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Abstract: This paper presents modified moth search algorithm for solving global optimization problems. Moth
search algorithm is novel swarm intelligence metaheuristics. By analyzing original moth search approach, we
noticed some deficiencies in the search process of subpopulation 2. Modified moth search addresses these weak-
nesses. To prove the robustness of our approach we tested our algorithm on six standard global optimization
benchamarks and performed comparative analysis with original moth search, as well as with other five state-of-
the-art metaheuristics. Testing results show that in average modified moth search outperforms other approaches
included in comparative analysis.
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1 Introduction
Optimization is one of the most widely used research
domain since almost any real life task can be mod-
eled as an optimization problem. Sometimes the prob-
lem is inherently a numerical optimization problem
and sometimes elaborate adjustments to a mathemati-
cal model are necessary.

Numerical optimization problems can roughly
be divided into combinatorial and continuous prob-
lems. Continuous problems can further be divided
in two groups: unconstrained and constrained. Un-
constrained (global optimization) is branch of applied
mathematics and numerical analysis that tackles with
the global optimization of a function or a set of func-
tions according to some criteria.

Unconstrained (or bound constrained) optimiza-
tion can be defined asD-dimensional minimization or
maximization problem:

min(max) f(x), x = (x1, x2, x3, ..., xD) ∈ S, (1)

where x is a real vector with D ≥ 1 components
and S ∈ RD is an D-dimensional hyper-rectangular
search space constrained by lower and upper bounds:

lbi ≤ xi ≤ ubi, i ∈ [1, D] (2)

Many numerical problems belong to the category
of NP hard optimization. One of the most well-known
representatives of this class of problems is traveling

salesman problem (TSP). NP hard problems can not
be solved in reasonable amount of computational time
with traditional deterministic methods and algorithms
and for its solving many metaheuristics approaches
have been evolved. Metaheuristics are capable of
finding suboptimal (satisfying) solutions in acceptable
amount of time.

Nature-inspired metaheuristics mimic behavior of
natural systems. In its execution they use guided ran-
dom search process and the mechanism that directs
the search is adopted from nature. Swarm intelligence
algorithms which represent the newer branch of na-
ture inspired algorithms, simulate collective behavior
of group of organisms such as flock of girds and fish,
colony of bees and ants, groups of cuckoo birds and
bats, herds of elephants, etc.

One of the most known representatives of swarm
intelligence is artificial bee colony (ABC) algorithm
that simulates behavior of bee swarm [1]. ABC has
been implemented for many numerical benchmark op-
timization tasks [2], [3], as well as on many real life
problems [4]. Firefly algorithm (FA) was originally
proposed by Yang [5] for multimodal optimization.
This swarm intelligence metaheuristic proved to be
robust optimizer for wide variety of tasks [6]. Also,
according to the literature review, FA showed great
potential in hybrid approaches.

The main source of inspiration for the emergence
of the fireworks algorithm (FWA) was the process of
fireworks explosion. FWA was firstly proposed for
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global optimization [7] and since then many success-
ful applications for benchmark [8] and real life prob-
lems [9], [10], [11], [12], [13] can be found in the
literature review. Bat algorithm (BA), which is based
on so-called echolocation of the bats, is a relatively
new bio-inspired algorithm [14], [15]. This approach
has many implementation for problems such as sup-
port vector machine parameter tuning [16], RFID net-
work planning [17] and portfolio optimization [18].
Firefly algorithm was proposed by Yang and it was
applied to numerous problems [19], [20].

Wang et al. [21] proposed an elephant herding
optimization (EHO) that is inspired by a herding be-
havior of elephants. By investigating the relevant lit-
erature, it can be seen that EHO was applied on sup-
port vector machine parameters tuning [22], multi-
level image thresholding [23], computer aided diag-
nostics [24], robot path planning [25] and static drone
placement [26].

In this paper, we propose modified moth search
algorithm (MMS) for global optimization problems.
The moth search (MS) algorithm is novel nature-
inspired metaheuristics proposed by Wang in 2016
[27].

The rest of the paper is structured as follows. Af-
ter Introduction, basic and modified moth search algo-
rithms are presented in Section 2. In Section 3, results
of empirical tests for global optimization, as well as,
comparative analysis with other approaches are given,
while Section 4 concludes this paper and gives guide-
lines for future work.

2 Modified moth search optimization
algorithm for global problems

Moth Search (MS) algorithm, proposed by Wang in
2016 for global optimization problems [27], is in-
spired by phototaxis phenomena and Lévy flights
of the moths. Moths belong to the order Lepi-
doptera. Lepidoptera (which includes moths and but-
terflies) is the second largest order in the class Insecta.
MS algorithm was compared with five state-of-the-
art metaheuristic optimization algorithms through an
array of experiments on fourteen basic benchmarks,
eleven IEEE CEC 2005 complicated benchmarks and
seven IEEE CEC 2011 real world problems, where it
showed great potential for tackling global optimiza-
tion tasks [27].

Moths tend to fly around and towards the light
source and this phenomena is known as phototaxis.
Since this behavior is still unknown, there have been
various hypothesis to explain this phenomenon. One
of the hypothesis is that celestial is used in trans-
verse orientation while flying. The moths will fly in

a straight line so as to remain at a fixed angle to the
celestial light, like the moon [27].

Lévy flights, as one of the most important flight
patterns in natural surroundings, is considered as an-
other characteristic of moths. As an example, species
like Drosophila (”fruit fly”) fly in the form of Lévy
flights that can be approximated to be power law dis-
tributed over a range of scales with the feature of ex-
ponents close to 3/2 [28]. In [29], Reynolds et al. have
conducted experiments which indicate that some of
the complex flight patterns are in compliance with the
usage of an optimal biased scale-free (Lévy flights)
searching technique.

Phototaxis and Lévy flights from moths in nature
were used for modeling two main processes of MS al-
gorithm: exploitation (intensification) and exploration
(diversification).

The moths that are closer to the best moth (light
source) in the population will fly around the best moth
in the form of Lévy flights. This type of behavior is
described in the following equation [27]:

xt+1
i = xti + αL(s), (3)

where xt+1
i is updated position and xti is original

position of moth i in current generation t, respectively.
Step drawn from Lévy distribution is denoted as L(s).
Parameter α is scale factor whose value depends on
the optimization problem. In the original MS algo-
rithm, α was given as [27]:

α = Smax/t
2, (4)

where Smax is the maximum walk step and its
value also depends on the problem in hand.

Lévy distribution given in Eq. (3) can be ex-
pressed as follows [27]:

L(s) =
(β − 1)Γ(β − 1) sin(π(β−1)

2 )

πsβ
, (5)

where Γ is gamma function and s is greater than
0.

Moths that are far away from the light source (best
moth in population) will fly towards the light source
in line. This process can be described using the fol-
lowing equation [27]:

xt+1
i = λ× (xti + φ× (xtbest − xti)), (6)

where xtbest denotes best moth in generation t and
φ and λ are acceleration and scale factors, respec-
tively.
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Also, the moth can fly in direction of the final po-
sition that is beyond the best moth in the population
(light source). This flight pattern is described as [27]:

xt+1
i = λ× (xti +

1

φ
× (xtbest − xti)) (7)

In the original paper [27], for simplicity reasons,
the whole moth population is divided into two equal
subpopulations according to their fitness. Positions of
individuals in the subpopulation 1 (moths with greater
fitness) are being updated using Lévy flights (Eq. (3)),
while moth positions in the subpopulation 2 (moths
with lower fitness) are being updated by using Eq. (6)
or Eq. (7) with possibility of 50% [27].

By conducting empirical experiments and accord-
ing to results reported in [27], MS algorithm proved
to be efficient method for solving global optimization
problems. However, we noticed some deficiencies in
MS’s execution.

Updated positions of moths in subpopulation 2
are strongly influenced by current best solution and
this is good in late iterations, when we suppose that
the algorithm has found right part of the search space.
However, in early iterations this can lead to the pre-
mature convergence and to the worse mean values.

To overcome these deficiencies, we introduced
third search equation in subpopulation 2 which per-
forms random exploration of the search space:

xi,j = lbj + rand(0, 1) ∗ (ubj − lbj), (8)

where xi,j is the j-the parameter of th i-th moth
in the subpopulation 2, rand(0, 1) is a random real
number between 0 and 1, and ubj and lbj are upper
and lower bounds of the j-th solution parameter re-
spectively.

Modified MS (MMS) algorithm employs Eq. (6),
Eq. (7) or Eq. (8) in subpopulation 2 with possibilities
of 40%, 40% and 20%, respectively.

3 Experimental results and discus-
sion

We conducted experiments on six standard un-
constrained benchmark functions: Ackley (f0),
Dixon&Price (f1), Fletcher − Powell (f2),
Griewank (f3), Perm (f4) and Step (f5). Compar-
ative analysis was performed with original MS algo-
rithm [27], as well as with five other state-of-the-art
algorithms: ABC [30], biogeography-based optimiza-
tion (BBO) [31], differential evolution (DE) [32], par-
ticle swarm optimization (PSO) [33] and stud genetic
algorithms (SGA) [34].

Basic parameters of MMS are set as in original
MS implementation [27]: population size N = 50,
the number of moths kept in each generation 2, index
β = 1.5, max walk step Smax = 1.0 and acceleration
factor φ = (51/2−1)/2 ∼= 0.618. Number of function
evaluations (FEs) is considered as termination condi-
tion and it is set to 104.

The algorithm was executed in 30 independent
runs, and we measured best, mean, worst and stan-
dard deviation values. Comparative analysis of best,
mean, worst and standard deviation values are given
in Tables 1, 2, 3 and 4, respectively.

Table 1: Comparison of best values
F. ABC BBO DE PSO SGA MS MMS

f0 13.35 2.51 16.48 17.05 2.51 2.1E8 1.8E-8
f1 14.0E6 4.6E3 1.2E6 4.1E6 2.1E3 0.67 0.73
f2 1.2E5 3.7E4 1.7E5 3.3E5 3.9E4 3.4E4 9.82E3
f3 30.93 1.79 10.96 34.86 1.37 1.00 1.12
f4 1.4E45 6.0E51 3.7E37 3.7E43 6.0E51 3.0E32 5.6E30
f5 16.00 1.00 6.00 20.00 1.00 1.00 1.00

Table 2: Comparison of mean values
F. ABC BBO DE PSO SGA MS MMS

f0 16.45 3.77 18.26 18.44 4.33 2.4E6 9.5E-7
f1 4.6E7 7.7E4 3.8E6 1.4E7 1.1E4 0.67 0.78
f2 2.7E5 7.0E4 2.5E5 5.0E5 8.3E4 1.6E5 9.3E4
f3 85.88 3.33 21.42 73.02 2.19 1.00 1.15
f4 1.2E51 6.1E51 4.5E45 4.5E47 6.0E51 2.5E37 8.7E33
f5 35.68 1.16 9.26 27.50 1.44 1.00 1.00

Table 3: Comparison of worst values
F. ABC BBO DE PSO SGA MS MMS

f0 17.85 5.77 18.97 18.88 6.42 1.3E5 2.1E-6
f1 1.0E8 2.8E5 9.0E6 3.2E7 4.0E4 0.67 0.75
f2 4.0E5 1.2E5 3.3E5 8.2E5 1.8E5 3.9E5 1.1E5
f3 136.66 5.83 31.13 104.06 3.98 1.00 1.18
f4 6.0E51 1.0E52 6.0E46 3.1E48 6.0E51 3.5E38 6.6E37
f5 49.00 2.00 14.00 36.00 4.00 1.00 1.00

According to the presented results, our MMS al-
gorithm in average outperforms all other approaches,
including original MS metaheuristics. Only in the
case of f1 (Dixon&Price) and f3 (Griewank) test
functions, original MS performs better than MMS.

Thus, we conclude that in average, our modifi-
cation enhanced basic MS algorithm by introducing
more exploration power in the search process, and in
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Table 4: Comparison of standard deviation values
F. ABC BBO DE PSO SGA MS MMS

f0 0.91 0.66 0.45 0.44 0.83 2.6E6 1.5E-6
f1 2.4E7 6.7E4 1.7E6 5.8E6 8.2E3 5.7E5 5.9E-5
f2 7.6E4 2.0E4 4.0E4 1.1E5 3.0E4 7.0E4 1.92E4
f3 24.39 0.92 5.29 12.52 0.58 3.6E15 5.6E-3
f4 1.6E51 5.7E50 1.1E46 6.9E47 1.3E36 5.6E37 9.5E35
f5 6.76 0.37 1.71 3.64 0.70 0.00 0.00

this way the trade-off between exploitation and explo-
ration is improved.

4 Conclusion
This paper presents modified moth search algorithm
adjusted for solving global optimization tasks. By em-
pirical and theoretical analysis of original moth search
algorithm, we noticed some weaknesses in the search
process of subpopulation 2 that is too much oriented
towards the current best solution. To address these
deficiencies, we enhanced exploration power in the
subpopulation 2 by introducing random search mech-
anism.

Comparative analysis with original moth search
and five other metaheuristics on six standard global
benchmarks was performed. Results of empirical tests
proved that our approach has potential in tackling
global optimization problems.
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