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Abstract: - Software testing is an important phase in software development. Faults can cause serious and costly 

problems if they are neglected in software development, such as programs used in the fields of medicine, aviation, 

and military operations. A genetic algorithm (GA) is an evolutionary algorithm that can help to generate test data 

very quickly and accurately, generating test cases that fit the software under test. in this research, we generate 

test data for software that contains pointers using GA where these test data are valid for the software regardless 

of which path to use. The results of the experiments demonstrate that the Genetic Algorithm gives good results 

once used as test data generators to test pointer data type; such that the test target in all programs under test is 

reached which means that the percentage of the coverage was (100 %). Also, it shows the effect of using pointers 

in the source code, where the results were less in terms of execution time and the6 same in terms of the number 

of generations for a program that does not contain pointers than the same program which contains pointers. 

 

Key-Words: -Software testing (SWT), genetic algorithm (GA), pointers, automated software test data generation, 

metaheuristic search. 

 

 

1 Introduction 
The production of reliable programs on a large scale 

is one of the fundamental requirements in the 

application of computers to the difficult challenges of 

the present. 

In a software development project, bugs can happen 

at any stage of development. The final code, in 

addition to the faults that arise during coding 

activities, is likely to contain some requirements and 

design errors that need to be fixed to ensure the 

quality of the final software. 

 

Software testing is one of the main methods in 

practice to increase the programmer's confidence in 

the reliability and correctness of the finished 

software. It may happen that the incorrectly tested 

program runs perfectly for a while before some input 

data reveals the presence of problems. Therefore, it is 

necessary to test software in a professional manner so 

that any error can be detected during runtime and 

corrected before delivery. Software testing is a 

process in which a program is executed with the 

objective of finding errors. The goal is to detect the 

bugs in the program by running the software with 

some inputs and evaluating the quality of the program 

activity and outputs against the desired outputs. 

Existing test data that achieves high code coverage 

provides high confidence in the reliability of the 

program under test [1]. 

The most important analytical quality assurance 

measure for software is testing. Often more than 50 

% of the total development resources are used for 

testing without contributing to the functionality of the 

product [2]. The critical activity for test quality is test 

case design to cover structural test coverage criteria 

such as branch coverage. Manual generation of test 

data is laborious and costs time and resources. 

Nevertheless, this activity is fundamental and 

unavoidable for any organization , as a sufficient 

level of testing is increasingly required or 

recommended by internationally recognized 

standards for security and quality assurance. 

Systematic and automated testing is required to 

subsequently increase the efficiency and 

effectiveness of testing and reduce the overall cost of 

software system development. Automated software 
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testing can significantly reduce the cost of software 

development and test runs would be much faster [3]. 

 

In general, searching for an input datum in a search 

space (domain/set) of possible input datum is treated 

as an optimization and improvement problem. 

Therefore, we use the genetic algorithm as an 

optimization technique to test a program that contains 

pointer data types by having GA automatically 

generate test data that satisfy a certain objective 

within these programs. 

 

This paper investigates and evaluates the 

performance of GA for generating test data for a 

variable of data type Pointer in different cases (i.e. 

multiple programs with different structures). The 

results show that the proposed algorithm has high 

performance in terms of coverage and runtime.  

First, an overview of the current research on test data 

generation in software testing is given. Then, the 

proposed heuristics-based algorithms are presented. 

Subsequently, the experimental setup and the 

programs used for testing under the proposed 

algorithms are presented and evaluated. Finally, new 

insights are gained and future recommendations for 

action are derived. 

 

2 Related Work 
Software testing is considered one of the most critical 

phases in the software development life cycle and the 

efficiency of a software test is directly related to the 

code coverage. The degree of code coverage is 

strongly influenced by the test data, which is why the 

provision of efficient techniques for the automatic 

generation of test data is a significant aspect .Despite 

the sizable literature on software quality assurance 

techniques, testing remains one of the most widely 

practiced and studied approaches for assessing and 

improving software quality [24]. There are many 

types of software testing techniques; each act toward 

a different purpose. These techniques can be 

categorized into black-box testing (functional) [15], 

white–box testing (structural), and grey-box testing 

as in [16-18], or into random and dynamic test data 

generation as in[19, 20, 23]. Dynamic test data 

generation has been a popular way for generating test 

cases based on the execution of a specific program to 

obtain the information needed to build an acceptable 

test case. In black-box testing, known as functional 

testing, test cases are built only on functional 

requirements of the system under test without taking 

into account the internal structure of the program[15]. 

The goal of this kind of testing is to notice when the 

program’s input/output behaving in disagreement 

with its specification. Black box testing is 

inexpensive, and no implementation knowledge is 

required. White-box testing considers the internal 

structure of the program. The structure of the 

software is examined by executing the code. In this 

type of testing, a tester must have full knowledge 

about source code [21]; Grey-Box testing integrate 

both white box and black-box testing. The program 

in this technique is tested with poor knowledge of 

the internal structure as well as a basic understanding 

of the system [4].  

 

Random test data generation involves randomly 

selecting test data until suitable data is found. This is 

a simple method that only searches the search space 

by randomly selecting solutions and evaluating their 

suitability. Although it is a relatively unspecific 

strategy, it can be implemented with little effort [21]. 

 

Hill Climbing is a well-known local search algorithm 

where a solution is improved, with a beginning point, 

a randomly picked initial solution from the search 

space, this solution's surroundings are explored 

and evaluated. Once a more suitable solution is 

identified, it replaces the current solution. The 

neighborhood of the new solution is then 

investigated. If a better solution is found, the current 

solution is replaced again, until no improved 

neighbors can be found for the current solution.  Hill 

climbing is simple and yields quick results. However, 

the search can easily lead to suboptimal results if hill 

climbing leads to a solution that is locally but not 

globally optimal [5]. 

Simulated Annealing (SA) is premised on the idea of 

the chemical process of annealing technique 

involving heating and controlled cooling of a 

material to increase the size of its crystals and reduce 

its defects. The structural properties of the cooled 

solid depend on the rate of cooling [6]. SA extends 

Hill Climbing such that it accepts poor solutions with 

low probability. SA allows for more freedom of 

movement inside the search space. As the search 

advances, the chance of accepting an inferior solution 

(p) changes, and is expressed as [6,7] : 

 

p=e-δ/t                                                              (1) 

 

Where t is a control parameter known as the 

temperature, and δ indicates the difference in 

objective value between the current solution and the 

neighboring inferior solution being considered. 

a cooling schedule is used to regulate the 

temperature. The temperature is first set high to allow 

unfettered mobility about the search space and to 

eliminate reliance on the starting solution. The 

temperature decreases as the search goes. If cooling 
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occurs too quickly, however, not enough of the 

search space will be examined, increasing the 

possibilities of the search becoming stuck in local 

optima. 

Swarm Intelligence it is simulating the natural 

phenomenon of bird flocking or fish schooling. The 

particle swarm optimization algorithm starts with a 

population of random potential solutions, which can 

be considered as particles, each particle is given a 

random velocity and transported through the problem 

space iteratively. It is drawn to the site where the 

particle has achieved the best fitness so far, as well as 

the location where the best fitness has been attained 

across the entire population [8]. 

3 Proposed Methodology 
In order to create test data to test code which contains 

pointer data type, GA was used; more specifically, 

this section describes fitness function design, 

structural testing criteria, pointer data type, hardware 

and system software, and finally, optimization tool in 

MATLAB [14]. 

In terms of fitness function design, the fitness value 

for an individual (test data) is computed using the 

number of levels covered by the individual b local 

distance at the control dependent node where control 

flow diverging away from the target node [10,11]. 

Therefore, the fitness function consists of two main 

components as follows: 

 

3.1 Approximation level calculation (AL) 
Considering Equation 2 which presents AL 

calculation [10,11], where Dn is the number of 

dependent nodes and En is the number of executed 

nodes. Dependent nodes present the number of 

control dependent nodes for the target node, and 

executed nodes present the number of control 

dependent nodes successfully executed in the manner 

we want. 

 

AL = (Dn – En) – 1                                           (2) 

 

3.2 Local distance calculation (LD) 
Referring to Equation 3 presents the local distance 

(LD) calculation, and Equation 4 which presents the 

normalized PD, respectively [10,11] and [12]. 

Further, the PD will be computed according to 

Korel's distance function in Table 1. The normalized 

PD is between 0 and 1. Also, Equation 5 presents the 

final fitness function (FFF).  

 

LD = Normalize (PD)    (3) 

Normalize (PD) = 1 - 1.001-PD   (4) 

FFF= AL + LD     (5) 

 

In terms of structural testing design, node–oriented 

criteria we will use in this paper to cover branches for 

if statement, and controlling number of iteration for 

while statement. The branch criteria goal is to cover 

specific nodes of the control flow graph (CFG). 

Considering every possible result of all decisions or 

branches to be covered at least once; means that all 

control flows are executed. It implicitly means 

statement coverage, since every statement is reached 

if all branches in a program are executed once [13]. 

 

 Regarding the pointer data type, this study will test 

code that contains pointers; more precisely, pointers 

to an integer are thoroughly tested within the if 

statement and while statement, so we will consider 

several cases as follows: 

 

IF – conditional statement: IF statement, IF-ELSE, 

and IF nested in multiple levels will be tested. 

WHILE – statement: where the test target is finding 

out a test data  such that the total number of iterations 

executed equals the total number of expected 

iterations, this is used in WHILE and nested WHILE. 

The combination between WHILE and IF statement: 

the test target exits in a while – statement and also in 

if – statement together. 

In terms of hardware and system software, the 

experiments were implemented using an integer 

vector. The characteristics of the device are presented 

as follows: Windows 10 Pro as an operating system, 

2.8GHz core-i7 CPU, 8GB RAM, and the test 

programs are implemented in MATLAB version 

R2018a. 

In terms of optimization tool in MATLAB, it is a 

toolbox used to implement a variety of algorithms 

(solvers) in MATLAB, which uses its matrix 

functions to build a set of versatile tools for 

implementing a wide range of solver methods, in our 

case, it will be GA [14]. 
 

Table 1 The Korel's Distance Functions [22] 

 

Branch Predicate Branch Function 

A = B ABS(A-B) 

A ≠ B K-ABS(A-B) 
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A < B (A-B) + K 

A ≤ B (A-B) 

A > B (B – A)+K 

A ≥ B (B – A) 

X OR Y MIN(Distance(X), Distance(Y)) 

X AND Y MAX(Distance(X), Distance(Y)) 

4 Experimental Results  
Considering the experiment design, six C++ 

programs were selected as benchmarks, Table 2. 

below presents a description of programs under test, 

to evaluate the performance of GA as a test data 

generator in order to test code that contains pointers, 

each program has its unique set of attributes. For each 

program, corresponding CFG is constructed and the 

test target is selected. Then, an instrumented version 

is developed of the considered programs in 

MATLAB. 

 

 

 

 

 

 

Table 2 Programs under Test 

 

Program name Description 

Exception 

A single if-statement in which the condition 

(predicate) is a simple predicate. The target exits 

inside the if-statement. 

Evaluation: 

A single if-else-statement in which the condition 

is a simple predicate. The else-part contains the 

target. 

Bonus 

Two while-statements which are placed within a 

if-statement where all of the conditions are 

straightforward predicates 

Checkclass 

A single if-statement inside a while-statement 

where all of the conditions are straightforward 

predicates. The test target exits inside the if-

statement. 

Minmax 

One if-statement and while-statement contain two 

sequential if-statements. In which all the 

conditions are simple/primitive. The target is see 

whether the number of executed iterations equal 

to the expected iterations number or not. 

Triangle 

Three sequential if-statements and three nested if-

statements in which all the conditions are 

compound predicates. The target exits inside the 

second nested if-statement. 

 

Considering evaluation parameters, the GA's 

performance when used to create test data 

automatically was evaluated by the complexity that 

is represented by the amount of time, it takes to 

generate a test case as well as the average number of 

required iterations and the accuracy represented by 

branch coverage. The averaging is carried out after 

the algorithm has been executed 20 times and the 

values are calculated for each and every program 

unit. Each simulation trial is performed six times, 

wherein a new population size each time is selected 

to be either 10, 30, 50, 70, 90, or 110. After each 

execution, in addition to the coverage percentage, we 

recorded the required average number of iterations 

and average execution time.. It is required from the 

GA algorithm to guarantee a high branch coverage 

(accuracy) favourably a 100%, and to have the 

minimum average iterations as well as the shortest 

execution time to maintain a complexity as low as 

possible. 

Figure 1 shows the resulting number of iterations and 

execution time, respectively, both measured against 

various population sizes. We can easily see the 

proportional effect of increasing the population size 

on the execution time and its advantage when it 

comes to improving the number of required 

Abdallah Alhameedyeen et al.
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 63 Volume 6, 2021



iterations, that because if the population size has a 

few chromosomes, the genetic algorithm has a few 

possibilities to perform crossover and only a small 

part of the search space is explored. On the other 

hand, if the population size is too high, a huge part of 

the search space is explored, so more time is needed 

to find the solution. 

 

 

(a) Exception Program 

 

(b) Evaluation Program 

 

(c) Triangle Program 

 

 

(d) Bouns Program 

 

(e) check class Program 

0

10

20

30

40

50

0

50

100

150

200

250

10 30 50 70 90 110 Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

N
u

m
b

er
 o

f 
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

0

50

100

0

200

400

600

800

10 30 50 70 90 110

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

N
u

m
b

er
 o

f 
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

0

50

100

150

0

50

100

150

10 30 50 70 90 110 Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

N
u

m
b

er
 o

f 
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

0

20

40

60

0

50

100

150

10 30 50 70 90 110 Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

N
u

m
b

er
 o

f 
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

0

500

1000

1500

0

50

100

150

200

10 30 50 70 90 110

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

N
u

m
b

er
 o

f 
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

Abdallah Alhameedyeen et al.
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 64 Volume 6, 2021



 

(f) Minmax Program 

 

Fig.1 Average No. of Iterations GA. 

 

Figure 2 shows the behavior of GA from generation 

to generation for the Exception program in two cases 

with and without pointers included in the source 

code. As we can see, the presence of a pointer does 

not affect the number of iterations needed to reach the 

solution, while it increases the execution time. 

 

 

(a) GA Average Number of Iterations for Exception 

Program with and without pointers in source code 

 

(b) GA Execution Time for Exception Program with and 

without pointers in source code 

 

Fig.2 Average No. of Iterations and Execution Time 

for GA Code with pointers (solid) and Code with 

pointers (dotted) 

 

5 Conclusion and Further Research 
In this paper, GA is introduced as a search technique 

to determine the required test data by branching 

criteria to test the pointer data type. The experimental 

results show that this was achieved in such a way that 

the test objective is met in all the programs under test. 

This means that the coverage rate is (100%). 

Furthermore, when the GA uses an integer vector to 

search for the input domain for the required test sets 

among several test programs, it gives good results; 

the number of generations was an average number for 

all crossover types (single-point, double-point) 

because the number of possible crossover points 

integer vector is too small. 

 

Experiments have shown that the single point and 

double-point crossover in the case of the integer 

vector give similar results according to 

the  generations' average number in all programs 

under test. Moreover, the comparison between a 

program that contains pointers and the same program 

without pointers shows that the presence of pointers 

does not affect the number of generations, but it 

affects the execution time. Further, The fundamental 

advantage of utilizing the GA as a search technique 

is its power; because it starts the search from a crowd 

of points rather than a single point, the chances of 

being trapped at a local optimum are reduced. 

Besides, it can also be used for wide range of 

optimization problems, it provides a good technique 
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for multi-modal problems because GA returns a suite 

of solutions. 

 

Our future work includes enhancing the fitness 

function that guides the GA. Also, attempting to 

develop new operators such as new crossover 

operators make the search and optimization process 

easier and faster. 

Finally, the execution of pointers for complex types 

such as linked list will be considered. 
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