
Parallelization and Optimization of Multiple Biological Sequence

Alignment Software Based on Social Behavior Model

PLAMENKA BOROVSKA

Department of Informatics

Technical University of Sofia

8 Kliment Ohridski boul., Sofia

BULGARIA

pborovska@tu-sofia.bg

VESKA GANCHEVA

Department of Programming and Computer

Technologies

Technical University of Sofia

8 Kliment Ohridski boul., Sofia

BULGARIA

vgan@tu-sofia.bg

Abstract: - The huge amount of biological sequences accumulated in the world nucleotide and protein

databases leads to the necessity of efficient tools for structural genomic and functional analysis. This scientific

area requires powerful computing resources for exploring large sets of biological data. Multiple sequence

alignment is an important method in the DNA and protein analysis, and is generally the alignment of three or

more biological sequences of similar length. As a result of the processing, homology can be derived and the

evolutionary relationships between the sequences can be explored. The goal of this paper is to propose

parallelization and optimization of the multiple sequence alignment software MSA_BG in order to improve the

performance, for the case study of the influenza virus sequences. The objective is code optimization, porting,

scaling and performance evaluation of the parallel multiple sequence alignment software MSA_BG for Intel

Xeon Phi (the MIC architecture). For this purpose a parallel multithreaded optimization including OpenMP has

been implemented and verified. The experimental results show that the hybrid parallel implementation utilizing

MPI and OpenMP provides considerably better performance than the original code.

Key-Words: - Artificial Bee Colony, Bioinformatics, Hybrid Programming, High Performance Computing,

Multiple Sequence Alignment, Parallel Programming, Performance.

1 Introduction
The biological sequence processing is essential for

bioinformatics and life science. Scientists are now

dependent on databases and access to the biological

information. The world DNA databases are

accessible for common use and usually contain

information for more than one (up to several

thousands) individual genomes for each species.

This scientific area requires powerful computing

resources for exploring the large sets of biological

data. The parallel implementations of methods and

algorithms for analysis of biological data using

high-performance computing are important for

accelerating the research.

Multiple sequence alignment (MSA) is an

important method for biological sequences analysis

and involves more than two biological sequences,

generally of the protein, DNA, or RNA type [1].

This method is computationally difficult and is

classified as a NP-hard problem [2] [3] [4].

The aim of the project is optimization and

investigation of the parallel performance and

efficiency of an innovative parallel method in the

software MSA_BG for multiple alignments of

biological sequences, which is highly scalable and

locality-aware. The method is iterative and is based

on the concept of Artificial Bee Colony

metaheuristics and the concept of algorithmic and

architectural space correlation.

The computational aspect of this project is to

investigate the parallel performance with respect to

efficiency and scaling of parallel multiple alignment

software MSA_BG on the computer system

EURORA [5], utilizing parallel OpenMP

deployment and optimization of the MPI-based

parallel implementation for the case study of

influenza viral sequences comparison.

This paper is structured as follows. Section II

explains the multiple sequence alignment method

MSA_BG, based on Artificial Bee Colony

Metaheuristics. Section III explains the profiling

results of the MPI only implementation. The

experimental framework is presented in section IV.

The design of a hybrid parallel MSA_BG software

implementation using MPI and OpenMP

parallelization is explained in Section V. The

experiments, parallel performance evaluation and

Plamenka Borovska, Veska Gancheva
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 69 Volume 3, 2018

results analysis are discussed in Section VI. We

present the conclusion in Section VII.

2 The Multiple Sequence Alignment

Method MSA_BG Based on Artificial

Bee Colony Metaheuristics
A new parallel highly scalable and locality-aware

method MSA_BG for multiple alignments of

biological sequences is presented in [6]. MSA_BG

method is iterative and is based on the concept of

Artificial Bee Colony (ABC) metaheuristics [7] and

the concept of algorithmic and architectural spaces

correlation.

The granularity is hybrid - coarse granule

computing for each node (multithreaded process)

that runs multithreading (fine granule) of the cores

within the computing node. It is appropriate to use a

hybrid parallelization scheme in the case of a code

which employs a hybrid granularity, in order to

make efficiency use of supercomputer resources.

The current parallel program implementation is

based on MPI.

An overview of the computational algorithm is

the following:

 Scout 0 reads the sequences from an input

file and stores them in the shared memory of

the computational node (hive). Scout bees in

the swarms round certain subregions in the

searching space and construct a potential

solution. Once the scout bees obtain

possible (feasible) solution, they return to

the hive and begin to dance. The better the

quality of a solution generated by a scout is,

the higher is possibility to include it in the

list of elite solutions. The food source is

presented by possible sequence alignments.

Scouts generate initial solutions through

sequence alignment including gaps. The

random generator that is used is based on

the Mersenne Twister pseudo random

generator that uses a 32-bit word length.

 Onlookers watch the waggle dances, choose

one of the possible solutions and evaluate it.

The quality of obtained solutions is

determined by the grade of sequences’

similarity. The higher the grade of the

solution the better the quality of the

obtained alignment, i.e., the criterion of

optimality is a maximum similarity score.

For the evaluation of the alignment quality,

the following method is used.

An assessment by columns is done – in case of

nucleotide sequences the numbers of symbols – A,

G, C and T are counted. The numbers of symbols

are compared and the nucleotides that occur mostly

in the different columns are selected. Afterwards,

the calculation of assessments in columns is formed,

the so-called sequence-favorite (fij), which contains

in each position the respective favorite nucleotide in

the column (Table 1).

The sequences are compared to the sequence-

favorite. The higher the similarity to the sequence-

favorite, the higher is the grade of a sequence. A

scoring matrix is built up which stores (in columns)

the values of the evaluation function S for sequences

(rows in the matrix). For the grade computation of a

sequence (row) i in position j (column) the

nucleotide aij and nucleotide–favorite fij are used:

 Sij = 0 in case aij = gap

Sij = 1 in case aij = fij

Sij = -1 in case aij ≠ fij

Table 1: Working set - the favourite sequence is

marked in red.

A G T C A A T

A A T C G A T

A G T C A T T

A G - G A A G

Table 2: Scoring Matrix S - The scoring column of

the counters is marked in red and consists of

similarity scores for each sequence and the

sequence-favourite.

1 -1 1 1 -1 1 1 3

1 1 1 1 1 -1 1 6

1 1 0 -1 1 1 -1 2

 The employed bees select one of the

solutions and make attempts to improve it

based on local search. An approach for the

modification of the aligned working set of

sequences is used:

The column with counters of the scoring matrix

S is reviewed and the row (sequence) with the

lowest counter value is selected (sequence that

differs most from the favourite). Using a random

generator two indexes are selected: one for insertion

of a gap (INS) and another for deletion of a gap

(DEL) from the list of empty positions (DEL ≠

INS). The generated indexes are compared:

o If DEL > INS, then all characters in

positions between INS and DEL are shifted

one position to the right (shift_right).

o If DEL < INS the characters are shifted one

position to the left (shift_left).

Plamenka Borovska, Veska Gancheva
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 70 Volume 3, 2018

After a number of modifications, employed bees

suspend the processing of the current working set

and write down the best solution in the list of elite

solutions that is sorted in descending order. The

condition for termination of the parallel algorithm is

the number of iterations.

 Finally, the mother bee shall inform the

queen bee of the colony and send her the

quality of the best solution (elite solution).

The colony queen gets the quality of the

elite decisions by hives’ mother bees

through collective communication reduction

with the operation MAX and determines the

best one. Finally the queen bee sends

messages to the mother bee holding the best

solution to display the resultant sequences

alignment.

The algorithmic framework for parallel multiple

alignment of biological sequences in the MSA_BG

method on the basis of the АВС methaheuristics is

shown in [6].

Parallel For

For m=1, Q // For every hive

For r=1, q // For every swarm (node)

Input_sequences //Scout 0

Parallel Sections

Parallel For k=0,15 //Scout_bees

Generate_ Random_Alignment

Evaluate_Score_By Columns

Construct_Favorite_Sequence

Evaluate_Column of Counters

Save_Working Set_in_Optimization list

End Parallel For

Parallel For k=0,15 //Onlookers_bees

Select_Random_Working_Set_Out_of_

Optimization_List

Select_Sequence_of_MIN_Counter

Select_INS(Random)

Select_DEL, such that DEL≠INS (RANDOM)

If DEL>INS then shift_right

else shift_left

Evaluate_Column of Counters

If higher_quality then

 Save_In_Optimization_List

else skip

End Parallel For

End Parallel For

Sort_Optimization_List_by_Quality // Scout 0

Reduce_Elite_Alignment_to_Mother_of_Hive

// Scout 0

Reduce_MAX_ Elite_Alignment_of_Hive

//Mother of Hive

End Parallel For

Reduce_MAX_ Elite_Alignment_of_Colony

//Queen of Colony

Output_Best_Alignment_Obtained_So_Far

//Queen of Colony

Fig. 1. Algorithmic framework for parallel multiple

alignment of biological sequences in the MSA_BG

method on the basic of the АВС methaheuristics.

A description of the algorithmic framework for

the parallel multiple sequence alignment in steps

follows:

1. Parse input file - Read the sequences: Each

MPI process reads the sequences from the input file

and calculates the maximum sequence length. If the

variety of sequence lengths is less than a limit, a

number of variety gaps are added.

2. Alignment of the sequences: The sequences are

aligned by adding gaps in random positions, so that

their length is equal to the maximum sequence

length. For each sequence (row) a dynamic data

structure containing the indexes of the gaps in the

sequences has been generated. Each MPI process

iterates through the entire set of sequences.

Therefore, the number of iterations is equal to the

number of processes. This is a highly parallel task as

there is no dependency between the sequences.

3. The sequence-favourite is created: Every MPI

process iterates through each column on the array of

the sequences in order to find the favourite

nucleotides. The iterations are equal in number to

the maximal sequence length. The calculations are

independent for each genome. Therefore, this is also

a perfect task for parallel multithreaded execution.

4. The grades of the genomes are calculated:

Each MPI process calculates the grade of every

sequence in the working set. The grade calculation

is independent for each sequence. The number of

iterations is equal to the number of the sequences.

5. The sequences are sorted in descending order:

The scores of the working sets are stored in the list

of solutions, which is sorted, in descending order by

the total alignment scores. Each MPI process sorts

its own working set of sequences.

6. The quality of the solutions is improved:

Minor changes are made in the working set and the

quality of the modified alignment is evaluated: the

new sequence is compared with the sequence-

favourite and a grade is calculated as described in

step 4. In case of quality improvement, the new

solution is accepted and is stored in the list of "best

temporary solutions". Otherwise, the new alignment

is ignored. This is an iterative process that can be

executed in parallel.

The number of iterations, which corresponds to

the number of attempts to improve the quality of

each sequence alignment, is split as a division over

the number of MPI processes. The total number of

iterations is given as an input to the program. In this

study, the benchmark tests have been performed

using 1 million and 10 million iterations.

7. The total matrix grade is calculated: After the

process of working set improvement is completed,

the matrix grade is calculated as the sum of each

sequence grade and is stored along with the process

rank. An MPI collective communication through

reduction with the operation MAX is performed in

Plamenka Borovska, Veska Gancheva
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 71 Volume 3, 2018

order to locate the best matrix grade, as well as the

process that found the best solution.

8. The best solution is written to the output file:

The root process (rank 0) communicates with all

MPI processes and informs the process with the best

quality solution working set to save the aligned

sequences to a file.

3 Profiling Results of the MPI Only

Implementation
Scalasca has been used for the initial profiling of the

code. Tests have shown that the functions that

consume the highest amount of time are

genNumber, calculateGrade and changeSeq.

GenNumber implements the Mersenne Twister

pseudo random generator, while changeSeq attempts

to improve the solution by shifting the retrieved

sequence. CalculateGrade is used to evaluate the

new alignment each time a new modification of the

alignment is proposed by changeSeq. The total

amount of time consumed by these routines is about

95% of the overall execution time (Fig. 2).

Fig. 2. Scalasca profiling results containing

execution time percentages on BlueGene/P.

4 Experimental Framework
The experimental framework of the investigations is

based on the computer system Eurora (Intel Xeon

Phi) at CINECA. EURORA is a Cluster made of 65

nodes of different types [5].

Compute Nodes: There are 64 16-core compute

cards (nodes). Half of the nodes contain 2 Intel(R)

Xeon(R) SandyBridge eight-core E5-2658

processors, with a clock rate of about 2 GHz, while

the other half of the cards contain 2 Intel(R)

Xeon(R) SandyBridge eight-core E5-2687W

processors, with a clock of about 3 GHz. 58

compute nodes have 16GB of memory, but the

safely allocatable memory on the node is 14 GB

(see PBS resources: memory allocation). The

remaining 6 nodes (with processors at 3 GHz clock

rate) have 32 GB RAM. The EURORA cores are

capable of 8 floating point operations per cycle. 32

compute cards have two nVIDIAK20 (Kepler) GPU

cards and 32 compute cards have two Intel Xeon Phi

accelerators. Login nodes: The Login node has 2

Intel(R) Xeon(R) esa-core Westmere E5645

processors at 2.4 GHz Intel Xeon (Esa-Core

Westmere) E5645 2.4 GHz. All the nodes are

interconnected through a custom Infiniband

network, allowing for a low latency/high bandwidth

interconnection.

Intel Xeon Phi is the first Intel Many Integrated

Core (Intel MIC) architecture product. Each card

consists of 60 physical cores (@1.1 Ghz) and each

core is able to handle up to 4 threads using

hyperthreading. Each core has one Vector

Processing Unit able to deliver for each clock cycle:

8 Fused Multiply and Add (FMA) floating point

operations in double precision or 16 Fused Multiply

and Add (FMA) floating point operations in single

precision. The Phi has a peak performance of 1056

GFlops in double precision and 2112 Gflops in

single precision. Each Phi coprocessor has a RAM

memory of 8 GB, and a peak bandwidth of 352

GB/s.

5 Hybrid Parallel MSA_BG Software

Implementation
The concept of hybrid parallelism that was

implemented in the MSA_BG software is based on

simple logic. Each MPI process forks multiple

OpenMP threads to work in parallel with the

sequences in the working set. The parallel hybrid

MPI/OpenMP computational model of MSA_BG

method for multiple sequence alignment is

presented in Fig. 3.

A Hybrid MPI/OpenMP version of the code has

been implemented in order to exploit more

efficiently the whole shared/distributed memory

hierarchy of the EURORA system. The software is

written entirely in C++ without any external

dependencies to third party libraries.

Plamenka Borovska, Veska Gancheva
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 72 Volume 3, 2018

Thread 0

Thread 11

Thread 2

Process Rank 2Process Rank 0 Process Rank 1

Thread 3 3

Thread 0

Thread 11

Thread 2

Thread 3 3

Thread 0

Thread 11

Thread 2

Thread 3 3

MPI

Fig. 3. Hybrid OpenMP/MPI parallel computational

model of MSA_BG method.

The allocation of computing resources is as

follows:

The entire system simulates the behavior of a

colony of beehives, and the number of hives is equal

to the number of computing nodes. Each computing

node simulates the behaviour of a hive. Within a

hive q swarms are included, where q is the number

of segments of the system. The OpenMP threads

simulate the behaviour of many bees in the swarm.

The swarms within a hive work on common lists of

best temporary solutions and elite solutions. Each

hive has a mother bee, which gets the best quality

decisions of all swarms in the hive. The number of

mother bees is equal to the number of MPI

processes. The queen bee of the colony (MPI

process rank 0) finds the elite solution of all the

hives in colony.

The steps 2, 3, 4 and 6 of the algorithm described

in section 2 are performed in iterations until every

sequence is processed. In each For Loop a parallel

for OpenMP directive is placed. This results in

having each OpenMP thread assigned to a different

sequence every time until the work that needs to be

done is completed.

Operations executed on the MIC accelerators:

1) Initial alignment of the biological sequences.

This is a highly parallel task as there is no

dependency between the sequences at this stage.

2) Creating the sequence favorite. The favorite

sequence is created based on independent

calculations on every genome. Again it is a perfect

task for parallel multithreaded execution.

3) Calculating the grades of every genome.

4) Improving the working set of the sequences. It

is an iterative process that can be executed in

parallel.

6 Parallel Performance Evaluation

and Results Analysis
The objective of the experiments is to estimate

experimentally parallel performance parameters of

the hybrid MPI/OpenMP parallel program

implementation on the basis of the MSA_BG

method. For scalability testing, the influenza virus

protein data set obtained from Genbank [9] is used.

Some experiments using various numbers of cores

and 10000000 iterations have been conducted. The

executions are performed on the Intel MIC

architecture in native mode using different

MPI/OpenMP configurations with a maximum of

240 threads on the MIC. The results are shown in

Table 3 and Fig. 4.

Table 3: Experimental results of hybrid

MPI/OpenMP software MSA_BG on the Intel Xeon

Phi architecture.

MPI

Nodes Threads Iterations

Execution

Time (Sec)

2 15 10000000 6145.65

2 30 10000000 3093.87

2 60 10000000 1550.55

2 120 10000000 1121.47

2 240 10000000 1090.5

Fig. 4. Execution time of hybrid MPI/OpenMP

software MSA_BG as a function of number of

threads.

Initial benchmark tests have shown that

increasing the number of threads for the same

number of MPI processes and nodes decreases the

execution time significantly. The experimental

results show that the parallel program

implementation for multiple sequence alignment

scales well as the number of the cores increases

(Fig. 5.).

Plamenka Borovska, Veska Gancheva
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 73 Volume 3, 2018

Fig. 5. Speedup of hybrid MPI/OpenMP software

MSA_BG with respect to 15 threads.

7 Conclusion
The parallel software for multiple sequence

alignment MSA_BG has been optimized by

implementing a hybrid MPI/OpenMP parallelization

scheme. The MSA_BG code was ported and is

available for the Intel MIC architecture (EURORA

system). It is best suited to work in homogenous

native Xeon Phi MPI mode in a combination of MPI

tasks and threads.

Parallel performance evaluation and profiling of

the multiple sequence alignment software MSA_BG

utilizing MPI and OpenMP on the computer system

EURORA have been investigated experimentally.

Parallel performance parameters such execution

time and speedup have been measured. The

performance measurement and analyses show that

the hybrid parallel program implementation utilizing

MPI and OpenMP scales well when the number of

cores increases and is well balanced both in respect

to the workload and machine size.

The optimized code is universal and can be

applies for other similar research projects and

experiments in the field of bioinformatics and will

allow researchers to conduct their experiments on

even more powerful supercomputers. They will be

able to perform simulations with very large amounts

of data.

Acknowledgements
This work was supported by the National

Science Fund, Bulgarian Ministry of Education and

Science, Grant DN 07/24. Thanks the project

PRACE for the access to the EURORA system.

References:

[1] H. Carrillo and D. Lipman, “The Multiple

Sequence Alignment Problem in Biology,”

SIAM Journal of Applied Mathematics, vol. 48,

no. 5, 1988, pp. 1073-1082.

[2] L. Wang and T. Jiang, "On the complexity of

multiple sequence alignment," Journal of

Computational Biology, vol. 1, no. 4, 1994, pp.

337–348, doi:10.1089/cmb.1994.1.337.

[3] W. Just, "Computational complexity of

multiple sequence alignment with SP-score,"

Journal of Computational Biology, vol. 8, no.

6, 2001, pp. 615–23.

[4] S. Sze, Y. Lu, and Q. Yang, "A polynomial

time solvable formulation of multiple sequence

alignment," Journal of Computational Biology,

vol. 13, no. 2, 2006, pp. 309–319,

doi:10.1089/cmb.2006.13.309.

[5] EURORA – Configuration,

http://www.hpc.cineca.it/content/eurora-user-

guide#systemarchitecture.

[6] P. Borovska, V. Gancheva, N. Landzhev,

Massively Parallel Algorithm for Multiple

Biological Sequences Alignment, 36th

International Conference on

Telecommunications and Signal Processing

(TSP), 2-4 July, 2013, Rome, Italy, pp. 638 -

642.

[7] D. Karaboga, “An Idea Based On Honey Bee

Swarm for Numerical Optimization,” Technical

Report-TR06, Erciyes University, Engineering

Faculty, Computer Engineering Department,

 , mf.erciyes.edu.tr abc pub tr .pdf

[8] P. Borovska, V. Gancheva, Massively Parallel

Algorithm for Multiple Sequence Alignment

Based on Artificial Bee Colony, white paper,

http://www.prace-ri.eu/IMG/pdf/wp114.pdf

[9] GenBank,

http://www.ncbi.nlm.nih.gov/Genbank/

Plamenka Borovska, Veska Gancheva
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 74 Volume 3, 2018

