
Improved approach for full search motion estimation on GPU

FATMA ELZAHRA SAYADI 1-2, MARWA CHOUCHENE 1, HAITHEM BAHRI 1, OLFA
HAGGUI3, BOURAOUI OUNIR3

1Electronics and Microelectronics Laboratory, FSM,
University of Monastir

2 Issat sousse, University of Sousse
 3 Networked Objects Control & Communication Systems Lab (NOCCS), ENISO

University of Sousse
Tunisia

Sayadi_fatma@yahoo.fr

Abstract: - In order to speed up video coding efficiency such as H.264/AVC and H265/HEVC, we propose in
this paper a parallel approach of full search (FS) algorithm for motion estimation on Graphic Processor Unit
(GPU). We implemented the traditional sequential FS algorithm for motion estimation to computing unified
device architecture (CUDA) optimizing memory usage, taking full ad-vantage of the powerful parallel
computing capability to speed up FS motion estimation.
Experimental results show that our implementation on CUDA demonstrates substantial improvement up to 48
times than CPU counterpart available and can effectively speed up the FS for motion estimation.

Key-Words: - Full search, GPU, CUDA, Motion Estimation, shared memory, Optimization

1 Introduction
The joint Video Team (JVT) developed the H.264
or MPEG.4advanced video cod-ing(AVC)
standardwich is widely deployed in many online
vdeo streaming sys-tems.The emergence of UHD
video services and the ubiquity of online video
stream-ing have created a demand for coding
efficiencies superior to H264/AVC. To this end
MPEG and VCEG worked together to develop a
new H.265 or High efficiency Video coding
(HEVC) standard. This new standard, doubles the
video compression ratio compared to its predecessor
at the same video quality without any degradation.
However, this important performance is achieved by
increasing the encoder compu-tational complexity
and thus from 2 to 10 times compared to the
previous H264/AVC [1, 2]. That is why the decrease
of HEVC video coding time, becomes a hot research
topic in recent years.
In this context, we provide in this work a
methodology for migrating full serach motion
estimation algorithm from a processor onto the GPU
in order to reduce the computational complexity of
the video coding standard.
Because of their capacity, parallel GPUs are used to
perform a partitioning of a complex task into a
number of basic tasks, which can be made by its
different pro-cessors working simultaneously, thus

making the overall execution much faster than the
sequential one.
In this paper, we will present the basic principles of
the motion estimation algo-rithm as well as the
parallelization techniques of such process on
graphics processors.
Our work is organised as follows: Section 2, is
devoted to the detailed description of the Full search
algorithm. The third section is dedicated to the study
and imple-mentation of this algorithm on CPU and
GPU. In this section, a performance evalua-tion was
also performed. Finally we conclude the paper.

2 Parallel Full Search on GPU
Motion Estimation is defined as searching the best
motion vector, which is the co-ordinate of the best
similar block in previous frame for the block in
current frame. Of various approaches for motion
estimation, the block-matching algorithm (BMA) is
very popular in the framework of generic coding
[3], [4]. Block-based matching algo-rithms find the
optimal motion vectors which minimize the
matching difference be-tween reference block and
candidate blocks. Therefore, the same motion vector
is used for all pixels within a block unified device
architecture. The most straightfor-ward BMA is the
full search (FS), which exhaustively searches for the
best matching block within the search window.

Fatma Elzahra Sayadi et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 220 Volume 2, 2017

However, FS yields very high computational com-
plexity and makes ME the main bottleneck in real-
time video coding applications. In order to improve
video coding efficiency, we try to accelerate highly
computational ME on Graphic Processor Unit
(GPU) which is featured with parallel computing to
greatlyimprove the processor performance.

2.1 Experimental Setup
The experiments were performed on a personal
computer with an Intel Core I7-3770 3.40GHz CPU
with 8GB memory and a graphic card Nvidia
GeForce GTX480. This card is based on the GF100
Fermi chip which is produced in 40 nm at TSMC.
The GTX480 uses only 480 of the 512 shaders of
the GF100 silicon [5].
The software was coded in the programming
language with CUDA Toolkits version 5.0 and the
developed software was created in Visual C++
2010.

2.2 Methodology
This section describes the approaches toward
parallelism as well as different opti-mization
strategies. Our goal was to encode video using the
motion estimation algo-rithm in real-time. We have
used the full search block-matching algorithm based
on the sum of absolute differences (SAD).
In fact SAD is an extremely fast metric due to its
simplicity. It is also easily paral-lelizable since it
analyzes each pixel separately, making it readily
implementable with popular parallel programming
models such as GPUs [6].
After the parallelization has been done using
CUDA, computational tests have been carried out
on several test sequences, CIF, QCIF, HD720p, and
HD1080p. The obtained results are hence presented
and analyzed.
We begin with a simple version of Full search
Motion implementation in order to find the optimal
block displacement. The implemented algorithm
applies the SAD error criterion which is an
extremely simple video quality metric used for
block-matching in motion estimation for video
compression. It takes the absolute value of the
difference between each pixel in the original block
and the corresponding pixel in the block being used
for comparison, and sums them up. The Full search
Motion implementation Kernel creates a thread for
each result element for the SAD compu-tation.
Many threads are created in an attempt to hide the
latency of global memory by overlapping execution.
Each thread works on its column in 16x16 block.

Once all blocks from the search range are iterated
and the best match found, the output vec-tor is
transferred to the global memory.

Fig. 1. Flow chart of the proposed Parallel full search algorithm

There are different methods to estimate a CUDA
kernel runtime [7, 8], of. The most portable option is
to use CUDA's built-in timer functions, which will
function across different operating systems. To
measure runtime, we need to create and start a timer
before calling the kernel. After calling the kernel,
we need to make sure that the kernel has finished,
then stop, and read the timer.
Here cutStartTimer() and cutStopTimer() are used to
place the start and stop events into the default
stream, stream 0. The GPU will register a timestamp
for the event when it attains that event in the stream.
The cutGetTimerValue() function re-turns the time
past between the recording of the start and stop
events[9]. This value is formulated in milliseconds
and has a resolution about of half a microsecond.
We should note that the timings are evaluated on the
GPU clock, so the timing res-olution is operating-
system-independent. We should mention also that
the execution time computed for motion estimation
is done on two video sequence successive im-ages.
Execution times on the Intel core i7 and those on the
GTX480 are shown in table 1. The execution times
indicate that the implementation scaled well for
larger image sizes on GPUs. In fact, for HD1080p
format we were able to achieve an execution time of
45,2 ms on the GTX480 against 962,7ms on serial

execution, indicating a significant speedup.

Table 1. Execution time for Intel corei7 vs GTX480

The proposed implementation promises improved
utility in real time motion esti-mation, since the

 CPU execution
time (ms)

Gpu execution
time (ms)

Cif 12,43 3,68
QCIF 60,66 12,02
HD720p 520,8 23,1
HD1080p 962,7 45,2

Fatma Elzahra Sayadi et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 221 Volume 2, 2017

performance increase has multiplied and the
execution time is lower than highly optimized
libraries executing on a CPU.

2.3 Optimized implementation
In an effort to further improve performances, we
attempt to apply a CUDA memory optimization
strategies. Based on shared memory.
In the initial Kernel version, we have used a two-
dimensional variable in local memory to keep the
values of SADs. In the second version we will
plazce them in the shared memory.
 We will properly attribute elements of this new
__shared__ array to the threads of the thread block
thus all elements of the new virtual private array for
each thread are placed in its own shared memory
bank as shown in Fig. 2.

Thread(0,0) Thread(0,8) Thread(0,15)

....

....

Thread(3,0) Thread(3,8) Thread(3,15)

....

....

....

....

Shared Memory
SAD[i,j]

Thread Block

…..

…..

…..

…..

Fig. 2. Shared memory usage

Table 2 shows the time required to perform motion
estimation on different se-quences on Gpu using
shared memory.

Table2. Execution time using local memory vs.
shared memory

In Table 2, we show the execution times using local
memory versus shared memory. At first sight, we
note that the times obtained with the shared memory
are lower than those obtained with the local memory

3 Conclusion
We have presented in this paper an original Full
search Motion Estimation GPU implementation that
can be applied on both H264 and HEVC encoders.
This imple-mentation is based on a single CUDA
Kernel which is in charge of the SADs, the best
SAD and the Motion Vector computations. We have
started with the local memory which is used only to
hold automatic variables. Experimental results show
that our method provides up to 21 speed-up
compared with single CPU core implementation.
To improve even more this speed up, we provided
an optimized implementation based on shared
memory in order to track down memory bottlenecks.
The proposed algorithm based on the shared
memory allowed an increase in speed up reaching
48.

References:
[1] Jens-Rainer Ohm, Gary J. Sullivan, Heiko

Schwarz, Thiow Keng Tan, and Thomas
Wiegand, "Comparison of the coding efficiency
of video coding standards–including high
efficiency video coding (HEVC)," IEEE
Transactions on CSVT, Vol 22, No.12, 1649-
1668, Dec 2012.

[2] Dong Zhang, Bin Li, Jizheng Xu, and
Houqiang Li, “Fast Transcoding from H. 264
AVC to HEVC,” 2012 IEEE International
Conference on Multimedia and Expo (ICME),
Melbourne, Australia, July 2012.

[3] H. G. Musmann, P. Pirsch, and H. J. Grallert,
“Advances in picture coding,”Proc. IEEE, vol.
73, pp. 523–548, Apr. 1985.

[4] F. Dufaus and F. Moscheni, “Motion
estimation techniques for digital TV: A review
and a new contribution,”Proc. IEEE , vol. 83,
pp. 858–876,Jun. 1995

[5] http://www.geforce.com/hardware/desktop-
gpus/geforce-gtx-480/specifications

[6] Mark Harris (2007) Optimizing Parallel
Reduction in CUDA NVIDIA Developer
Technology

[7] CUDA API REFERENCE MANUAL (2012)
Version 4.2

[8] Farber, R.:‘Cuda application Design and
Development’ (Morgan Kaufmann, Elsevier,
1st edn., 2011

[9] couturier, R.: ‘Designing Scientific Application
on GPUs’ (CRC Press, Taylor Francis Group,
2014

CPU execution

time (ms)

GPU execution time (ms)
Local

memory
Shared

memory

Cif 12,43 3,68 0,4

QCIF 60,66 12,02 2,8

HD720p 520,8 23,1 10,84

HD1080p 962,7 45,2 19,96

Fatma Elzahra Sayadi et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 222 Volume 2, 2017

