
Goal-Oriented Testing for Pointer Data Type

ABDALLAH

ALHAMEEDYEEN

Department of Computer

Science

University of Jordan

Amman

JORDAN

Abdallah.alhameedyeen@g

mail.com

MOHAMMAD

ALSHRAIDEH

Department of Computer

Science

 University of Jordan

Amman,

JORDAN

mshridah@ju.edu.jo

HAZEM HIARY

Department of Computer

Science

University of Jordan

Amman,

JORDAN

hazemh@ju.edu.jo

Abstract: - Software testing is an important phase in software development. Faults can cause serious and costly

problems if they are neglected in software development, such as programs used in the fields of medicine, aviation,

and military operations. A genetic algorithm (GA) is an evolutionary algorithm that can help to generate test data

very quickly and accurately, generating test cases that fit the software under test. in this research, we generate

test data for software that contains pointers using GA where these test data are valid for the software regardless

of which path to use. The results of the experiments demonstrate that the Genetic Algorithm gives good results

once used as test data generators to test pointer data type; such that the test target in all programs under test is

reached which means that the percentage of the coverage was (100 %). Also, it shows the effect of using pointers

in the source code, where the results were less in terms of execution time and the6 same in terms of the number

of generations for a program that does not contain pointers than the same program which contains pointers.

Key-Words: -Software testing (SWT), genetic algorithm (GA), pointers, automated software test data generation,

metaheuristic search.

1 Introduction
The production of reliable programs on a large scale

is one of the fundamental requirements in the

application of computers to the difficult challenges of

the present.

In a software development project, bugs can happen

at any stage of development. The final code, in

addition to the faults that arise during coding

activities, is likely to contain some requirements and

design errors that need to be fixed to ensure the

quality of the final software.

Software testing is one of the main methods in

practice to increase the programmer's confidence in

the reliability and correctness of the finished

software. It may happen that the incorrectly tested

program runs perfectly for a while before some input

data reveals the presence of problems. Therefore, it is

necessary to test software in a professional manner so

that any error can be detected during runtime and

corrected before delivery. Software testing is a

process in which a program is executed with the

objective of finding errors. The goal is to detect the

bugs in the program by running the software with

some inputs and evaluating the quality of the program

activity and outputs against the desired outputs.

Existing test data that achieves high code coverage

provides high confidence in the reliability of the

program under test [1].

The most important analytical quality assurance

measure for software is testing. Often more than 50

% of the total development resources are used for

testing without contributing to the functionality of the

product [2]. The critical activity for test quality is test

case design to cover structural test coverage criteria

such as branch coverage. Manual generation of test

data is laborious and costs time and resources.

Nevertheless, this activity is fundamental and

unavoidable for any organization , as a sufficient

level of testing is increasingly required or

recommended by internationally recognized

standards for security and quality assurance.

Systematic and automated testing is required to

subsequently increase the efficiency and

effectiveness of testing and reduce the overall cost of

software system development. Automated software

Abdallah Alhameedyeen et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 60 Volume 6, 2021

mailto:Abdallah.alhameedyeen@gmail.com
mailto:Abdallah.alhameedyeen@gmail.com
mailto:mshridah@ju.edu.jo
mailto:hazemh@ju.edu.jo

testing can significantly reduce the cost of software

development and test runs would be much faster [3].

In general, searching for an input datum in a search

space (domain/set) of possible input datum is treated

as an optimization and improvement problem.

Therefore, we use the genetic algorithm as an

optimization technique to test a program that contains

pointer data types by having GA automatically

generate test data that satisfy a certain objective

within these programs.

This paper investigates and evaluates the

performance of GA for generating test data for a

variable of data type Pointer in different cases (i.e.

multiple programs with different structures). The

results show that the proposed algorithm has high

performance in terms of coverage and runtime.

First, an overview of the current research on test data

generation in software testing is given. Then, the

proposed heuristics-based algorithms are presented.

Subsequently, the experimental setup and the

programs used for testing under the proposed

algorithms are presented and evaluated. Finally, new

insights are gained and future recommendations for

action are derived.

2 Related Work
Software testing is considered one of the most critical

phases in the software development life cycle and the

efficiency of a software test is directly related to the

code coverage. The degree of code coverage is

strongly influenced by the test data, which is why the

provision of efficient techniques for the automatic

generation of test data is a significant aspect .Despite

the sizable literature on software quality assurance

techniques, testing remains one of the most widely

practiced and studied approaches for assessing and

improving software quality [24]. There are many

types of software testing techniques; each act toward

a different purpose. These techniques can be

categorized into black-box testing (functional) [15],

white–box testing (structural), and grey-box testing

as in [16-18], or into random and dynamic test data

generation as in[19, 20, 23]. Dynamic test data

generation has been a popular way for generating test

cases based on the execution of a specific program to

obtain the information needed to build an acceptable

test case. In black-box testing, known as functional

testing, test cases are built only on functional

requirements of the system under test without taking

into account the internal structure of the program[15].

The goal of this kind of testing is to notice when the

program’s input/output behaving in disagreement

with its specification. Black box testing is

inexpensive, and no implementation knowledge is

required. White-box testing considers the internal

structure of the program. The structure of the

software is examined by executing the code. In this

type of testing, a tester must have full knowledge

about source code [21]; Grey-Box testing integrate

both white box and black-box testing. The program

in this technique is tested with poor knowledge of

the internal structure as well as a basic understanding

of the system [4].

Random test data generation involves randomly

selecting test data until suitable data is found. This is

a simple method that only searches the search space

by randomly selecting solutions and evaluating their

suitability. Although it is a relatively unspecific

strategy, it can be implemented with little effort [21].

Hill Climbing is a well-known local search algorithm

where a solution is improved, with a beginning point,

a randomly picked initial solution from the search

space, this solution's surroundings are explored

and evaluated. Once a more suitable solution is

identified, it replaces the current solution. The

neighborhood of the new solution is then

investigated. If a better solution is found, the current

solution is replaced again, until no improved

neighbors can be found for the current solution. Hill

climbing is simple and yields quick results. However,

the search can easily lead to suboptimal results if hill

climbing leads to a solution that is locally but not

globally optimal [5].

Simulated Annealing (SA) is premised on the idea of

the chemical process of annealing technique

involving heating and controlled cooling of a

material to increase the size of its crystals and reduce

its defects. The structural properties of the cooled

solid depend on the rate of cooling [6]. SA extends

Hill Climbing such that it accepts poor solutions with

low probability. SA allows for more freedom of

movement inside the search space. As the search

advances, the chance of accepting an inferior solution

(p) changes, and is expressed as [6,7] :

p=e-δ/t (1)

Where t is a control parameter known as the

temperature, and δ indicates the difference in

objective value between the current solution and the

neighboring inferior solution being considered.

a cooling schedule is used to regulate the

temperature. The temperature is first set high to allow

unfettered mobility about the search space and to

eliminate reliance on the starting solution. The

temperature decreases as the search goes. If cooling

Abdallah Alhameedyeen et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 61 Volume 6, 2021

occurs too quickly, however, not enough of the

search space will be examined, increasing the

possibilities of the search becoming stuck in local

optima.

Swarm Intelligence it is simulating the natural

phenomenon of bird flocking or fish schooling. The

particle swarm optimization algorithm starts with a

population of random potential solutions, which can

be considered as particles, each particle is given a

random velocity and transported through the problem

space iteratively. It is drawn to the site where the

particle has achieved the best fitness so far, as well as

the location where the best fitness has been attained

across the entire population [8].

3 Proposed Methodology
In order to create test data to test code which contains

pointer data type, GA was used; more specifically,

this section describes fitness function design,

structural testing criteria, pointer data type, hardware

and system software, and finally, optimization tool in

MATLAB [14].

In terms of fitness function design, the fitness value

for an individual (test data) is computed using the

number of levels covered by the individual b local

distance at the control dependent node where control

flow diverging away from the target node [10,11].

Therefore, the fitness function consists of two main

components as follows:

3.1 Approximation level calculation (AL)
Considering Equation 2 which presents AL

calculation [10,11], where Dn is the number of

dependent nodes and En is the number of executed

nodes. Dependent nodes present the number of

control dependent nodes for the target node, and

executed nodes present the number of control

dependent nodes successfully executed in the manner

we want.

AL = (Dn – En) – 1 (2)

3.2 Local distance calculation (LD)
Referring to Equation 3 presents the local distance

(LD) calculation, and Equation 4 which presents the

normalized PD, respectively [10,11] and [12].

Further, the PD will be computed according to

Korel's distance function in Table 1. The normalized

PD is between 0 and 1. Also, Equation 5 presents the

final fitness function (FFF).

LD = Normalize (PD) (3)

Normalize (PD) = 1 - 1.001-PD (4)

FFF= AL + LD (5)

In terms of structural testing design, node–oriented

criteria we will use in this paper to cover branches for

if statement, and controlling number of iteration for

while statement. The branch criteria goal is to cover

specific nodes of the control flow graph (CFG).

Considering every possible result of all decisions or

branches to be covered at least once; means that all

control flows are executed. It implicitly means

statement coverage, since every statement is reached

if all branches in a program are executed once [13].

 Regarding the pointer data type, this study will test

code that contains pointers; more precisely, pointers

to an integer are thoroughly tested within the if

statement and while statement, so we will consider

several cases as follows:

IF – conditional statement: IF statement, IF-ELSE,

and IF nested in multiple levels will be tested.

WHILE – statement: where the test target is finding

out a test data such that the total number of iterations

executed equals the total number of expected

iterations, this is used in WHILE and nested WHILE.

The combination between WHILE and IF statement:

the test target exits in a while – statement and also in

if – statement together.

In terms of hardware and system software, the

experiments were implemented using an integer

vector. The characteristics of the device are presented

as follows: Windows 10 Pro as an operating system,

2.8GHz core-i7 CPU, 8GB RAM, and the test

programs are implemented in MATLAB version

R2018a.

In terms of optimization tool in MATLAB, it is a

toolbox used to implement a variety of algorithms

(solvers) in MATLAB, which uses its matrix

functions to build a set of versatile tools for

implementing a wide range of solver methods, in our

case, it will be GA [14].

Table 1 The Korel's Distance Functions [22]

Branch Predicate Branch Function

A = B ABS(A-B)

A ≠ B K-ABS(A-B)

Abdallah Alhameedyeen et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 62 Volume 6, 2021

A < B (A-B) + K

A ≤ B (A-B)

A > B (B – A)+K

A ≥ B (B – A)

X OR Y MIN(Distance(X), Distance(Y))

X AND Y MAX(Distance(X), Distance(Y))

4 Experimental Results
Considering the experiment design, six C++

programs were selected as benchmarks, Table 2.

below presents a description of programs under test,

to evaluate the performance of GA as a test data

generator in order to test code that contains pointers,

each program has its unique set of attributes. For each

program, corresponding CFG is constructed and the

test target is selected. Then, an instrumented version

is developed of the considered programs in

MATLAB.

Table 2 Programs under Test

Program name Description

Exception

A single if-statement in which the condition

(predicate) is a simple predicate. The target exits

inside the if-statement.

Evaluation:

A single if-else-statement in which the condition

is a simple predicate. The else-part contains the

target.

Bonus

Two while-statements which are placed within a

if-statement where all of the conditions are

straightforward predicates

Checkclass

A single if-statement inside a while-statement

where all of the conditions are straightforward

predicates. The test target exits inside the if-

statement.

Minmax

One if-statement and while-statement contain two

sequential if-statements. In which all the

conditions are simple/primitive. The target is see

whether the number of executed iterations equal

to the expected iterations number or not.

Triangle

Three sequential if-statements and three nested if-

statements in which all the conditions are

compound predicates. The target exits inside the

second nested if-statement.

Considering evaluation parameters, the GA's

performance when used to create test data

automatically was evaluated by the complexity that

is represented by the amount of time, it takes to

generate a test case as well as the average number of

required iterations and the accuracy represented by

branch coverage. The averaging is carried out after

the algorithm has been executed 20 times and the

values are calculated for each and every program

unit. Each simulation trial is performed six times,

wherein a new population size each time is selected

to be either 10, 30, 50, 70, 90, or 110. After each

execution, in addition to the coverage percentage, we

recorded the required average number of iterations

and average execution time.. It is required from the

GA algorithm to guarantee a high branch coverage

(accuracy) favourably a 100%, and to have the

minimum average iterations as well as the shortest

execution time to maintain a complexity as low as

possible.

Figure 1 shows the resulting number of iterations and

execution time, respectively, both measured against

various population sizes. We can easily see the

proportional effect of increasing the population size

on the execution time and its advantage when it

comes to improving the number of required

Abdallah Alhameedyeen et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 63 Volume 6, 2021

iterations, that because if the population size has a

few chromosomes, the genetic algorithm has a few

possibilities to perform crossover and only a small

part of the search space is explored. On the other

hand, if the population size is too high, a huge part of

the search space is explored, so more time is needed

to find the solution.

(a) Exception Program

(b) Evaluation Program

(c) Triangle Program

(d) Bouns Program

(e) check class Program

0

10

20

30

40

50

0

50

100

150

200

250

10 30 50 70 90 110 Ex
ec

u
ti

o
n

 T
im

e
(m

s)

N
u

m
b

er
 o

f
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

0

50

100

0

200

400

600

800

10 30 50 70 90 110

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

N
u

m
b

er
 o

f
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

0

50

100

150

0

50

100

150

10 30 50 70 90 110 Ex
ec

u
ti

o
n

 T
im

e
(m

s)

N
u

m
b

er
 o

f
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

0

20

40

60

0

50

100

150

10 30 50 70 90 110 Ex
ec

u
ti

o
n

 T
im

e
(m

s)

N
u

m
b

er
 o

f
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

0

500

1000

1500

0

50

100

150

200

10 30 50 70 90 110

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

N
u

m
b

er
 o

f
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

Abdallah Alhameedyeen et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 64 Volume 6, 2021

(f) Minmax Program

Fig.1 Average No. of Iterations GA.

Figure 2 shows the behavior of GA from generation

to generation for the Exception program in two cases

with and without pointers included in the source

code. As we can see, the presence of a pointer does

not affect the number of iterations needed to reach the

solution, while it increases the execution time.

(a) GA Average Number of Iterations for Exception

Program with and without pointers in source code

(b) GA Execution Time for Exception Program with and

without pointers in source code

Fig.2 Average No. of Iterations and Execution Time

for GA Code with pointers (solid) and Code with

pointers (dotted)

5 Conclusion and Further Research
In this paper, GA is introduced as a search technique

to determine the required test data by branching

criteria to test the pointer data type. The experimental

results show that this was achieved in such a way that

the test objective is met in all the programs under test.

This means that the coverage rate is (100%).

Furthermore, when the GA uses an integer vector to

search for the input domain for the required test sets

among several test programs, it gives good results;

the number of generations was an average number for

all crossover types (single-point, double-point)

because the number of possible crossover points

integer vector is too small.

Experiments have shown that the single point and

double-point crossover in the case of the integer

vector give similar results according to

the generations' average number in all programs

under test. Moreover, the comparison between a

program that contains pointers and the same program

without pointers shows that the presence of pointers

does not affect the number of generations, but it

affects the execution time. Further, The fundamental

advantage of utilizing the GA as a search technique

is its power; because it starts the search from a crowd

of points rather than a single point, the chances of

being trapped at a local optimum are reduced.

Besides, it can also be used for wide range of

optimization problems, it provides a good technique

0

10

20

30

40

50

60

0

20

40

60

80

100

10 30 50 70 90 110

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

N
u

m
b

er
 o

f
It

er
at

io
n

s

Population Size

Average Number of Iterations

Execution Time

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19

N
u

m
b

e
r

o
f

It
e

ra
ti

o
n

s

Runs
Exception Exception_with_Pointer

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Runs
Exception Exception_with_Pointer

Abdallah Alhameedyeen et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 65 Volume 6, 2021

for multi-modal problems because GA returns a suite

of solutions.

Our future work includes enhancing the fitness

function that guides the GA. Also, attempting to

develop new operators such as new crossover

operators make the search and optimization process

easier and faster.

Finally, the execution of pointers for complex types

such as linked list will be considered.

References:

[1] Hailpern B. and Santhanam P. (2002), Software

debugging, testing and verification,IBM

Systems Journal, Volume 41, Number 1, Pages

4-12.

[2] Beizer B. (1990), Software Testing Techniques,

2nd edition, London: Thomson Computer Press.

[3] Korel B. (1992), Dynamic method for software

test data generation. Software Testing,

Verification, and Reliability, Volume 2, Number

4, Pages 203-213.

[4] Duran J. and Ntafos S. (1984), An Evaluation of

Random Testing, IEEE Transactions on

Software Engineering, Volume 10, Number 4,

Pages 438-444.

[5] Harman M. and McMinn P. (2007), A

theoretical &empirical analysis of evolutionary

testing and hill-climbing for structural test data

generation, Proceedings of the 2007

international symposium on Software testing

and analysis, London, United Kingdom, July 9-

12,Pages 73-83.

[6] McMinn P. (2004),Search-based Software Test

Data Generation: a Survey, Software Testing,

Verification & Reliability, Volume 14, Number

2, Pages 105-156.

[7] Kirkpatrick S., Gellat C. D. and Vecchi M. P.

(1983), Optimization by Simulated Annealing,

Science, Volume 220, Number 4598, Pages 671-

680.

[8] Trelea, I. C. (2003). The particle swarm

optimization algorithm: convergence analysis

and parameter selection. Information processing

letters, Volume 85, Number 6, 31 March 2003,

Pages 317-325

[9] Mitchell M. (1996), An Introduction to Genetic

Algorithms, Cambridge, London:

Massachusetts Institute of Technology, 1st

edition.

[10] Wegener J., Baresel A. and Sthamer H. (2001),

Evolutionary test environment for automatic

structural testing, Information and Software

Technology, Volume 43, Number 14, Pages

841-854.

[11] Wegener J., Buhr K. and Pohlheim H. (2002),

Automatic test data generation for structural

testing of embedded software systemsby

evolutionary testing, In Proceedings of the

Genetic and Evolutionary Computation

Conference (GECCO), New York, USA, July 9-

13, Pages 1233-1240.

[12] Wang Y., Bai Z., Du W, Qin Y.and Liu

X.(2008), Fitness calculation approach for the

switch-case construct in evolutionary

testing,Proceedings of the 10th annual

conference on Genetic and evolutionary

computation, Atlanta, Georgia, USA, July 12-

16, Pages 1767-1774.

[13] Bottaci L. (2005), Use of branch cost functions

to diversify the search for test data, Proceedings

of the UK Software Testing Workshop,

University of Sheffield, UK, September 5-6,

Pages 151-163.

[14] The MathWorks (2009),Optimization with

MATLAB and the Genetic Algorithm and

Direct Search Toolbox, Version 7.4 (R2007a),

[15] Almasri, N; Tahat, L.; Alshraideh, M., (2016)

Maintenance-Oriented Classifications of EFSM

Transitions.Journal of Software 11(1), pp. 64-

79.

[16] Alshraideh, M., Mahafzah, B., Al-Sharaeh, S.

(2012).A multiple-population genetic algorithm

for branch coverage test data generation.

Software Quality Journal, 19(3), pp. 489-513.

[17] Alshraideh, M. .(2008), A complete automation

of unit testing for javascript programs. Journal

of Computer Science, 4(12), pp. 1012-1027.

[18] Alshraideh, M., Bottaci, L., Mahafzah, B.

(2010). Using program data-state scarcity to

guide automatic test data generation. Software

Quality Journal, 18(1), pp. 109-144.

[19] Boyapati, C., Khurshid, S., & Marinov, D.

(2002, July). Korat:Automated testing based on

Java predicates. In ACM SIGSOFT Software

Engineering Notes (Vol. 27, No. 4, pp. 123-

133).

[20] Hashim J., Alshraideh, M., Mahafzah, B.

(2013). Branch coverage testing using theanti-

random technique. Journal on Software

Engineering, Oct-Dec.

[21] Khan, M. E., & Khan, F. (2012). A Comparative

Study of White Box, Black Box and Grey Box

Testing Techniques. Editorial Preface, 3(6),12-

15.

[22] Korel B. (1990). Automated Software Test Data

Generation, IEEE Transactions on Software

Engineering, 16(8), 870-879.

[23] Allawi H., Al Manaseer W., Al Shraideh M..

(2020).A greedy particle swarm optimization

Abdallah Alhameedyeen et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 66 Volume 6, 2021

https://www.sciencedirect.com/science/journal/00200190/85/6
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235642%232001%23999569985%23271817%23FLA%23&_cdi=5642&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=085f06e8646be286f212531a3b176923

(GPSO) algorithm for testing real-world smart

card applications,International Journal on

Software Tools for Technology Transfer 22(2),

183- 194.

[24] Yenigün, H., Yilmaz, C., & Ulrich, A. (2016).

Advances in test generation for testing software

and systems.

Creative Commons Attribution

License 4.0(Attribution 4.0

International ,CC BY 4.0)

This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

Abdallah Alhameedyeen et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 67 Volume 6, 2021

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

