
A Novel Unity-based Realizer for the Realization of Conversational

Behavior on Embodied Conversational Agents

IZIDOR MLAKAR1, ZDRAVKO KAČIČ1, MATEJ BORKO2, MATEJ ROJC1

1Faculty of Electrical Engineering and Computer Science, University of Maribor
2A1 Slovenija
SLOVENIA

izidor.mlakar@um.si, kacic@um.si, Matej.Borko@A1.si, matej.rojc@um.si

Abstract: - Embodied conversational agents are virtual entities that tend to imitate as many features of face-face
dialogs as possible. In order to achieve this goal, the ability to reproduce synchronized verbal and co-verbal
signals coupled into conversational behavior becomes essential. Further, signals such as social cues, attitude
(emotions), personality, eye-blinks, and spontaneous head movement are equally important. Modern 3D
environments and 3D modeling tools, such as: Maya, Daz3D, Blender, Panda3D and Unity have opened up a
completely new possibilities to design virtual entities, which appear almost (if no completely) like real-life
persons. However, the modern 3D technology is not designed to handle highly dynamic and interchangeable
contexts such as human interaction. Therefore, mostly animations are prepared in advance and support limited
diversity as well as limited capacity to adapt to a new set of parameters. In this paper EVA realizer engine,
which is a part of proprietary behavior realization components of EVA Framework, is presented. The
represented engine is based on Unity game engine. EVA realizer exploits benefits of modern game engines as
well as extend them with requirements of co-verbal realizers, by providing interpreter and manager for dynamic
and in real-time generated animation. The animation is created and modeled by proprietary external co-verbal
behavior generator component.

Key-Words: - embodied conversational agents, co-verbal realizers, animation, virtual reality, mixed reality,
multimodal interaction

1 Introduction

One of the key challenges in the modern

human-machine interaction (HMI) design, is
generation of more natural multimodal output.
In the last few years we can observe that
conversation is becoming a key model in human
machine interaction [1]. Thus, conversational
agents (CA) are increasingly important in
everyday scenarios. Namely, Apple and
Microsoft, Amazon, Google, Facebook etc.
have adapted their own variations of CAs. The
CAs range from chat-bots and 2D, carton-like
implementations of talking heads [2,3,4,5], to
fully articulated embodied conversational
agents (ECA’s) performing interaction in
various concepts [6,7,8].

Embodied Conversational Agents (ECAs)
represent nowadays most natural human-
machine interfaces. Further, studies in the field
of face-to-face conversations show that the

most natural way to implement interaction is
through synchronized verbal and co-verbal
signals (gestures and expressions) [9]. The co-
verbal behavior represents a major source of
discourse cohesion. It regulates communicative
relationships and may support or even replace
corresponding verbal counterparts [10]. Thus,
the co-verbal behavior effectively retains
semantics of the information, and gives a
certain degree of clarity in the discourse. It
clarifies the collocutor’s communicative goal
and reflects psycho-social nature of given
information through social and psychological
responses, attitudes, and personality. In this
way, the ECAs have the capacity to resemble
and foster the natural way of reacting and
interacting. However, the natural multimodal
interaction entails multiple behavior variations
that are correlated in a dynamic and highly
unpredictable settings [11]. Furthermore,
natural conversational behavior incorporates
various social and interpersonal signals in order

Izidor Mlakar et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 205 Volume 2, 2017

to ‘color’ the final outcome. Thus, the virtual
entity must look and behave like human. It must
also have the capacity to dynamically adapt
itself to social and other situational contexts [1,
12]. As a result, the design of human-like ECA
represents a complex and a difficult task.

 Game engines, such as: Unity 3D1, Panda
3D2, Irrlicht Engine3, Ogre3D4, are becoming a
must-have tool for developing 3D and Virtual
Reality environments also in the field of
embodied conversational agents. In
combination with various 3D modeling tools
(e.g. Maya, Daz3D, Blender), the production of
highly realistic humans is much easier and
affordable. However, if some virtual character
tends to imitate a real human, it must also
incorporate body motion and behavior that are
synchronized with various contexts and aspects
of everyday life. In case of embodied
conversational agents, the intent planner and
behavior generator usually serve for producing
conversational behavior that is composed of
speech acts, communicative intents, and non-
verbal signals (gestures and expressions), and
synchronized into expressive reaction. The task
of the behaviour realizer is then to realize the
behaviour on some targeted virtual entity [13].
The game engines and 3D modelling tools
provide a perfect environment for design and
deployment of realistic virtual entities and their
highly realistic animation. However, they in
general fail to satisfy several parameters of
believability of conversational behaviour, such
as diversity and multimodal planning,
situational awareness, synthesis of verbal
content, synchronization, etc. Thus, the
integration of behaviour planners and
behaviour generators (e.g. behaviour
specification tools) is only natural. In this way
both sets of tools covers the weak points of each
other.

In this paper we present an EVA framework
for rapid design and development of embodied
conversational agents capable of realizing
conversational behaviour. We follow the

1 https://unity3d.com/
2 https://www.panda3d.org/
3 http://irrlicht.sourceforge.net/
4 http://www.ogre3d.org/

modular concept of separating behaviour

specification and realization into two
independent processes, while EVAScript acts as
interlink between the two [14]. EVA behaviour

generator specifies the behaviour, while EVA
realizer animates it [15]. This paper presents
our latest effort towards adaptation of a modern
widely used Unity 3D game engine, and its
integration into novel EVA Realizer. In contrast
to previously used Panda 3D engine, by using
Unity we can achieve far greater realism of the
environment and virtual characters, as well as
establish far more controllable and more
importantly, truly event oriented virtual
environment for representation of more natural
machine-generated responses. However, in
terms of procedural animation and integration
with EVA concepts, the native mechanism of
animation and control in Unity were less
compatible as Panda 3D, thus significant effort
in the adaptation of the animation engine’s was
required, thus a new realizer was designed.

2 Related works

The conversational characters are becoming
increasingly more realistic and human like.
However, human eye is able to detect every
detail, and even a small discrepancy in outlook
or movement may appear too unnatural and too
synthetic. Thus, the specification and animation
of conversational behaviour are equally
important. In the field of conversational agents,
the animation part and handling of the virtual
environment is usually left to the realizer
component. The most spread are various BML
realizers. Among them, Unity realizer has been
chosen as the preferred animation engine.

For instance, Virtual Human Toolkit (VHTK)
[16] uses SmartBody [17] as the underlying
realization engine and animation engine. Greta
[18] supports the realization of expressive
conversational behaviour based on MPEG4
BAP-FAP layers. For the animation, the
platform facilitates Ogre5 game engine. There is
also an ongoing effort to deploy Greta over

5 Ogre3D: http://www.ogre3d.org/

Izidor Mlakar et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 206 Volume 2, 2017

Unity game engine6. Elckerlyc [19] is another
BML realizer for generating multimodal verbal
and nonverbal behaviour for Virtual Humans
(VHs). It is a model-based platform for the
specification and animation of synchronized
multi-modal responsive animated agents.
EMBR [20] is also a BML realizer that offers a
high degree of animation control via the
EMBRScript language as interlink between
behaviour generator and the animation engine.
EMBR uses Panda 3D2 as the underlying
animation engine. ASAP realizer-Unity3D
Bridge [21] represents a BML realizer
facilitating Unity game engine as the animation
and rendering engine. The system combines the
benefits of a modern game engine and a modern
BML realizer.

In EVA Realizer, we tried to fuse benefits of
several modern game engines with behaviour
generation engines, and the EVA Behaviour
generator [15] in particular. In this way, the
EVA realizer is capable of animating high-
quality conversational behaviour consisted of
gestures, facial expressions, lip-sync, gaze and
head movement, and posture. Further, the
realizer facilitates procedural animation
delivered via EVAScript acts, synthesis of
subconscious behaviour in form of spontaneous
and expressive eye and head movement, as well
as targeted animation in form of LookAt,
PointAt and Follow commands. The first
version of the realizer presented in [22] had
been implemented in Panda 3D environment2,
while the novel EVA realizer, presented in this
paper, is developed in Unity 3D1. Both realizers
support the realization of the for-mentioned
conversational concepts.

To sum up, in this paper we represent novel
behaviour realization engine with Unity-based
EVA realizer. Architecturally, both realizers are
similar in design. The major advantages of the
Unity-based implementation over the Panda
3D– based implementation are the following:
• Integrated animation scheduling with frame

by frame control and manipulation of all
concurrent and planned animations. Thus,
this represents truly supporting dynamic and

6 Greta in Unity: https://trac.telecom-
paristech.fr/trac/project/greta/wiki/GretaUnity

event oriented environment. Panda 3D
based realizer implemented stop and
interrupt procedures to handle new events,
while the scheduling was implanted
externally and quite rudimentary in form of
FIFO ques holding the pre-processed
animation sequences to be realized.

• Inverse kinematics (IK) for implementation
of targeted animation (e.g. LookAtObject
and FollowObject behaviour). Panda 3D
based realizer partially supported IK via
external libs and implanted LookAt and
Follow behaviours via transformation of 3D
position to the rotations of neck joint and
arm joint chain (online estimation).

• Specification of customized interpolation
curves for more natural smoothing of the
animation.

• Integrated scene and animation editor. It has
the capacity to visually set-up environment
parameters as well as to edit agent’s posture
and gestures in form of EVA Templates.
Nevertheless, 3D modelling tools, such as:
Maya 3D, Blender and Daz 3D can also be
used.

• Deployment of ECAs to various mobile and
stationary platforms. Thus, Unity brings
improved support for various
communicative context in various
environments. Panda 3D based solution
only partially supported this option via web
clients.

3 The EVA Framework Architecture

The general concepts of EVA framework
architecture are in line with related research in
the field. Thus, the principal of SAIBA
architecture is followed [23]. The architecture
of EVA framework is outlined in Fig. 1.

Izidor Mlakar et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 207 Volume 2, 2017

Figure 1: An architecture of the EVA

framework.

As outlined in Fig. 1, the external engine is
used for generating conversational behavior in
form of synchronized co-verbal (e.g. gestures
and expressions) and verbal acts (e.g. speech).
In EVA architecture the engine is named EVA

behavior generator [15]. This is actually an
omni-comprehensive TTS engine, which
generates the synchronized conversational
behavior in form of conversational events. Each
event consists of non-verbal events described in
EVA Script, and aligned with the synthesized
verbal counterparts. The end component of the
presented architecture, which actually realizes
the behavior and represents it to the user, is
EVA realizer. When EVA realizer receives a
conversational event, it transforms it into its
physical representation. This is achieved by
controlling the embodiment of the virtual
character (its movement controllers). After
completion, the realizer sends feedback in form
of a conversational context.

As part of EVA framework we have designed
and deployed two EVA realizers, one is based
on Panda 3D game engine, and the novel one
implemented in Unity 3D environment.
Regardless of the type, the main components of
both EVA realizers are: Event Handler,
Animation Generator, Animation Scheduler and
Animation Handler. Event Handler component
intercepts and handles conversational events. It
parses the stream of events, and checks for the
type of the event and its priority. The Animation

Generator then transforms the conversational
behavior into three separate animation streams:
lip-sync, facial expression, and
gestures/gaze/postures. It actually transforms
EVAScript descriptions into sequences of
configurations of agent’s embodiment
implemented over designated time intervals.
Furthermore, the Animation Generator also
deploys final temporal and spatial constraints,
which are adjusted to agents articulated body
and prevent unnatural movements.

The animation sequences generated by the
Animation Generator are on the other hand
engine specific. Thus, they are specifically
designed and optimized for Panda 3D realizer,
and for Unity 3D realizer. As a result, the Unity
3D realizer implements another component
called Animation Handler, which handles
frame-by-frame operations. In contrast, the
Panda 3D based-one, handles frame-by-frame
operations internally via its native renderer.
Finally, the Animation Scheduler generates an
execution plan for the generated animation
sequences, and deploys them to the Render
engine (or Animation Handler) accordingly.
The Render renders the animation into the user
interface.

After the realization of each animation
sequence is completed, the Event Handler
signals its status (conversational context) to the
Behavior Generator and Dialog Handlers.
After full realization of the behavior que, the
Event Handler triggers generation of inactive
behavior. When some conversational event is
received, while another event is still being
processed and executed, the Animation Handler
stores it into the que handled by the Animation

Scheduler (if the event is regular). And when
some event should override current behavior,
the Event Handler triggers the replacement of
the que with the new behavior. The animation
step currently being rendered is completed and
fully realized. Steps after rendering, however,
will get updated according to the new behavior.
Finally, if some event has to interrupt currently
displayed behavior, the Event Handler triggers
the interrupt procedure. This procedure is also
engine specific.

In Panda 3D based realizer, the frame –by-
frame operations are handled internally by the

Izidor Mlakar et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 208 Volume 2, 2017

renderer. Thus, the Animation Scheduler only
feeds renderer with the targeted transformation
(e.g. end pose), interpolation and time interval
for animation sequence as a whole. Frame-by-
frame calculations are then implemented
automatically and internally by the renderer.
This means that each animation sequence can
be controlled only on the ‘step level’. Once the
step had been fed to the renderer, an abrupt stop
is the only possibility to immediately
change/stop the animation. For a smooth
continuation, therefore, the step fed to the
realizer has to play out to the end. On the other
hand, in Unity based realizer we are able to
handle frame-by-frame operations outside the
render. The Animation Handler calculates the
transformation for each frame separately, and
then feeds the frame-to-frame transformations
to the renderer. This means that the animation
can be modified at any stage, even, during the
execution of a step. Thus, for a smooth
transition the scheduler does not have to wait
and adjust its temporal scheduling. It just has to
adjust its frame-by-frame schedule and replace
it with new configurations. It can actually
instantiate changes instantly as they occur. It
can also insert new behavior in between
configurations, etc. As a result, the virtual
character becomes more responsive and can
react to contextual, system and environmental
changes instantly. The agent also ‘remembers’
what it was gesturing prior to the excited state.
It can continue with the realization of that
behavior after an excited state dissipates. In the
next chapter we will address the novel Unity
based realizer and its implementation in more
detail.

4 A novel Unity based realizer

In order to integrate and fully facilitate all
aspects of conversational behavior supported by
other components in EVA framework and
Panda 3D based Realizer in particular, we
follow the overall approach presented in [14].
Firstly, we need support for the body-part based
animation generated online, and supporting
behavior expressed in form of gestures and
gaze, facial expressions and lip-sync. This

requires an implementation of a proper
articulated agent and its embodiment to be
exposed in Unity. For the design and the
implementation of the agent, the Unity directly
support most of the standard 3D animation
formats from obj, collada, and fbx to directly
import Maya scene files (.mb). The
implementation of EVA Realizer’s architecture
in Unity (Fig. 1) is outlined in Fig. 2.

Figure 2: Implementation of the EVA Realizer

architecture in Unity

In order to adapt to the EVA Architecture,
and implement the required functionalities of an
expressive ECA in Unity, as defined through
EVA Framework, we decided to use C# as
programming language. Fig. 2 outlines those
components that are implemented as scene
objects, and can interact with the scene and all
objects in it directly. These are either actual
animation objects (such as: lights, objects in
environment, cameras, interpolation curves, and
articulated virtual characters, etc.), or C# scripts
extending the native MonoBehaviour type.
MonoBehaviour is the base class of all scripts
that can be attached to ‘game’ objects, and
manipulate objects in the scene. Firstly, the
Event Handler is represented via EventSystem
object, which extends the engines’ native event
handling framework by incorporating EVA
conversational events and publish-subscribe
(unsubscribe) mechanism for handling of
particular animation streams. Thus, the
EventSystem object represents the link between
EVA Behavior Generator with the virtual 3D
scene, and all exposed objects within it

Izidor Mlakar et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 209 Volume 2, 2017

(including the ECA). The EventSystem also
posts requests to the Animation Scheduler. It is
implemented as a bridge between the context of
the realizer and all outside contexts. As such, it
is actually the only component that controls the
scheduler and exposes its selected particulates
to the outside world. The Animation Scheduler
is then represented by the AnimationScheduler
object. The AnimationScheduler is used in order
to interpret EVA conversational events, and to
transform them into responses represented by
the articulated agent. These responses are
animations, and sequences of configurations of
the movement controllers of agent’s
embodiment (e.g. joints and blend shapes).

The AnimationScheduler realizes these events
in form of three independent animation streams.
One stream is generated for speech, one for
facial expressions, and one for head and arm
gestures. Each stream handles one group
(region) in conversational motion. In the
context of EVA events these groups are defined
via <speech>, <fgesture> and <bgesture> XML
tags. The AnimationScheduler animates these
streams via three independent objects, all of
AnimationHandler type. Each
AnimationHandler represents the link between
the rendering engine and the objects in the
scene, including the articulated embodiment.
The speech is animated via Speech Animator,
the facial expressions are then animated via
Expression Animator, while gestures, including
posture and head movement (with gaze), are
handled via Gesture Animator. We have also
added two additional Animator handlers, which
handle subconscious/idle behavior. These are
Eye Blink Animator (for spontaneous expressive
eye-blinks), and Idle Animator (for non-verbal
movements during idle time). In addition to
rendering, each AnimationHandler is
interconnected with a proper Animation

Generator, capable to parse EVAScript
descriptions into configurations of embodiment,
and/or automatically generating configurations
for behavior, such as: eye-blinks, subconscious
head movement, Follow/LookAt object, etc.

4.1 Event-Oriented Model of Realizer

The communication between various
processes of the Realizer is implanted via event-
oriented publish/subscribe model. The Realizer
has the information about the virtual character
(or characters) that is being controlled, such as:
the composition of the skeleton and the face,
and the initial/rest configurations of the
embodiment. The configuration also stores all
temporal and spatial constraints of the
articulated body. These are loaded into
Realizer’s environment upon initialization.
Upon initialization, the Animation Scheduler
registers itself into the event system along with
available animation handlers.

When the Realizer intercepts a conversational
event, it firstly checks its type and priority.
Afterwards, the realizer publishes it to the
Animation Scheduler. After publishing the
event, realizer instantiates a new event listener.
Through it, the realizer subscribes to events
generated by the system. In this way it gains
information regarding the internal status of the
available conversational context and the state of
its components. When the Animation Scheduler
receives the conversational event, it initiates
internal interpreter in order to segment the
behavior into the three before mentioned
animation streams. The interpreter transforms
the EVA script behavior into a body-part
segmented schedule of parallel/consecutively
executed behavior in form of animation
streams. At the same time the Scheduler
smoothly stop any idle behavior, destroy its
handlers, and move to the rest pose.

For each animation stream, the handler
initiates a dedicated animation handler, based
on the type of behavior. After the animation
handling processes are initialized, the scheduler
subscribes to the messaging systems of the
handlers, and stores them into the active handler
list. When new conversational event is
intercepted during execution of current one, the
scheduler in this way always has the ability to
append the arrived behavior, or even to
smoothly/abruptly override the existing
behavior schedule of the targeted animator.

During the execution of the schedule, the
Animation Scheduler feeds the Animation

Handler with animation segment that is
supposed to be animated (e.g. one configuration

Izidor Mlakar et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 210 Volume 2, 2017

of the targeted part of the embodiment), and
waits for a ‘sequence complete’ message. After
such message is received, it continues with the
Que. After the Que is emptied, the Animation

Scheduler signals that animation stream has
been completed, and will destroy the animator
objects, while releasing the reserved resources.
After all animation segments are completed, the
Animation Scheduler will signal the end of the
conversational event. As a result, the Event

handler will, if no more co-verbal events arrive,
trigger the manifestation of the idle behavior.

5 Discussion and future work

In this paper we have presented a novel EVA
Realizer based on Unity 3D game engine. The
implementation described in this paper allows
us to fully facilitate all the capacities of EVA
behavior generator, and to re-use existing
conversational agents and existing behavior
templates. Namely, EVA framework enables
synthesis of natural conversational behavior
by synchronizing verbal and non-verbal
behavior in form of conversational events. Each
such event is Realizer agnostic. Thus, it can be
realized via any engine that can interpret the
message. With the presented approach, we have
proven this hypothesis as well as gained another
powerful conversational behavior realization
engine.

The presented Unity based EVA Realizer is
highly modular and event oriented. Unity
environment seems ideal basis for rapid
development of articulated agents. Namely, it
does not require artists or even developers
especially trained in animation. E.g. Virtual
charters Eva and Adam, outlined in Fig. 3, were
generated in Daz3D7 using the default Genesis3
male and female setups. They were then
imported into Unity environment via
Autodesk’s FBX format. Conversational acts
(gestures) displayed by agents, are generated in
the form of EVA conversational events by using
the EVA Behaviour generator. These events are
then broadcasted to both realizers (Unity, and
Panda based), without any further contextual

7 https://www.daz3d.com/

knowledge regarding the engine, or the virtual
character. As outlined in Fig. 3, the realizers
are able to represent the specified co-verbal
behaviour regardless of the selected engine, or
the male or female character.

Another benefit of the novel realizer
implementation are also needed time and effort
that are required for the design and integration
of some new agent. Namely, Unity features a
diverse Asset Store, from which various models,
objects and even algorithms may be integrated
into one’s virtual environment. Furthermore,
Unity can directly import industry-grade
animation formats (COLADA, FMB, MB).
Therefore, developers can now rapidly integrate
other assets directly from various 3D modelling
environments (e.g. DaZ). Previously we
modelled in Maya8, or had to use Maya (or
Blender) as a bridge between Realizer and
Modelling environments.

Figure 3: Unity based realizer when performing

same behavior on Adam and Eva embodied
conversational agents

8 https://www.autodesk.com/products/maya/overview

Izidor Mlakar et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 211 Volume 2, 2017

Furthermore, the modular approach now

allows for quickly developing a prototype of an
idea. Namely, Unity already incorporates
several powerful and state-of-the-art 3D
modeling tools, such as: drag & drop editing,
online shades, animation and similar features.
These allow developers to dive right into
developing functionality, or to test
visualizations of new conversational concepts,
without any actual changes of the engine itself.
The editor’s GUI, featured in Unity, is also very
powerful and intuitive. It allows for pausing the
execution, and manipulating the scene at any
time as well as progress gameplay frame by
frame. It also has powerful asset management
and attributes inspection. Finally, the event
oriented concept designed as part of EVA
Realizer, allows the virtual agents to properly
react to any given conversational context
instantly as it appears. This enables us to
integrate proprietary conversational agents into
highly dynamic situations, where agents are not
only expressive but also pro-active. Such agents
are not only presenters or listeners, but can also
provide reactive feedback and even take over
the conversation, just as a real humans would.
Thus, the capacity to react to event instantly and
to manipulate animation at frame-level is of
great importance.

The major downside of the realizer, however,
is the fact that in contrast to Panda3D, Unity3D
is proprietary, closed source game engine.
However, non-commercial variations are
available. Furthermore, when performance does
not satisfy growing requirements of a project
migration to another, the engine will require
some extra work. Namely, Unity3D uses very
unique approach for doing things and some of
things may be less compatible with other game
engines. As a result, we will also continue to
support the Panda3D realizer.

The ability to express one-self his attitudes,
feeling and emotions, plays a central role in
defining ECA’s personality, its emotional
state, and can make such an agent truly active
participant in a conversation. However, in order
to make him to be perceived even more natural,
the agent must be able to respond to situational
triggers smoothly, and almost instantly as they

are perceived. Thus, the presented framework
seems not only exciting, but also an important
step towards generating more natural and
human-like companions and machine generated
responses. However, some challenges, such as
generation of EVAScript behavior templates,
variety and plausibility of idle behavior etc. still
remains. Further, the use of lightning and
shaders and materials, and exploitation of the
scene is quite rudimentary. In the near future we
will work on the idea to exploit various physical
objects in the scene for even more natural
conversation. Through the use of Unity

Animation editor, its Inverse Kinematics, and a
powerful PhsyX engine (with IK), these tasks
are viable extensions in the future.

Acknowledgments:

This work is partially funded by the European
Regional Development Fund and the Ministry
of Education, Science and Sport of Slovenia;
project SAIAL

This work is partially funded by the European
Regional Development Fund and Republic of
Slovenia; project IQHOME.

References:
[1] Luger, E., & Sellen, A. (2016, May). Like

having a really bad PA: the gulf between user
expectation and experience of conversational
agents. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing
Systems (pp. 5286-5297). ACM.

[2] Ochs, M., Pelachaud, C., & Mckeown, G.
(2017). A User Perception--Based Approach to
Create Smiling Embodied Conversational
Agents. ACM Transactions on Interactive
Intelligent Systems (TiiS), 7(1), 4.

[3] Fabian, R., & Alexandru-Nicolae, M. (2009).
Natural language processing implementation on
Romanian ChatBot. In WSEAS International
Conference. Proceedings. Mathematics and
Computers in Science and Engineering (No. 5).
WSEAS.

[4] Malcangi, M. (2009). Soft-computing methods
for text-to-speech driven avatars. In Proceedings
of the 11th WSEAS international conference on
Mathematical methods and computational
techniques in electrical engineering (pp. 288-
292). World Scientific and Engineering
Academy and Society (WSEAS).

Izidor Mlakar et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 212 Volume 2, 2017

[5] Kuhnke, F., & Ostermann, J. (2017, July).
Visual speech synthesis from 3D mesh
sequences driven by combined speech features.
In Multimedia and Expo (ICME), 2017 IEEE
International Conference on (pp. 1075-1080).
IEEE.

[6] Caridakis, G., & Karpouzis, K. (2004). Design
and implementation of a greek sign language
synthesis system. WSEAS Transactions on
Systems, 3(10), 3108-3113.

[7] Rojc, M., Presker, M., Kačič, Z., & Mlakar, I.
(2014). TTS-driven Expressive Embodied
Conversation Agent EVA for UMB-SmartTV.
International journal of computers and
communications, 8, pp. 57-66.

[8] Tolins, J., Liu, K., Neff, M., Walker, M. A.,
& Tree, J. E. F. (2016). A Verbal and
Gestural Corpus of Story Retellings to an
Expressive Embodied Virtual Character. In
LREC.

[9] Esposito, A., Esposito, A. M., & Vogel, C.
(2015). Needs and challenges in human
computer interaction for processing social
emotional information. Pattern Recognition
Letters, 66, 41-51.

[10] Kok, K. I., & Cienki, A. (2016). Cognitive
Grammar and gesture: Points of convergence,
advances and challenges. Cognitive Linguistics,
27(1), 67-100.

[11] Kopp, S., & Bergmann, K. (2017, April).
Using cognitive models to understand
multimodal processes: The case for speech and
gesture production. In The Handbook of
Multimodal-Multisensor Interfaces (pp. 239-
276). Association for Computing Machinery
and Morgan & Claypool.

[12] Pelachaud, C. (2015, May). Greta: an
interactive expressive embodied conversational
agent. In Proceedings of the 2015 International
Conference on Autonomous Agents and
Multiagent Systems (pp. 5-5). International
Foundation for Autonomous Agents and
Multiagent Systems.

[13] Neff, M. (2016). Hand Gesture Synthesis
for Conversational Characters. Handbook of
Human Motion, 1-12.

[14] Rojc, M., Mlakar, I., 2016. An Expressive
Conversational-behavior Generation Model for
Advanced Interaction Within Multimodal User
Interfaces, (Computer Science, Technology and
Applications). Nova Science Publishers, Inc.,
Corp., New York, 234.

[15] Rojc, M., Mlakar, I., & Kačič, Z. (2017).
The TTS-driven affective embodied

conversational agent EVA, based on a novel
conversational-behavior generation algorithm.
Engineering Applications of Artificial
Intelligence, 57, 80-104.

[16] Gratch, J., Hartholt, A., Dehghani, M., &
Marsella, S. (2013). Virtual humans: a new
toolkit for cognitive science research. Applied
Artificial Intelligence, 19, 215-233.

[17] Thiebaux, M., Marsella, S., Marshall, A. N.,
& Kallmann, M. (2008, May). Smartbody:
Behavior realization for embodied
conversational agents. In Proceedings of the 7th
international joint conference on Autonomous
agents and multiagent systems-Volume 1 (pp.
151-158). International Foundation for
Autonomous Agents and Multiagent Systems.

[18] Pelachaud, C., 2015. Greta: an interactive
expressive embodied conversational agent. In:
Proceedings of the 2015 International
Conference on Autonomous Agents and
Multiagent Systems, International Foundation
for Autonomous Agents and Multiagent
Systems, (pp. 5-5).

[19] Klaassen, R., Hendrix, J., Reidsma, D., &
van Dijk, B. (2013). Elckerlyc Goes Mobile
Enabling Natural Interaction in Mobile User
Interfaces.

[20] Heloir, A., & Kipp, M. (2010). Real-time
animation of interactive agents: Specification
and realization. Applied Artificial Intelligence,
24(6), 510-529.

[21] Kolkmeier, J., Bruijnes, M., Reidsma, D., &
Heylen, D. (2017, August). An asap realizer-
unity3d bridge for virtual and mixed reality
applications. In International Conference on
Intelligent Virtual Agents (pp. 227-230).
Springer, Cham.

[22] Mlakar, I., & Rojc, M. (2011). EVA:
expressive multipart virtual agent performing
gestures and emotions. International journal of
mathematics and computers in simulation.

[23] Bédi, Branislav, et al. "Starting a
Conversation with Strangers in Virtual
Reykjavik: Explicit Announcement of
Presence." Proceedings from the 3rd European
Symposium on Multimodal Communication,
Dublin, September 17-18, 2015. No. 105.
Linköping University Electronic Press, 2016.

Izidor Mlakar et al.
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 213 Volume 2, 2017

