
Language Interoperability in Control Network Programming

KOSTADIN KRATCHANOV, EFE ERGÜN

Department of Software Engineering

Yaşar University

Üniversite Cad. 37-39, Bornova, Izmir 35100

TURKEY

kostadin@kratchanov.net, efeergun96@gmail.com

Abstract: - Control Network Programming (CNP) is a programming paradigm which is being described with

the maxim “Primitives + Control Network = Control Network program”. It is a type of graphic programming.

The Control Network is a recursive system of graphs; it can be a purely descriptive specification of the problem

being solved. Clearly, ‘drawing’ the control network does not include any programming. The Primitives are

elementary, easily understandable and clearly specified actions. Ultimately, they have to be programmed.

Historically, they are usually coded in Free Pascal. The actual code of the primitives has never been considered

important. The essence of an “algorithm” is represented by its control network. CNP was always meant to be an

easy and fast approach for software application development that actually involves very little real

programming.

Language interoperability (using different languages in the same software project) is a distinguished current

trend in software development. It is even more important and natural in the case of CNP than for other

programming paradigms. Here, interoperability practically means the possibility to use primitives written in

various programming languages. The current report describes our first steps in creating applications using a

multi-language set of primitives. Most popular and interesting programming languages have been addressed:

Python, Java, and C. We show how to create applications with primitives written in those ‘non-native’

languages. We consider examples where the primitives in all those four programming languages are

simultaneously used (multiple-language CNP). We also discuss CNP programming without programming

(language-free CNP).

Key-Words: - Interoperability, Control Network Programming, CNP, programming languages, programming

paradigms, graphical programming, multi-language programming

1 Language interoperability in

modern programming practice
Programming language interoperability is the ability

of codes written in two or more programming

languages to interact as part of the same system.

Frequently, this involves passing messages and data

between potentially very different languages and

poses substantial problems. The concept has

attracted increasing attention in the recent years

(e.g., [1-5]). Its importance is widely recognized and

accepted.

There is a number of reasons why language

interoperability is highly desirable. For example, if a

programmer has to implement a specific feature that

has been already implemented in another language

the corresponding program component can simply

be reused. Some languages are especially fit and

effective in implementing specific features and often

have emerged to target particular problem domains.

Rich third-party packages for certain languages are

available. Also, every programmer usually has a

preferred language in which their expertise and

efficiency is better. There are hundreds of

programming languages used and constantly being

developed thus making language interoperability a

necessity. Programmers with experience and

preferences in different programming languages can

easier team up for solving complex tasks.

Several tools and approaches have emerged to

address different aspects of cross-language

communication. Prominent examples are virtual

machines and most notably the Java Virtual

Machine (JVM) and .NET’s Common Language

Runtime (CLR), and markup languages notably the

Extensible Markup Language (XML) and Starlink.

Cross-platform integration between the virtual

machine platforms has also been addressed. A

virtual machine suggests the usage of an

intermediate language such that a programmer can

build a component using the language of their

choice and this component will be compiled into the

intermediate language; then an application written

possibly in a different language can use this

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 1 Volume 6, 2021

mailto:kostadin@kratchanov.net
mailto:efeergun96@gmail.com

Fig. 1 Structure of a CNP application

component without knowing what language was

originally used to create the component. While the

above approaches aim at integrating compiled

languages, special challenges presents the

interoperability with interpreted languages.

An important aspect of language interoperability

is the seamless exchange of data between the

components which means ensuring that the type

systems of the corresponding languages are

respected and that information is not lost when data

moves between statically-typed and dynamically-

typed languages. Typical methods for achieving

this is the usage of metadata and standardized type

systems.

As W. Toll [6] notices, “… developers are

frequently looking for integrated developer

environments (IDEs) that … offer a broad range of

features and supported languages…. Some IDEs

support practically every language known to man

either natively or by extending capabilities with

plug-ins or add-ons”. Phrases like multi-language

platforms and multi-language IDEs are being used.

2 Control Network Programming
Control Network Programming, or CNP means

“programming through control networks” [7]. The

following subsection is a short introduction to the

main ideas and features of this novel programming

approach.

2.1 Introduction to CNP
The fundamental part of a CNP application is the

Control Network (CN). It is a system of graphs

called subnets. The subnets can call each other. One

of them is identified as the main subnet. Each subnet

consists of nodes (states) and arrows. A subnet has a

unique initial state, and a number of final nodes.

The arrows of a subnet are labeled with sequences

of simple actions called primitives. Primitives are

defined in the second major part of the application.

Thus, a general maxim has been deducted:

“Primitives + Control Network = Control Network

Programming”.

The CN may be of nondeterministic nature; an

interpreter (inference engine) must implement a

strategy for search/inference/computation in the CN.

The system attempts to find a path from the initial

node of the main subnet to a final node, executing

the primitives along the way. This process may

involve invoking other subnets. The execution of a

primitive might result in failure in which case the

system starts executing the already passed

primitives of the arrow backwards. Upon the return

to the source node of the arrow another outgoing

arrow is attempted. In case no more un-attempted

arrows exist the control backtracks; the

corresponding actions are revoked. No interpreter

exists in reality, instead, the CN is “compiled” into

an intermediate program which embodies the CN

together with the search process on it.

More details about CNP and the technicalities of

the “execution” of a CN program can be found, e.g.,

in [7-11].

For better clarifying the further exposition, it

would be helpful to present here the general

structure of a CNP application. It is shown in Fig. 1.

The CN is drawn and edited in the graph editor of

the CNP IDE SpiderCNP, with the final result of

this process being the file SpiderNet.txt which

specifies the CN. The primitives (and the data

structures) are defined in the file SpiderUnit.pas. As

emphasized earlier, CNP = Primitives + CN, and the

two files mentioned are the ones that the CNP

programmer produces.

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 2 Volume 6, 2021

Fig. 3 Two possible executions

Fig. 2b CN – Subnet Room

2.2 Monkey and Banana – an exemplary

CNP application

Fig. 2a CN – main subnet

The Monkey and Banana problem is a famous toy

problem in AI. As an exemplary CNP application,

we show below a possible CNP solution of a simple

version of this problem. Later, we will apply

interoperability to this exemplary problem. The

screenshots are from the SpiderCNP IDE.

The presented CNP solution is purely

declarative. The CN consists of two subnets shown

in Fig. 2. Subnet Room of the CN corresponds to the

plan of the room. Three positions in the room are

identified: the door, a window, and the middle of the

room. It is assumed that the banana hangs from the

ceiling in the middle of the room.

Two possible executions are shown in Fig. 3.

The system asks where the initial position of the

monkey is; the answer is that the monkey is at the

door. Then the system asks where initially the box

is, and the answer is “Window” or “Door”,

respectively. Next the system finds two possible

solutions to the problem for the specified initial

positions of the monkey and the box in the second

case, and one solution in the first.

Five primitives are used: Init, Push, Walk, Climb,

and Print. They are defined in the file

SpiderUnit.pas. The primitives are coded in Pascal.

Their code is shown in Fig. 4.

The Monkey and Banana example above has

been implemented in a ‘classical’ CNP manner. The

implementation is declarative – the Room subnet is,

in essence, a plan of the room with specification of

the actions that the monkey can perform moving

from one particular point in the room to another.

The search for a solution is completely left for the

system.

In the example, all five primitives used are

written in Pascal. As a demonstration of

interoperability in CNP, a modified version of this

example is presented in Section 5.2 where the

primitives are written in four different programming

languages: one primitive in Pascal, Python and Java

each, and two primitives in C.

3 Language interoperability in CNP
CNP has been developed as an approach to

programming that actually involves almost no

coding. Language interoperability is intrinsically

natural to it. We discuss below this nature of CNP

and describe how in practice

interoperability can be implemented in it.

3.1 CNP is fast application development with

almost no programming
CNP is a programming paradigm that integrates and

extends declarative programming, imperative

programming, and programming rule-based systems

(e.g., [7]). Although universal, it is especially

effective when solving problems which can be

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 3 Volume 6, 2021

Fig. 4b Primitives II

Fig. 4a Primitives I

naturally represented in a graph-like manner, and/or

whose descriptions exhibit nondeterminism or

randomness. It is a genuine graphical programming.

As already discussed, its essence can be summarized

by the maxim “Primitives + Control Network =

Control Network program”. The Control Network

(CN) is a recursive system of graphs; it can be a

purely descriptive specification of the problem.

Clearly, it does not include any programming. The

Primitives are the imperative part of the CN

program.

CNP was created, and has always been applied,

with the vision that the primitives are elementary,

easily understandable and clearly specified actions.

Ultimately, they have to be programmed (coded).

Historically, they are usually coded in the Free

Pascal language used in the Lazarus IDE [14-17], or

in Delphi Pascal. However, the actual code of the

primitives has never been considered important. The

essence of an algorithm” is represented by its CN.

This is a main concept underlying CNP. A CN

program should be “natural”, easily understandable,

easily verifiable and easily testable by the user. We

actually don’t often use the phrase CNP

programmer but rather CNP user. There is almost no

programming (coding) in the usual sense involved

in the process of developing a CNP application.

Generally, the development process is for the

user to describe the problem through the CN using

some simple, elementary primitives. The main

stated advantage of CNP is that the development

process is easy, fast, and easily verifiable. Basically,

the CNP is not considered to be a “real”

programming. It is more like “assembling”,

describing a CN. Even if some primitives must be

coded this is definitely not a heavy programming.

In particular, if the problem in hand is

nondeterministic, the user does not have to care

about organizing the search. The “execution” of the

CN is in fact itself a built-in local search process.

Nondeterministic algorithms are directly

“programmed” [12]. Numerous “declarative” tools

for controlling and directing the built-in search are

available to the user.

From the very beginning [12], as a new

programming paradigm, CNP was meant to be an

easy and fast approach for software application

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 4 Volume 6, 2021

development that actually involves very little real

programming.

3.2 Programming without programming in

CNP (language-free CNP)
It was mentioned as early as in [8,12] that a CNP

user can use well documented libraries of simple

primitives typical for the corresponding problem

domain. In such a case, CNP will actually involve

no coding at all. Typically, CNP applications use a

very small number of primitives. Various references

to some CNP applications are listed in [7].

We can call this approach CNP without

programming, or language-free CNP.

We would like to remind here the ideas from the

famous early resource [13].

3.3 Interoperability in CNP (multiple-

language CNP)
Interoperability is even more important and natural

in the case of CNP than for other programming

paradigms.

Well, sometimes a user will still need to write

their own primitives or extend the used libraries of

primitives. Also, for some tasks a particular

programming language may be more appropriate

and efficient. Or simply, a user knows or prefers a

language different from Pascal. All the

consideration regarding language interoperability

from Section 1 will be generally applicable.

As discussed in [7], the most powerful currently

IDE for CNP is SpiderCNP, with versions for

Delphi and Lazarus. The corresponding

programming languages in which they are written

are Delphi Pascal and Free Pascal (Object Pascal).

Therefore, Pascal is the native language for writing

primitives. Unfortunately, popularity of Pascal has

decreased and currently Pascal only takes 10th - 12th

position in popularity. Our studies among students

using CNP regarding the difficulties they meet also

show that giving the users the opportunity to write

primitives using different programming languages is

of high priority in order to extend and simplify the

usage of CNP.

As mentioned already, a user developing CNP

applications needs programming almost exclusively

only when coding new primitives.

Interoperability in CNP practically means the

possibility to use primitives written in different

programming languages! The current report

describes our first steps in creating applications

using a multi-language set of primitives. The most

popular and interesting programming languages

have been addressed: Python, Java, C/C++.

The depth and sophistication of the

interoperability in CNP presented below is far from

the one achieved over years in the highly developed

today general area of programming interoperability

reviewed in Section 1. In particular this concerns the

issue of interchanging data between primitives of

different languages and between the primitives and

the main system written in Pascal. Future research

in this area is needed.

4 Using specific languages in CNP
The specifics of using some most popular [18]

programming languages (C, Python, and Java) to

write primitives in CNP are discussed below. As an

example, a CNP application is used which calculates

the well-known Body Mass Index (BMI) [19]. Two

primitives are used: BmiW and BmiWO. BmiW has

two integer parameters – the weight and the height

of a person; it calculates and prints the

corresponding BMI. BmiWO has a similar

functionality but has no parameters - the input data

is provided by the user. Actually, three projects have

been created – one for each of the three languages

considered. Both primitives in the corresponding

CNP solution are written in the same language. The

only purpose of the example chosen is to

demonstrate the usage of non-native programming

languages in CNP.

It should be emphasized that in all the three

projects, regardless of the programming language

used for writing the primitives, the CN remains the

same. This CN is shown in Fig. 5. The outputs

produced are also identical. Fig. 6 shows an

examplary output for these CNP applications.

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 5 Volume 6, 2021

Fig. 4 BMI – CN

Fig. 5 BMI – Output

4.1 C in CNP
The procedure for using primitives based on C

functions is the following. A C file, BMI.c without a

main section should be written, as illustrated below:

#include <stdio.h>
#include <stdlib.h>

void BmiWc(int kg, int cm){
 double m = cm;
 m = m / 100;
 double bmi = (kg / (m * m));
 printf("\n");
if(bmi < 19){
 printf(" Your BMI result is: %f.
You are: Thin ",bmi);
}else if(bmi < 25){
 printf(" Your BMI result is: %f.
You are: Healthy ",bmi);
}else if(bmi < 30){
 printf(" Your BMI result is: %f.
You are: Overweight ",bmi);
}else{
 printf(" Your BMI result is: %f.
You are: Obese ",bmi);
}
printf(" \n ");
}

void BmiWOc(){
int cm,kg;
printf("\n");
printf(" Please insert your weight in
kg : ");
scanf("%d" , &kg);
printf(" Please insert your height in
cm : ");
scanf("%d" , &cm);
BmiWc(kg,cm);

}

The C file is then compiled. For example, one

who has a GNU compiler on their PC can open the

Windows PowerShell at the same location where the

C file is saved, and type “gcc -c BMI.c“. This will

produce a file BMI.o which we must import into the

CNP primitive.

We now need to open our CNP project and

create a new unit, called here Unit1 which wraps the

created .o file into a Pascal unit [20] and looks as

shown below. Note that the library libmsvcrt is

required, as well as the unit CTypes.

unit Unit1;
{$mode objfpc}{$H+}
{$link Bmi.o}
{$linklib libmsvcrt}
interface
uses
 Classes, SysUtils, CTypes;
 procedure BmiWO; cdecl; external;
 procedure BmiW(kg : CTypes.cint32;m :
CTypes.cint32); cdecl; external;
implementation
end.

As a result, Pascal procedures BmiWO and BmiW

are defined which use the compiled already C

functions BmiWO and BmiW. No implementation

section for these procedures is needed.

Of course, the newly created unit Unit1 must be

added in the ‘uses’ section of SpiderUnit.pas file.

Now, we are ready to create our two primitives,

BmiWO and BmiW:

{&P}
procedure BmiWO;
 begin
 BmiWO;
 end;

{&P}
procedure BmiW(kg,cm:Integer);
 begin
 BmiW(kg,cm);
end;

These primitives can be used anywhere in the

CN as any other primitive.

4.2 Python in CNP
Python is a language very different from Pascal and

achieving interoperability with it is not easy. In our

approach explained below we use a feature of Free

Pascal which allows external programs to be run

inside Lazarus. This is achieved by importing a

Lazarus unit called ‘process’ which allows a string

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 6 Volume 6, 2021

to be run as if it is run in the program prompt [21,

22]. In our case this string will call the Python

interpreter.

We need to start with creating two Python

modules: BmiWO.py and BmiW.py whose codes are

given below.

BmiWO.py:
kg = int(input(' Please insert your
weight in kg '))
cm = int(input(' Please insert your
heigth in cm '))
m = (cm / 100)
bmi = (kg / (m * m))
print('\n')
if (bmi < 19):
 print(' Your BMI result is :' +
str(bmi) + '. You are: Thin ')
elif (bmi < 25):
 print(' Your BMI result is :' +
str(bmi) + '. You are: Healthy ')
elif (bmi < 30):
 print(' Your BMI result is :' +
str(bmi) + '. You are: Overweight ')
else:
 print(' Your BMI result is :' +
str(bmi) + '. You are: Obese ')

BmiW.py:
import sys
kg = sys.argv[1]
cm = sys.argv[2]
kg = int(kg)
cm = int(cm)
m = (cm / 100)
bmi = (kg / (m * m))
print('\n')
if (bmi < 19):
 print(' Your BMI result is :' +
str(bmi) + '. You are: Thin ')
elif (bmi < 25):
 print(' Your BMI result is :' +
str(bmi) + '. You are: Healthy ')
elif (bmi < 30):
 print(' Your BMI result is :' +
str(bmi) + '. You are: Overweight ')
else:
 print(' Your BMI result is :' +
str(bmi) + '. You are: Obese ')
print('\n ')

We are now ready to create in SpiderUnit.pas the

corresponding two primitives BmiWO and BmiW:

var
 r: TProcess;

implementation

 {&P}
 procedure BmiWO;
 begin
 r:= TProcess.Create(nil);

 r.Options:= r.Options +
[poWaitOnExit];
 r.CommandLine:='python ./BmiWO.py';
 r.Execute;
 r.Free;
 end;

 {&P}
 procedure BmiW(kg,cm:Integer);
 begin
 r:= TProcess.Create(nil);
 r.Options:= r.Options +
[poWaitOnExit];
 r.CommandLine:='python ./BmiW.py';
 r.Execute;
 r.Free;
 end;

Calling a process from Free Pascal is

implemented as follows. First, a null process is

created. [poWaitOnExit] is added to the options for

synchronization between the process and the

execution of the Pascal (CNP) program – the effect

of this option is that the Pascal program execution is

hold until the process terminates [23]. The

corresponding Python module is included in the

command line. After the execution of the process it

is freed.

It should be noted that the execution of the

Python primitive is rather slow as the process

involves invoking the Python interpreter.

4.3 Java in CNP

Our approach to interoperability with Java is

similar to the usage of Python in CNP. We

create a Java program and call it with TProcess

from Lazarus [21]. We wrap this process within

primitives so that it can be used in CNP.
The approach is illustrated with the BMI

example below.

BmiWO.java:
Scanner sc = new Scanner(System.in);
System.out.println("Please insert your
weight in kg");
int kg = sc.nextInt();
System.out.println("Please insert your
weight in cm");
int cm = sc.nextInt();
float m = cm;
m = m / 100;
float bmi = (kg / (m * m));
System.out.println("");
if(bmi < 19){
 System.out.println(" Thin ");
}else if(bmi < 25){
 System.out.println(" Healthy ");
}else if(bmi < 30){
 System.out.println(" Overweight ");

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 7 Volume 6, 2021

Fig. 6a New BMI calculator - CN

Fig. 6b New BMI calculator - Output

}else{
 System.out.println(" Obese ");
}
 System.out.println("");

 BmiW.java:
String kg = args[0];
String cm = args[1];
float m = Integer.parseInt(cm);
m = m / 100;
float bmi = ((Integer.parseInt(kg)) / (
m * m));
System.out.println("");
if(bmi < 19){
 System.out.println(" Thin ");
}else if(bmi < 25){
 System.out.println(" Healthy ");
}else if(bmi < 30){
 System.out.println(" Overweight ");
}else{
 System.out.println(" Obese ");
}
System.out.println("");

The extra step is the compilation of the .java files

and building the .jar files. Then these executable

files are wrapped within the primitives. The

synchronization of the external process is done

using the method explained for the case of Python

primitives. An excerpt from SpiderUnit.pas follows

where the two primitives BimWO and BimW are

defined.
var
 r: TProcess;

implementation

 {&P}
 procedure BmiWO;
 begin
 r:= TProcess.Create(nil);
 r.Options:= r.Options +
[poWaitOnExit];
 r.CommandLine:='java -jar
./BmiWO.jar';
 r.Execute;
 r.Free;
 end;

 {&P}
 procedure BmiW(kg,cm:Integer);
 begin
 r:= TProcess.Create(nil);
 r.Options:= r.Options +
[poWaitOnExit];
 r.CommandLine:='java -jar ./BmiW.jar
' + IntToStr(kg) + ' ' + IntToStr(cm);
 r.Execute;
 r.Free;
end;

5 Using different programming

languages in a single CNP application
All the primitives in the CNP application examples

in the previous section were written in the same

programming language which can be different from

Pascal. As a matter of fact, the examples illustrated

the usage of C, Python, or Java.

We show below that it is possible to use multiple

languages within the same CNP application. We

present below new versions of the BMI and

Monkey-and-Banana problems.

5.1 BMI app with primitives in three

different languages
Another BMI calculator is shown below. Its CN is

illustrated in Fig, 6.

Here, primitive GetValuesPas is written in

Pascal, primitive CalcBmiPy – in Python, and

primitive BmiResultJava – in Java. The file

SpiderUnit.pas is the following:

unit SpiderUnit;

interface

uses
 SysUtils, Classes, process, Syst;
 function SpiderSolutions : integer;
{ for CNP execution ! }

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 8 Volume 6, 2021

Fig. 7b – File BmiRes.java

var
 r: TProcess;
 s: TStringList;

implementation

 {&P}
 procedure GetValuesPas(var
kg,cm:string);
 begin
 Write(' Please insert your weight:
');
 ReadLn(kg);
 WriteLn();
 Write(' Please insert your height:
');
 ReadLn(cm);
 WriteLn();
 end;

 {&P}
 procedure CalcBmiPy(kg,cm: string; var
res:string);
 begin
 r:= TProcess.Create(nil);
 r.Options:= r.Options +
[poWaitOnExit,poUsePipes];
 r.CommandLine:='python ./BmiCalc.py '
+ kg +' '+ cm;
 r.Execute;
 s := TStringList.Create;
 s.LoadFromStream(r.Output);
 r.Free;
 res := s[0];
 end;

{&P}
procedure BmiResultJava(res:string);
begin
 r:= TProcess.Create(nil);
 r.Options:= r.Options +
[poWaitOnExit];
 r.CommandLine:='java -jar
./BmiRes.jar ' + res;
 r.Execute;
 r.Free;
end;

(*&N
*)

function SpiderSolutions : integer; {
for CNP execution ! }
 begin
 SpiderSolutions :=-123
 end;
end.

Data between primitives written in different

languages is passed using the feature TProcess in

Free Pascal [21] with option poUsePipes which

allows the usage of data from the output stream.

Data between primitives is passed as strings

imitating the system I/O. Option poWaitOnExit

makes the program wait until the current process

terminates which is vital for synchronization

between the primitives. Module BmiCalc.py is

shown in Fig. 7a, and file File BmiRes.java – in Fig.

7b.

Fig. 7a – Module BmiCalc.py

5.2 The Monkey-and-banana application

with primitives in four different languages

The ‘classical’, pure Pascal version of Monkey-

and-Banana was discussed in Section 2.2 above.

This new, multi-language version behaves

exactly as the ‘classical’, single language Pascal

version and has the same CN! Simply for

convenience of the exposition we have changed

the names of the primitives so that their new

names also indicate the language in which they

are written. The CN is specified in Fig. 8.
 The language in which the five primitives used

are written is as follows:

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 9 Volume 6, 2021

Fig. 8a New MB - main subnet

Fig. 8b New MB – Room subnet

- C for InitC and PrintC (because their

functions are simple and C is an

appropriate choice)

- Python for WalkPy (because it is easy to

pass strings directly between the main

system and Python)

- Pascal for PushPas (this is the most

complex action and it is convenient to

implement it in the native language of the

system)

- Java for ClimbJ (this is a relatively simple

primitive with a certain test)

Although our explanation above seems simple

and attractive, its actual implementation is not so

easy and straightforward as a developer would

desire. The problem lies in the exchange of data

between the primitives and the need of the CNP

system to keep information about the CN, the

current position of the execution and the possible

movement backwards. As we stated at the very

beginning, this report is only a first attempt into

realizing interoperability in CNP. It should be also

emphasized that the languages we use do not share a

common intermediate language and data system that

would support a proper deeper interoperability. As a

matter of fact, one of our languages (Python) is even

an interpreted language.

Our approach for using primitives written in a

language different from Pascal uses the guidelines

explained in Section 4. The complete code of the

discussed Monkey-and-Banana application is

presented in [24]. Below we only briefly discuss the

implementation of each of the primitives and the

communication between them and between the

primitives and the system.

Primitive InitC uses a C function initial. It

performs a dialogue with the user about the

positions of the monkey and the banana and stores

them a text file positions.txt. Then the primitive uses

some Pascal code to make the two positions known

within the system in order to be used later when

other primitives are invoked.

WalkPy uses two Python modules, walkFW and

walkBW, which imitate forward, respectively

backwards execution along the arrow.

PushPas is written in Pascal only. As any action

primitive in CNP it has forward and backward parts.

It also uses the file positions.txt and registers the

movement in steps.txt.

As known, primitives in CNP are either test

(condition) primitives, or action primitives [7, 11].

Action primitives have both a forward execution

part and a backwards execution part while the test

primitives do not need a backward execution part. It

is also possible to have more complicated primitives

of a combined nature. For our example, it would be

logical on the arrow from state Middle to RETURN

to use a simple test primitive ComparePositions

which checks if the positions of the monkey and the

box coincide, followed by an action primitive Climb

which registers the climbing step in the steps.txt file.

We have preferred to use a combined primitive

which includes both functions. Our primitive

ClimbJ uses the Java packages ClimbForw.java and

ClimbBack.java. The former amends

correspondingly the steps.txt file by appending the

climbing step. It also checks the positions of the

monkey and the banana. Correspondingly, the Java

code produces outputs 1 or 0. The Java code in

ClmbBack.java reverses the climbing action by

deleting the climbing step from steps.txt. Using the

TProcess feature, the primitive ClimbJ calls

ClimbForw.jar or ClimbBack.jar as necessary. It

also sets the value of the system variable Failure to

true or false depending on the output produced by

ClimbForw.jar where the test is performed. As a

result, if the position of the monkey is not identical

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 10 Volume 6, 2021

Fig. 9a Calculator + BMI - CN

to the position of the box the true value of the

system flag Failure will trigger backward

movement.

For clarity, the codes of primitive ClimbJ and

Java package climbforw.java are included below. By

the way, the example also illustrates both methods

for communication between different languages –

using external files (steps.txt), and using the system

output stream.

CNP primitive ClimbJ:

{&P}
procedure ClimbJ; //java
 begin
 // runs the java code
and reads the output. then uses the
data for decision.
 if forw then begin
 runn :=
TProcess.Create(nil);
 runn.Options:=
runn.Options +
[poWaitOnExit,poUsePipes];
 runn.CommandLine:='java
-jar ./ClimbForw.jar ';
 runn.Execute;
 sl :=
TStringList.Create;

sl.LoadFromStream(runn.Output);
 runn.Free;
 results:= sl[0];
 // decisions happens
here
 if results='1' then
Failure:= false else Failure:= true;
 end //forwards
else begin //backwards
 runn :=
TProcess.Create(nil);
 runn.Options:=
runn.Options + [poWaitOnExit];
 runn.CommandLine:='java
-jar ./ClimbBack.jar ';
 runn.Execute;
 runn.Free;
 end //backwards
 end; {Climb}

Java package climbforw.java:

package climbforw;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
public class ClimbForw {
public static void main(String[] args)
throws FileNotFoundException,
IOException {

 // reading the positions
 FileReader reader = new
FileReader("./positions.txt");
 BufferedReader br = new
BufferedReader(reader);
 String positions =
br.readLine();
 String[] array =
positions.split(" ");
 String monkeyPos = array[0];
 String boxPos = array[1];
 FileWriter fw = new
FileWriter("./steps.txt", true);
 BufferedWriter bw = new
BufferedWriter(fw);
 bw.newLine();
 bw.append("Climb");
 bw.newLine();
 bw.append(".");
 bw.close();
 if(monkeyPos.equals(boxPos)){
 System.out.println("1");
 }else {
 System.out.println("0");
 }
 }
}

Primitive printC simply calls the C function

printer which prints out the steps of the solution

from the file steps.txt. Both C functions initial and

printer are physically situated in the file newinit.c.

6 Calling external programs in CNP

At the end of this exposition we would like to

mention that it is possible, from a CN program, to

call an application which is completely external to

the CNP project.

In the example below, from a CNP application

we start the standard Windows calculator. This is

done by invoking the executable program calc.exe.

Of course, in a similar manner, we could call any

executable code. The CN of the particular CNP

project is given in Fig. 9a.

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 11 Volume 6, 2021

Fig. 9b Calculator + BMI - output

The application will start the standard

calculator, and then start also the BMI

calculator discussed earlier. The code of the

calculator primitive is shown below:

{&P}
procedure calculator;
begin
 r:= TProcess.Create(nil);
 r.CommandLine:='calc.exe';
 r.Execute;
 WriteLn();
 WriteLn(' Calculator is opened. ');
 WriteLn();
 r.Free;
end;

As in previous examples, the TProcess feature

[21] of Lazarus is used. This time, however, we

have not added the option [poWaitOnExit].
Therefore, the Windows calculator and the BMI
calculator are not synchronized and can be used
simultaneously in parallel. This can be seen in Fig.
9b.

7 Conclusions and further research
The basics of language interoperability for CNP

were developed and presented. The great

importance of interoperability for CNP was

emphasized and it was shown that the principles of

interoperability fit very naturally into the whole idea

of CNP. The usage of some most popular non-native

languages (C, Java, and Python) for coding the CNP

primitives was discussed in detail.

The languages addressed do not share any

common virtual machine or data representation. In

addition, Python is even an interpreted language. It

was shown that still their simultaneous usage is

possible. However, the interoperability achieved is

not deep enough, it is not seedless and strait

forward. Naturally, the execution speed of the

applications also suffered. CNP is, first of all, an

approach for easy and fast application development,

and the interoperability demonstrated contributes

substantially in this direction.

A mechanism for writing primitives in any of

these languages was described in detail. A method

for synchronizing the processes was shown. A few

different methods for exchanging data between

multiple-language primitives were explained.

This research is only a starting step in developing

effective methods for interoperability in CNP, as

well as studying the related

difficulties and restrictions.

Obviously, the work can be

extended to additional programming languages. The

first candidates in such a development could be C#,

C++, Visual Basic .NET [18] and Kotlin [25].

An important future step would be the

construction of CNP IDEs based on languages such

as C# and Java where a deeper interoperability

could be sought. Another direction for future efforts

could also be extending and integrating existing

popular advanced IDEs with means for CNP. One

more promising area for future efforts is the

development of online and cloud-based multi-

language CNP environments extending the work

reported in [7], as well as light-weight and stand-

alone CNP development tools and applications.

References:

[1] T. Malone, Interoperability in Programming

Languages, Scholarly Horizons: University

of Minnesota, Morris Undergraduate J.,
Vol.1, Iss.2, 2014. Available at:

https://digitalcommons.morris.umn.edu/cgi/vie

wcontent.cgi?article=1014&context=horizons.

[2] D. Chisnall, The Challenge of Cross-language

Interoperability, Communications of the ACM,

Vol.56, No.12, 2013, pp. 50-56. Available at:

https://cacm.acm.org/magazines/2013/12/16994

2-the-challenge-of-cross-language-

interoperability/fulltext.

[3] M. Enevoldsen, Object-Oriented Language

Interoperability (Master’s Thesis) Uni, of

Aarhus, 2004. Available at: http://users-cs.au.

dk/beta/eclipse/mbeOOLI.pdf.

[4] M. Fisher, et al, Java EE and .Net

Interoperability: Integration Strategies,

Patterns, and Best Practices, Prentice Hall,

2006.

[5] Application Interoperability: Microsoft .NET

and J2EE, Microsoft Press, 2004.

[6] W. Toll, Top 48 Integrated Developer

Environments (IDE’s) & Code Editors, 2014

[web blog]. Retrieved 16/07/2018 from

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 12 Volume 6, 2021

https://digitalcommons.morris.umn.edu/cgi/viewcontent.cgi?article=1014&context=horizons
https://digitalcommons.morris.umn.edu/cgi/viewcontent.cgi?article=1014&context=horizons
https://cacm.acm.org/magazines/2013/12/169942-the-challenge-of-cross-language-interoperability/fulltext
https://cacm.acm.org/magazines/2013/12/169942-the-challenge-of-cross-language-interoperability/fulltext
https://cacm.acm.org/magazines/2013/12/169942-the-challenge-of-cross-language-interoperability/fulltext

https://blog.profitbricks.com/top-integrated-

developer-environments-ides.

[7] K. Kratchanov, et al., Control network

programming development environments,

WSEAS Transactions on Computers, Vol.13,

No.1, 2014, pp. 645-659. Available at:

http://www.wseas.org/multimedia/journals/

computers/2014/a405705-098.pdf.
[8] K. Kratchanov, T.Golemanov, and

E.Golemanova, Control Network Programming,

In: Proc. 6th IEEE/ACIS Conf. on Computer

and Information Science (ICIS 2007), July

2007, Melbourne, Australia, 2007, pp. 1012-

1018. Available at:

https://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=4276516.

[9] K. Kratchanov, E.Golemanova, and

T.Golemanov, Control Network Programs and

Their Execution, In: Proc. 8th WSEAS Int. Conf.

on AI, Knowledge Engineering & Data Bases

(AIKED 2009), Feb 2009, Cambridge, UK,

2009, pp. 417-422. Available at:

http://www.wseas.us /e-library/conferences/

2009/cambridge/AIKED/ AIKED67.pdf.

[10] K. Kratchanov, et al., Implementing Search

Strategies in Winspider I: Introduction to

Control Network Programming and Search, In:

Stanev, I. and K. Grigorova (eds.): Knowledge-

Based Automated Software Engineering,

Cambridge Scholars Publ., 2012, pp. 87-113.

[11] K. Kratchanov, Syntax and Semantics for

Cinnamon Programming, Int.J. of Comp. Sci.

and Information Technology, Vol.9, No.5, 2017,

pp. 127-150. Available at:
http://aircconline.com/
ijcsit/V9N5/9517ijcsit10.pdf.

[12] K. Kratchanov, E. Golemanova, and T.

Golemanov, Control Network Programming

Illustrated: Solving Problems With Inherent

Graph-Like Structure, In: Proc. 7th IEEE/ACIS

Int. Conf. on Computer and Information Science

(ICIS 2008), May 2008, Portland, Oregon,

USA, 2008, pp. 453-459. Available at:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=4529861.

[13] J. Martin, Application Development Without

Programmers, Prentice-Hall, 1982.

[14] Lazarus. Retrieved 16/07/2016, from

https://www.lazarus-ide.org/.

[15] Lazarus Tutorial. Retrieved 16/07/2016,

from http://wiki.freepascal.org/

Lazarus_Tutorial.

[16] Lazarus and Free Pascal Wiki. Main Page.

Retrieved 16/07/2016, from

http://wiki.freepascal.org/.

[17] M. van Canneyt, et al, Lazarus. The

Complete Guide, Blaise Pascal Magazine, 2011.

[18] TIOBE. TIOBE Index for July 2018, 2018.

Retrieved 16/07.2018, from https://www.tiobe.

com/tiobe-index/.

[19] What is Body Mass Index (BMI)?, 2018.

Retrieved 16/7/2018, from https://www.news-

medical.net/health/What-is-Body-Mass-Index-

(BMI).aspx.

[20] G. Marcou, E. Engler, and A. Varnek, How

to use C code in Free Pascal projects, 2009.

Retrieved 16/07/2018, from ftp://ftp.freepascal.

org/fpc/docs-pdf/CinFreePascal.pdf.

[21] TProcess. Retrieved 16/07/2018, from

https://www.freepascal.org/docs-

html/fcl/process/tprocess.html.

[22] A. Aksoy, Lazarus ve Python Entegrasyonu

[web blog, in Turkish]. Retrieved 16/07/2018,

from http://gurmezin.com/lazarus-ve-python-

entegrasyonu/.

[23] TProcess. Options. Retrieved 16/07/2018,

from https://www.freepascal.org/docs-html/fcl/

process/tprocess.options.html.

[24] Control Network Programming. Retrieved

16/07/2018 from cnprogramming.com.

[25] M. Hyde, Why did Google replace Java

with Kotlin, and why only Kotlin but not other

languages? [web blog]. Retrieved 16/07/2018,

from https://www.quora.com/Why-did-Google-

replace-Java-with-Kotlin-and-why-only-Kotlin-

but-not-other-languages.

Kostadin Kratchanov, Efe Ergün
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 13 Volume 6, 2021

https://blog.profitbricks.com/top-integrated-developer-environments-ides
https://blog.profitbricks.com/top-integrated-developer-environments-ides
http://www.scopus.com/source/sourceInfo.url?sourceId=144885&origin=recordpage
http://www.wseas.org/multimedia/journals/%20computers/2014/a405705-098.pdf
http://www.wseas.org/multimedia/journals/%20computers/2014/a405705-098.pdf
https://ieeexplore.ieee.org/stamp/%20stamp.jsp?tp=&arnumber=4276516
https://ieeexplore.ieee.org/stamp/%20stamp.jsp?tp=&arnumber=4276516
http://aircconline.com/%20ijcsit/V9N5/9517ijcsit10.pdf
http://aircconline.com/%20ijcsit/V9N5/9517ijcsit10.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4529861
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4529861
https://www.lazarus-ide.org/
http://wiki.freepascal.org/%20Lazarus_Tutorial
http://wiki.freepascal.org/%20Lazarus_Tutorial
http://wiki.freepascal.org/
https://www.news-medical.net/health/What-is-Body-Mass-Index-(BMI).aspx
https://www.news-medical.net/health/What-is-Body-Mass-Index-(BMI).aspx
https://www.news-medical.net/health/What-is-Body-Mass-Index-(BMI).aspx
https://www.freepascal.org/docs-html/fcl/process/tprocess.html
https://www.freepascal.org/docs-html/fcl/process/tprocess.html
http://gurmezin.com/lazarus-ve-python-entegrasyonu/
http://gurmezin.com/lazarus-ve-python-entegrasyonu/
https://www.freepascal.org/docs-html/fcl/%20process/tprocess.options.html
https://www.freepascal.org/docs-html/fcl/%20process/tprocess.options.html
file:///C:/Users/kostadin.kratchanov/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/LCLNK8KV/cnprogramming.com
https://www.quora.com/Why-did-Google-replace-Java-with-Kotlin-and-why-only-Kotlin-but-not-other-languages
https://www.quora.com/Why-did-Google-replace-Java-with-Kotlin-and-why-only-Kotlin-but-not-other-languages
https://www.quora.com/Why-did-Google-replace-Java-with-Kotlin-and-why-only-Kotlin-but-not-other-languages
https://www.quora.com/Why-did-Google-replace-Java-with-Kotlin-and-why-only-Kotlin-but-not-other-languages
https://www.quora.com/Why-did-Google-replace-Java-with-Kotlin-and-why-only-Kotlin-but-not-other-languages
https://www.quora.com/Why-did-Google-replace-Java-with-Kotlin-and-why-only-Kotlin-but-not-other-languages

