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1. Manuscript 

1.1 General Instructions 

In recent years, artificial intelligence has become an 

integral part of our lives and can be found in many 

sectors. Today, there are many applications that make use 

of artificial intelligence. A strong use of AI, which 

combines a kind of intellectual capacity with the ability to 

interact, is undoubtedly the so-called 'Internet of Things. 

The Internet of Things refers to several electronic 

devices, equipped with software and able to connect to 

the Internet, that have the ability to communicate with 

each other and exchange data, giving the impression that 

objects are recognizable and intelligent.  

Also, within the Internet of Things, the theme of the smart 

city is developed, referring to an urban area in which it is 

possible to make infrastructures and services more 

efficient in order to build a sustainable city capable of 

ensuring a high quality of life for its citizens. This is 

based on connected and integrated technological solutions 

and systems. These technologies, include information and 

communication infrastructures (such as 5G), 'big data' 

analysis, sensors, energy monitoring systems, new 

materials and solutions for sustainable building, new 

hybrid and electric vehicles, urban planning models, 

waste cycle management, and artificial intelligence. 

Related to the smart city sector is the smart car branch. In 

fact, cars are on the rise that already have certain safety 

functions that use artificial intelligence, such as assisted 

or autonomous driving systems that detect possible 

dangerous situations and events, such as automatic 

emergency braking or sensors for crossing the roadway, 

connectivity-enabled services such as preventive 

maintenance based on component monitoring and the use 

of voice assistants, and smart speakers to interact with 

one's car using one's voice.  

The fourth industrial revolution, in fact, aims precisely at 

the dissemination of artificial intelligence embedded in 

objects, which are connected to each other through the 

Internet and thus become intelligent.  

We therefore speak of 'Industrial Internet of Things' 

(Industrial IoT), the Internet of Things that involves 

industrial processes in order to improve them in terms of 

efficiency, productivity, and safety. 

 

 

2. Machine Learning 

Machine learning can be considered a subset of artificial 

intelligence and is the tool that makes artificial 

intelligence possible. Machine learning has recently 

acquired a great importance in the technological context. 

This interest in the topic is also driven by the fact that we 

have recently experienced a massive digitalization of 

everything.  

It is the concept of 'data' that machine learning is based 

on, i.e. the ability of a digital machine to process a large 

quantity of data and learn rules or functions from it, 

progressively correcting its algorithm as new data is 

received. This essentially simulates the human being's 

ability to learn from experience.  

Therefore, machine learning uses a completely different 

approach to classical programming. In machine learning, 

the starting point is always input data, but unlike the 

previous situation, known output data is provided in 

addition to this. These input-output pairs are then 'studied' 

by the machine, which this time will autonomously 

attempt to understand the relationships between these 

pairs, finally resulting in the algorithm model that best fits 

the data. 
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The artificial neuron originates as an attempt to simulate 

the biological neuron in the brain. Similarly, the artificial 

neuron, bearing in mind the concept of perceptron, 

receives inputs that are each multiplied by a coefficient 

called weight, these weighted inputs are summed up and a 

function is applied to this summation that will determine 

the final output.   

More precisely in mathematical terms the individual 

perceptron is defined by the function: 

 

 
 

Where wx + b defines the coordinates of a separating 

hyperplane that changes position according to the values 

of w and b. For example, a problem of predicting the 

output between two possible values, the goal is to 

calibrate the values of w and b so that the values are 

correctly separated.  

In the context of the perceptron, a problem related to the 

fact that its output must be either 0 or 1 and not both, so 

we realize that a small variation of w and b in the vicinity 

of 0 could cause a drastic jump of the output from 0 to 1 

or vice versa. 

The most common activation functions are: 

Sigmoid function, defined by equation. 

  

 
 

Figure 1:  Sigmoid function 
 

Hyperbolic tangent function, defined by equation. 

 

 
Figure 2:  Hyperbolic function 

                  

ReLu function, defined by the formula. 

 

 

Figure 3:  ReLu function 
 

3. Neural Network Learning 

The fundamental characteristic of neural networks is their 

training capability. The training of the network, known as 

training, basically takes the form of autonomously 

adjusting the value of the weights w and bias b. To 

simplify, a neural network model is represented in figure 

4, consisting of two inputs and one output.  The two 

different objects to be classified are represented by two 

digits: 0 to represent the first object, 1 to represent the 

second. 

 

 
Figure 4:  Simple neural network model 

 

In general, by input of x1 and x2 and using the values w1, 

w2 and b, the summary ∑ = x1 w1 + x2 w2 + b is defined, 

this is given to the activation function (it is assumed that 

the activation function is the sigmoid function) and a 

prediction P = sig(∑) is returned. P will be a number 

between 0 and 1 depending on whether the input data is 

more likely to represent the first or second object.  

Initially the neural network does not know the task it has 

to solve so the weights and bias are random, the network 

will have to learn the correct values through the 

successive input of a set of x1 and x2 data from the 

training set that determine the specific characteristics of 

the two objects.  

For the training phase, the neural network will use the 

cost function, a function that returns a measure of how far 

the prediction deviates from the expected result. The 

closer the cost function is to 0, the more accurate the 

prediction is.  

A cost function that can be used is the quadratic error 

function, defined as the difference between the prediction 

P and the target result all squared: 

c = (P- objective )2 

 

This function then defines a trajectory and if the aim is to 

minimise this error, then the derivative of this cost 

function with respect to P calculated at the point 

determined by the target value comes to the rescue: 

 

The prediction P should therefore be modified so that, 

with each new cycle of training data input, the cost 

function gradually cancels out.  

As is well known, the derivative of a trajectory calculated 

at a point a geometrically turns out to be the tangent line 
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to the trajectory at the same point a. Therefore the cost 

function cancels if the derivative is zero, i.e. if P is equal 

to the objective, and consequently if the slope of the 

tangent line is zero.  

In order to cancel the slope of the tangent line, it is 

necessary to subtract a fraction of the slope of the line 

from the actual value of the forecast with the sign. Thus, 

the next value of P is defined as: 

 

The fraction mentioned is defined by the LR parameter, 

called the learning rate, and is a measure of how fast 

Psucc varies and is therefore crucial in determining the 

network's learning rate. It is a value between 0 and 1: if it 

is too low, P will converge to the target value too slowly; 

if it is too high, Psucc will diverge, never reaching the 

target value.  

As seen above, the prediction P in turn depends, as far as 

the neural network in figure XXX is concerned, on the 

values w1, w2 and b; therefore, it is these parameters that 

must be progressively updated in order to cancel out the 

cost function.  

The process of parameter updating, known as the 

backpropagation-error algorithm, is divided into two main 

phases: 

Forward propagation, a phase in which the weighted sum 

of the inputs and the activation function is computed layer 

by layer, from the beginning to the end, of the neural 

network, to provide the prediction P. In the final layer, the 

cost function measures the error made in the outputs from 

the network compared to the desired outputs.  

Backpropagation, a phase in which the error calculated in 

the output layer is propagated backwards layer by layer 

and through the chain derivation rule, the gradient of the 

cost function is computed for each parameter of the 

network, which will then be updated until it is calibrated 

with the best possible precision for the resolution of the 

set task.  

The following lines describe the main mathematical steps, 

that accompany the backpropagation phase.  

We will return to the formula defining the cost function: 

c = −(P - )2 

We develop the formula further by making P more 

explicit: 

 

The final aim is to minimise the cost function, so its 

derivative is calculated: 

 

This will be used to update the prediction P through the 

formula: 

 

Since P, as the neural network under consideration is 

constituted, depends on the three parameters w1, w2 and 

b, it is appropriate to specify for each parameter its 

update function: 

 

 

 

The relevant cost functions must then be calculated. We 

now calculate: 

 

  

By the chain rule, a rule for calculating the derivative of a 

function composed of two derivable functions, we obtain: 

 

The last expression is still a function composed of two 

derivable functions; therefore, the chain rule applies 

again. For simplicity, the following substitution is 

applied: 

 

At this point, the result is: 

 

The calculation is now carried out: 
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Similarly, for parameters w2 and b we obtain: 

 

 
These will be the cost functions for each parameter to be 

entered into the functions for updating the values, 

resulting in the updating of a new prediction P.    

This procedure is absolutely generalizable also in the case 

of artificial neural networks consisting of several nodes, 

the chain rule would always be used but with more 

derivatives to be computed. By repeating the two steps of 

the backpropagation-error algorithm over and over again, 

the parameters will be more and more accurate, allowing 

for a gradually increasing accuracy.  However, after a 

certain number of iterations on the training data, the 

generalisation stops improving, the results on the test data 

stall and then begin to deteriorate. The model is in an 

overfitting condition, a situation in which the model is 

starting to learn patterns that are specific to the training 

data but not relevant to new data. In the underfitting 

situation, the model is not yet able to distinguish between 

one class and another, so there is low optimization and 

generalization. 

 

 

4. Convolutional neural Netoworks 

Convolutional neural networks (or CNNs) are artificial 

neural networks specialised in solving problems in the 

domain of image classification and computer vision in 

general. CNNs can be considered the main example of a 

deep neural network and an indispensable tool for the use 

of deep learning: in fact, you can see how computer 

vision and deep learning are now more interconnected 

than ever.  

Another advantage of CNNs is that they adapt very well 

to the technique of transfer learning, a tool that makes it 

possible to reuse previously trained networks on large 

datasets to solve similar or more specific tasks. In this 

way, it is not necessary to go and train all the parameters 

of all layers of the network, but only the last layers, i.e. 

those that deal with the actual classification. 

Convolution is a very efficient solution to the problem of 

the difficulty of processing images, as before CNNs, time-

consuming methods were used to extract the characteristic 

features of the objects to be identified within the image 

and the entire image had to be evaluated, while with 

convolution it is possible to recognise specific patterns 

delimited in a portion of the image.  

Convolutional neural networks introduce new types of 

layers that have the ability to learn to recognise specific 

patterns in the image independently of their position, thus 

being able to find them in other images in different areas, 

and to decrease the complexity of the network through a 

smaller number of parameters. 

The typical layers that make up a convolutional neural 

network are explained below.  

An example architecture of a CNN is shown in figure 5. 

 

 
Figure 5:  Architecture of CNNs 

 

First of all, as can be seen in figure 5, two main macro-

areas can be identified in the CNN.  The first part is 

responsible for feature extraction and is composed of the 

input layer (the image to be processed) and a more or less 

deep succession of hidden layers that are not necessarily 

connected node by node. The last include layers that 

perform convolution operations, often accompanied by an 

activation function, including the ReLu function, and 

layers that perform the downsampling operation called 

pooling layers. These layers, within the network, can be 

placed at will in the order and quantity that best suits the 

task to be solved. The result generated by each layer is 

called a feature map and this in turn contributes to the 

input of the next layer. 

The second part, on the other side, is to all intents and 

purposes a classical neural network, essentially composed 

therefore of Dense layers, also called Fully Connected 

layers because of their structure of completely connected 

nodes, and these layers take care of the actual 

classification starting from the extracted features, which 

will constitute the input of this neural network. This input 

layer can be followed by any number of layers and at the 

end there will be an output layer that will provide the 

class, to which what is represented in the original image 

belongs, with the highest probability. 

The convolution layer is the fundamental layer of the 

network and is normally the first layer to appear. Its 

objective, as mentioned several times throughout this 

chapter, is to identify features, patterns, which may be 

curves, angles, lines, edges, textures, etc.  

The convolution can be performed several times within 

the network, each time focusing on identifying a feature 

of the object in the image. The more times the 

convolution is performed, the greater the complexity of 

the feature.  

We start from the fact that the input image is treated as a 

set of pixels defined by numbers organised in a matrix of 

three dimensions, with each dimension representing one 

of the three colours of the RGB encoding. Suppose we are 

dealing with 32 x 32 RGB encoded images: this means 

that we will have matrices of size 32 x 32 x 3.  

At this point, the convolution operation can be performed 

using a small matrix, called a filter or kernel, normally of 

size 2x2 or 3x3. This will run through the entire matrix of 

the input image and at each step will compute the matrix 

product between the input and filter pixels. 
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This operation allows the extraction of a specific feature 

in each area of the image. Since it is repeated several 

times, an even deeper pattern will be detected in the next 

step. Once a pattern has been recognised, the 

convolutional network will be able to recognise it 

anywhere in the image.  

The parameters that define the rules of how the kernel's 

scrolling over the input matrix and the size of the output 

(called hyperparameters) are essentially four: 

Kernel size: typically the kernel is 2x2, 3x3, or 5x5 

pixels. The size of the kernel determines the size of the 

output;  

Step (stride): defines the number of pixels the kernel 

moves on the input matrix at each iteration. Higher values 

move the filter with larger jumps and a smaller output 

matrix is generated;  

Depth: corresponds to the number of filters used on the 

same input matrix to detect different features. If N filters 

were used, the same procedure had to be repeated N 

times, obtaining N feature maps, creating an output N 

deep;  

Zero-Padding: it has been said that kernel size and pitch 

affect the width and height of the output volume: the 

kernel goes through the input matrix anchoring itself to 

the input cell with its centre; therefore, for example, as far 

as the first cell at the top left of the input is concerned, the 

filter matrix would be outside the input. 

By configuring these hyperparameters, an output volume 

is obtained, in which the height and width are calculated 

from the relations: 
 

 
 

 
 

Where Hout and Wout define the output height and width, 

Hin and Win the input height and width, K the kernel 

size, P the padding thickness, S the stride value. The 

depth of the output volume (depth) is defined by the 

number of filters used NF.   

The values K, P and S must be chosen such that the 

relations return an integer value. ReLu layer  

The ReLu layer is a layer that is usually placed after the 

convolutional layer and is responsible for applying the 

ReLu activation function, thus introducing a non-linearity 

factor to the network.  

The layer receives as input the numerical values that are 

produced by the output volume generated by the 

convolution operation and applies the following function 

to each one: 

 

In this mode, a matrix of the same size as the previous 

one is generated, all negative values are cancelled out 

while the positive ones remain unchanged.  

Introducing these ReLu levels, convolutional neural 

networks perform much better: the network is able to train 

much faster without significantly affecting the accuracy of 

the results. Faster learning has a great influence on the 

performance of large models trained on large datasets. 

The pooling layer is a layer often alternated in models 

with the convolution and ReLu layers and its objective is 

to progressively reduce the spatial dimension of the 

matrix. This operation is also known as downsampling, 

indicating an under-sampling, i.e. a reduction in the 

number of parameters to be processed and thus in 

processing costs.  

What is obtained from the succession of convolution 

operations and the application of the ReLu activation 

function is a matrix or matrices of values in which no 

negative numbers are present and which faithfully 

summarise the characteristics of the image. To make the 

model even more precise, the pooling method can be 

used. 

The pooling operation takes place in a similar way to the 

convolution operation, i.e. through a filter that sweeps the 

entire input matrix, but the operation that is performed 

between the input matrix and the pooling filter is to 

aggregate the values within the filter by bringing out the 

largest value among them. In this way, the next smaller 

layer will include only the largest values among those 

processed by the filter. The pooling operation is applied 

separately to each feature map.  

To be precise, this operation just described is the max-

pooling operation. As an alternative to the max-pooling 

operation, the average pooling operation is sometimes 

used, which instead of considering the maximum value of 

the portion of the matrix considered, considers its average 

value. In the most common cases, however, the max-

pooling operation is preferred to the average pooling 

operation.  

A lot of information is lost in the pooling layer, but there 

are also a number of advantages for CNN. Pooling layers 

help to reduce complexity, improve efficiency, and limit 

the risk of overfitting. 

The layer fully connected is, as mentioned before, a 

traditional multilayer neural network, in which therefore 

each neuron of the previous layer is connected to each 

neuron of the following layer, which uses, in more detail, 

an activation function called "Softmax" in the output 

layer.   

The output of the convolutional, ReLu and pool layers 

represents the high-level features of the input image. The 

purpose of the fully connected layer is to use these 

features to classify the input image into various classes 

according to the training dataset. 

The output of the convolution and pooling layers 

mentioned earlier are 3D volumes, a fully connected layer 

on the other hand involves a vector of numbers. So first 

the output of the final layer is flattened into a vector and 

this becomes the input for the fully connected layer.   

At the output layer of the fully connected layer, the 

Softmax activation function is finally executed, which 

takes a vector of arbitrary scores with real values and 

"flattens" it to a vector of values between zero and one 
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that sums to one: thus, the sum of the output probabilities 

of the fully connected layer is 1. 

In the context of convolutional neural networks, to try to 

counteract the problem of overfitting, a phenomenon 

described in the previous chapter, the most popular 

technique is to insert dropout layers between the hidden 

layers of the network. Although the dropout method is 

effective in preventing overfitting, it is not always 

sufficient. This is because overfitting occurs when the 

network trains on little data. The only way to avoid the 

problem of overfitting is to have an infinite amount of 

training data, in which case the network would be training 

on every possible instance of the phenomenon. 

Therefore, another method to reduce overfitting is to use 

more training data, but in an image classification task 

obtaining new data, i.e. new images, is not easy.  

This is precisely what the technique of data augmentation 

deals with: artificially increasing the size of one's dataset. 

The technique involves, starting from an image, the 

reproduction of further images through random 

transformation of existing ones, which are subsequently 

supplied to the model as input. The aim is not to make the 

network process the same image twice, but to make it 

analyze images in different positions and rotations to 

improve its generalization capability.  

The main transformations include operations such as 

rotation, translation, reflection, zooming, image flipping, 

but also cropping, adding noise, deformation, blurring. 

 

 

5. Case Study 

The work performed focused on computer vision 

technologies from which knowledge and best practices 

were extracted and transferred to the application domain. 

In order to realise the goal of machine vision-based 

electrical component detection, the idea was to identify 

electrical components by category by creating an image 

database as the foundation of deep learning-based object 

detection. Collecting real photos containing most of the 

electronic components to build a training dataset is 

difficult. Moreover, even experts are sometimes unable to 

identify all devices by categories by checking the 

labelling. For these reasons, we thought of using virtual 

components extracted from the network in order to have 

additional information to better classify the components. 

Electrical components come in a wide variety of 

suppliers, shapes and sizes, so no universal dataset is 

currently available. The labelling work will have to be 

done through a GUI with even non-expert operators, so it 

takes time and effort to complete the job. For these 

reasons, it was decided to create management software to 

prepare the environment for the collection of the valuable 

data to be classified. The database of classified images 

was used for training by combining real and virtual data. 

The label information is clearly visible on all devices and 

the text content is very complete, especially in the 

accompanying information extracted from the network, 

for our detection objective (identification of electrical 

components) the screen-printed identification number is 

sufficient, other information is sometimes redundant but 

useful for links to datasheets. 

Virtual images are visually almost identical to the real 

thing. The synthetic data of the virtual image carries the 

part identifier the name of the parts and the category; 

therefore, for the labelling phase of deep learning it is 

easier to classify them, even a user with no electrical 

knowledge can directly name the label facilitated by the 

searches and classification done on the network. 

Combining virtual and real data to form a training dataset 

can reduce the cost of data collection and improve the 

generalisation of the learning model. For the hierarchies 

of categories associated with the electrical component 

identifier, it is also thought to evaluate similarity 

reasoning techniques to be used in support of 

classification algorithms to make category prediction, it is 

believed that Lin's measure of similarity, previously 

introduced by Resnik, between concepts based on the 

notion of information content exploiting a taxonomy, or 

domain ontology, can be used. A domain ontology, and in 

particular a taxonomy of concepts organised using the 

ISA hierarchy, and a lexical database are considered. 

In the labelling phase, the bounding box is used to 

describe the position of the target in the object detection. 

The bounding box is a polygon that can be determined by 

identifying the x and y coordinates of the upper left 

corner and the height and width (bx, by, bh, bw). The 

input image is divided into a grid of S × S cells for each 

object in the image one grid cell is 'responsible' for its 

prediction, each grid cell predicts bounding and category 

probabilities. 

In particular for both performance and network suitability 

in the specific implementation goal, we evaluated the 

YOLO V3 network which uses 53-layer Darknet-53 as a 

feature extractor. The two most important parts of 

Darknet-53 are Convolutional and ResNet. The 1 × 1 

convolutional can compress the number of channels in the 

feature map to reduce the model calculation and 

parameters. Multiple 3 × 3 convolution results in non-

linear for a large filter convolution layer, making the 

decision function more resolvable. ResNet can make the 

network deeper, faster, easier to optimise, with fewer 

parameters and less complexity than other models. 

Therefore, it can solve the deep network problem in 

degradation and learning difficulty. Darknet-53 performs 

a total of five dimensionality reductions on operations. 

The number of rows and columns belong to the feature 

matrix of each dimension. The output for the reduction 

becomes half while the depth doubles from the previous 

one. The figure below shows the corresponding feature 

output of the different dimension reduction modules of 

the entire Darknet-53. 

By means of the Darknet-53 feature output diagram, we 

can see that each pixel on the feature map of different 

layers represents different dimensions of the original 

image. For example, each pixel in the 104 × 104 × 128 

image represents the 4 × 4 size of the original 416 × 416 

image. At the same time, each pixel in the 13 × 13 × 1023 
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image represents the 32 × 32 size of the original 416 × 

416 image. For this reason, the network chose 52 × 52 × 

256, 26 × 26 × 512 and 13 × 13 × 1024, three layers of 

feature output for upsampling and feature fusion to detect 

large, medium and small objects of different sizes. This 

solution fits very well in our implementation goal as it 

needs to detect components belonging to a large frame, 

while the size of the components is small. In the 

preprocessing phase, each image used for training has 

different resolutions and different sizes due to the 

different acquisition method. Therefore, before training, 

the network resizes the image size to 416 × 416. This 

facilitates the label content in the original image. 

For the analysis of the entire assembly or electrical panel 

to be monitored, we thought of using change detection 

algorithms that are best suited to the verification of 

generalised contexts without excluding the components, 

but which return a change of state, in particular we are 

evaluating two methods: deterministic and probabilistic, 

both of which refer to a definition of image as a set of 

random variables linked to regions of the plane, in the 

case of 2D images.  

The diagram below represents the proposed image 

recognition pipeline, a training dataset is proposed 

divided into two categories for the realisation of the 

model learning dataset: 

 
Figure 6:  Model of methodology used 

 

The first category is defined by real images taken in the 

field in environments with different illumination and 

different scenarios. The filming tools can be of different 

types, and the images should contain differences in size 

and resolution 

The second category is defined by virtual images taken 

from the online repositories of distributors selected by the 

Lucana Sistemi partner (Bticino, Siemens, ABB, Gewiss, 

Scheneider Electric, Lovato). 

The two categories are used to train the deep learning 

network, the error between the predicted value and the 

actual value is calculated by the loss function (MSE, 

MAE, Huber Loss), using the backpropagation of the 

error in the neural network and constantly adjusting the 

weight of each convolutional layer of the network to 

complete the training of the model. With this process 

schematised in the figure representing the algorithm's 

pipeline, the loss function determines the direction in 

which the model is trained. 

In the context of evaluating similarity reasoning 

techniques to be used in support of classification 

algorithms for category prediction, it is believed that Lin's 

measure of similarity, previously introduced by Resnik, 

between concepts based on the notion of information 

content that exploits a taxonomy, or domain ontology 

[Resnik, Lin], can be used. This is illustrated below. 

Let us consider a domain ontology, and in particular a 

taxonomy of concepts organised using the ISA hierarchy, 

and a lexical database such as, for example, WordNet 

[Fellbaum]. In addition to nouns, WordNet contains 

verbs, adjectives and adverbs, each associated with its 

own natural language definition and frequency. 

Frequencies are estimated using huge text collections, 

such as the Brown Corpus of American English. In 

WordNet, concepts are organised not only through ISA 

relations, but also through Part-of relations, SynSet, etc.. 

Lin's similarity measure, in particular, exploits the ISA 

relation. It is assumed that given a domain ontology of 

concepts organised via the ISA relation, each concept c is 

associated with a probability p(c) defined as: 

 
p(c) = freq(c)/M 

where freq(c) is the frequency of c for example in the 

Brown Corpus of American English and M is the total 

number of concepts in the corpus. Such an ontology, once 

a probability has been associated with each concept, is 

called a weighted ontology.  

After the probabilities have been associated with the 

concepts, the initial assumption of the approach is that the 

information content of a concept c, IC(c), is defined as: 
IC(c) = - log p (c) 

i.e. as the probability of a concept increases, its 

information content decreases, so the more abstract a 

concept is, the lower its information content (the root of 

the taxonomy is the most general concept that has 

probability 1). According to this approach, the similarity 

of two hierarchically organised concepts is given by the 

maximum information content shared by the concepts, i.e. 

the more information content the two concepts share, the 

more similar they are. Given two concepts, the maximum 

information content shared by them in the taxonomy is the 

least upper bound (lub), i.e. the most specific 

superconcept of both concepts in the taxonomy. Under 

these assumptions, the similarity between two concepts c1 

and c2, Sim(c1,c2), is defined by the information content 

of the lub of the concepts divided by the sum of the 

information contents of the concepts we wish to compare: 

 
Sim(c1,c2) = 2 log p(lub(c1,c2))/(log p(c1) + log p(c2)) 

A number of natural language processing (NLP) 

techniques such as word counting, latent semantic 

analysis (LSA), word vector representation and character 
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sequence analysis can be used to calculate similarity 

between lemmas. 

Once word vectors have been created, cosine distance can 

be used to calculate the similarity between lemmas. 

Cosine distance is a measure of the similarity between 

two vectors in a multidimensional space and is defined as 

the cosine of the angle between the two vectors. The more 

similar the two vectors are, the closer the angle between 

them approaches zero and the value of the cosine distance 

approaches 1. 

It should be noted that using machine learning models to 

create the vector representation of words may require 

adequate data preparation and training of the model on a 

large text dataset. 

 

6. Conclusion and future works 

The object detection and image classification model 

described has proven to have good efficiency in that 

satisfactory results were always provided. Convolutional 

neural networks have therefore proved the quality of their 

technique, confirming the ability of machine learning, and 

in particular deep learning, to be a technology capable of 

supporting the human decision-making level.  The 

computer vision model realised in this work could be 

adaptable in other areas related to industry and in the 

development of new implementations and functionalities. 

In particular, a natural evolution of this application could 

be the real time monitoring of the status of switches, so 

that it could be used in the field of security, where, for 

example, it is checked that the installations are all 

disconnected before carrying out maintenance operations, 

and also for the maintenance of the installations 

themselves. 

As a future development, this computer vision technology 

could be implemented in industry for the monitoring of 

component production in high-speed continuous cycles 

for the detection of component anomalies. In addition, 

other possibilities open up for increasing knowledge in 

favour of industrial processes by bringing together other 

methodologies also tested in this work, such as category 

prediction and taxonomic classification of lemmas, there 

is no doubt that integrating the two solutions would 

significantly increase the knowledge base. 
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