word vectors have been created, cosine distance can

be used to calculate the similarity between lemmas.

Cosine distance is a measure of the similarity between

two vectors in a multidimensional space and is defined as

the cosine of the angle between the two vectors. The more

similar the two vectors are, the closer the angle between

them approaches zero and the value of the cosine distance

approaches 1.

It should be noted that using machine learning models to

create the vector representation of words may require

adequate data preparation and training of the model on a

large text dataset.

6. Conclusion and future works

The object detection and image classification model

described has proven to have good efficiency in that

satisfactory results were always provided. Convolutional

neural networks have therefore proved the quality of their

technique, confirming the ability of machine learning, and

in particular deep learning, to be a technology capable of

supporting the human decision-making level. The

computer vision model realised in this work could be

adaptable in other areas related to industry and in the

development of new implementations and functionalities.

In particular, a natural evolution of this application could

be the real time monitoring of the status of switches, so

that it could be used in the field of security, where, for

example, it is checked that the installations are all

disconnected before carrying out maintenance operations,

and also for the maintenance of the installations

themselves.

As a future development, this computer vision technology

could be implemented in industry for the monitoring of

component production in high-speed continuous cycles

for the detection of component anomalies. In addition,

other possibilities open up for increasing knowledge in

favour of industrial processes by bringing together other

methodologies also tested in this work, such as category

prediction and taxonomic classification of lemmas, there

is no doubt that integrating the two solutions would

significantly increase the knowledge base.

References

[1] O. J. Bedrij, “Carry-select adder,” IRE Trans.

Electron. Comput, pp. 340–344, 1962

[2] B. Ramkumar, H.M. Kittur, and P. M. Kannan,

“ASIC implementation of modified faster carry save

adder,” Eur. J. Sci. Res., vol. 42, no. 1, pp.53–58,

2010.

[3] T. Y. Ceiang and M. J. Hsiao, “Carry-select adder

using single ripple carry adder,” Electron. Lett., vol.

34, no. 22, pp. 2101–2103, Oct. 1998.

[4] J. M. Rabaey, Digtal Integrated Circuits— A Design

Perspective Upper Saddle River, NJ: Prentice-Hall,

2001

[5] M. Somalvico, L’intelligenza artificiale, Rusconi

Editore, 1987

[6] W.S. McCulloch, W. Pitts, A logical calculus of the

ideas immanent in nervous activity, in Bulletin of

Mathematical Biophysics, vol. 5, 1943, pp. 115-133

[7] J. McCarthy, M. L. Minsky, N. Rochester, and C. E.

Shannon, A Proposal for the Dartmouth Summer

Research Project on Artificial Intelligence, AI

Magazine, vol. 27, no. 4, 31 agosto 1955, p. 12

[8] F. Rosenblatt, The Perceptron: A Probabilistic

Model for Information Storage and Organization in

the Brain, in Psychological Review, vol. 65, no. 6,

Cornell Aeronautical Laboratory, 1958, pp. 386–408

[9] G. E. Hinton, S. Osindero, Y. Teh, A fast learning

algorithm for deep belief nets, in Neural

Computation, vol. 18, no. 7, 2006, pp. 1527-1554

[10] A. Gulli, A. Kapoor, S. Pal, Deep Learning with

TensorFlow 2 and Keras, Packt, 2019

[11] R. Talarico, Introduzione Alle Reti Neurali 02: La

Funzione di Costo, 21/05/2018

[12] F. Chollet, Deep Learning with Python, Manning,

2018

[13] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet

classification with deep convolutional neural

networks, Advances in neural information processing

systems, pp. 1097– 1105, 2012

[14] A. Kaehler, G. Bradski, Learning OpenCV 3:

Computer Vision in C++ with the

[15] OpenCV Library, O'Reilly Media, 2016

[16] J. Redmon, S. Divvala, R. Girshick, A. Farhadi,

You only look once: Unified, real-time object

detection, in CVPR, 2016, pp. 779-788

[17] T. Carneiro, R.V. Medeiros da Nòbrega, T.

Nepomuceno, G.B. Bian, V.H.C. Albuquerque, P.

Filho, Performance Analysis of Google Colaboratory

as a Tool for Accelerating Deep Learning

Applications, in IEEE Access, 2018, pp. 61677-

61685

[18] M. Mazzei, The International Archives of the

Photogrammetry, Remote Sensing and Spatial

Information Sciences 2022-10-14 | Journal article

DOI: 10.5194/isprs-archives-XLVIII-4-W5-2022-

105-2022

[19] Mazzei, M., Advances in Intelligent Systems and

Computing 2021 | Book DOI: 10.1007/978-3-030-

55187-2_21 EID: 2-s2.0-85090096064 Part of ISSN:

21945365 21945357

[20] Mazzei, M., Advances in Intelligent Systems and

Computing 2021 | Book DOI: 10.1007/978-3-030-

73103-8_58 EID: 2-s2.0-85105926014 Part of ISSN:

21945365 21945357

[21] Massimo De Maria; Lorenza Fiumi; Mauro Mazzei;

Bik Oleg V., Heritage 2021-07-28 | Journal article

DOI: 10.3390/heritage4030079

[22] Mazzei, M., Advances in Intelligent Systems and

Computing 2020 | Book DOI: 10.1007/978-3-030-

Mauro Mazzei
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 67 Volume 9, 2024

https://doi.org/10.5194/isprs-archives-xlviii-4-w5-2022-105-2022
https://doi.org/10.5194/isprs-archives-xlviii-4-w5-2022-105-2022

52246-9_41 EID: 2-s2.0-85088511397 Part of ISSN:

21945365 21945357

[23] Mazzei, M., Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics)

2019 | Book DOI: 10.1007/978-3-030-24302-9_31

EID: 2-s2.0-85069196224 Part of ISSN: 16113349

03029743

[24] C. Capodiferro and M. Mazzei, "Applications of

deep learning and artificial intelligence methods to

smart edge devices and stereo cameras," 2023 8th

International Conference on Smart and Sustainable

Technologies (SpliTech), Split/Bol, Croatia, 2023,

pp. 1-5, doi:

10.23919/SpliTech58164.2023.10193298.

[25] U. Karn, An Intuitive Explanation of Convolutional

Neural Networks, 11 agosto 2016,

https://ujjwalkarn.me/2016/08/11/intuitive-

explanation-convnets/, consultato in data 30/12/2021

[26] https://towardsdatascience.com/softmax-activation-

function-explained-a7e1bc3ad60, consultato in data

30/12/2021

[27] https://opencv.org/about/, consultato in data

23/11/2021

[28] https://en.wikipedia.org/wiki/OpenCV, consultato

in data 23/11/2021

Mauro Mazzei
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 68 Volume 9, 2024

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://opencv.org/about/
https://opencv.org/about/
https://en.wikipedia.org/wiki/OpenCV
https://en.wikipedia.org/wiki/OpenCV

