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Abstract: - Case-Based Reasoning (CBR) is the process of solving new problems based on the 

solutions of similar past problems. Here a Markov Chain model is constructed for a 

mathematical description of the CBR process by introducing an absorbing MC on its main 
steps. A method is also developed with the help of this model for evaluating the effectiveness 

of CBR systems, accompanied by suitable examples and hints are given for future research on 

the subject. 
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1. Introduction 
Case-Based Reasoning (CBR) is a recent 

theory for problem-solving and learning in 

computers and people. Broadly construed 

it is the process of solving new problems 

based on the solutions of similar past 

problems. 

In the paper at hands a Markov Chain 

(MC) model is developed for the 
mathematical description of the CBR 

process. The rest of the paper is organized 

as follows: Section II contains a brief 
description of the CBR process and its 

main steps. In Section III the MC model 

for CBR is constructed by introducing an 
absorbing MC on its steps and in Section 

IV a method is developed for measuring 

the effectiveness of CBR systems 

accompanied by suitable examples. 

Finally, Section V is devoted to 

conclusions a nd some hints for future 

research.  

2. Case – based reasoning 
In CBR the term problem-solving is used 

here in a wide sense, which means that it 
is not necessarily the finding of a concrete 

solution to an application problem, it may 

be any problem put forth by the user. For 
example to justify, or criticize a proposed 

solution, to interpret a problem situation, 

to generate a set of possible solutions, or 

generate explanations in observable data, 

are also problem solving situations. A 

lawyer, who advocates a particular 

outcome in a trial based on legal 
precedents, or an auto mechanic, who 

fixes an engine by recalling another car 

that exhibited similar symptoms, are using 

CBR; in other words CBR is a prominent 

kind of analogy making.  

Its coupling to learning occurs as a natural 

by-product of problem solving. When a 

problem is successfully solved, the 

experience is retained in order to solve 
similar problems in future. When an 

attempt to solve a problem fails, the reason 

for the failure is identified and 
remembered in order to avoid the same 

mistake in future. Thus CBR is a cyclic 

and integrated process of solving a 
problem, learning from this experience, 

solving a new problem, etc.  

The CBR systems’ expertise is embodied 

in a collection (library) of past cases 

rather, than being encoded in classical 
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rules. Each case typically contains a 

description of the problem plus a solution 

and/or the outcomes. The knowledge and 

reasoning process used by an expert to 

solve the problem is not recorded, but is 
implicit in the solution. 

CBR traces its roots in Artificial 

Intelligence to the work of Roger Schank 
and his students at Yale University – 

U.S.A. in the early 1980’s. Scfhank’s 

model of dynamic memory [1] was the 

basis of the earliest CBR systems that 

might be called case-based reasoners, 

Kolodner’s CYRUS [2] and Lebowitz’s 

IPP [3]. 

As an intelligent-systems method CBR has 

got a lot of attention over the last few 

years, because it enables the information 
managers to increase efficiency and reduce 

cost by substantially automating processes. 

CBR first appeared in commercial systems 

in early 1990’s and since then has been 

sued to create numerous applications in a 

wide range of domains  including 

diagnosis, help-desk, assessment, 

decision support, design, etc. 

Organizations as diverse as IBM, VISA 
International, Volkswagen, British 

Airways and NASA have already made 

use of CBR in fields like customer 
support, quality assurance, aircraft 

maintenance, process planning, and many 

more that are easily imaginable. 

CBR has been formalized for purposes of 

computer and human reasoning as a four 

steps process. These steps involve: 

• R1:  Retrieve the most similar to 

the new problem past case. 

• R2:  Reuse the information and 

knowledge of the retrieved case 
for the solution of the new 

problem. 

• R3: Revise the proposed solution. 

• R4:  Retain the part of this 

experience likely to be useful for 

future problem-solving. 

More specifically, the retrieve task starts 
with the description of the new problem, 

and ends when a best matching previous 

case has been found.  The reuse of the 

solution of the retrieved case in the context 

of the new problem focuses on two 

aspects: The differences between the past 

and the current case, and what part of the 

retrieved case can be transferred to the 

new case. Usually in non trivial situations 
part of the solution of the retrieved case 

cannot be directly transferred to the new 

case, but requires an adaptation process 
that takes into account the above 

differences. Through the revision the 

solution generated by reuse is tested for 

success – e.g. by being applied to the real 

world environment, or to a simulation of 

it, or evaluated by a specialist – and 

repaired, if failed. When a failure is 

encountered, the system can then get a 

reminding of a previous similar failure and 

use the failure case in order to improve its 
understanding of the present failure, and 

correct it. In other words, there is a 

transfer from R3 to R1 in this case, and the 

same circle is repeated again. The revised 

task can then be retained directly (if the R3 

task assures its correctness), or it can be 

evaluated and repaired again. In the latter 

case the CBR process remains in fact in 

step R3 for two successive phases. The 
final step R4 involves selecting which 

information from the new case to retain, in 

what form to retain it, how to index the 
case for better retrieval in future for 

similar problems, and how to integrate the 

new case in the memory structure. 

According to the above description the 

flow diagram of the CBR process can be 

represented as shown in Figure 1.  

 

Figure 1: A flow-diagram of the CBR 

process 

For general facts on the CBR process and 

methods we refer to [4, 5] and their 
relevant references. 

3. The Markov Chain Model  
Roughly speaking a MC is a stochastic 

process that moves in a sequence of phases 
through a set of states and has a memory 
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of only one state. This means that the 

probability of entering a certain state in a 

certain phase, although it is not necessarily 

independent of previous states, depends at 

most on the state occupied in the previous 
phase. This property is known as the 

Markov property.  

When its set of states is a finite set, then 
we speak about a finite MC.. For general 

facts on finite MCs we refer to the book of 

Kemeny & Snell [6].  

In this paper, assuming that the CBR 

process has the Markov property, we 

introduce a finite MC having as states the 

four steps of the CBR process described in 

the previous section. The above 

assumption is a simplification (not far 

away from the truth) made to the real 
system in order to transfer from it to the 

assumed real system. This is a standard 

technique of the mathematical modelling 

process of a real world problem, which 

enables the formulation of the problem in 

a form ready for mathematical treatment 

[7; Section 1). 

Denote by pij the transition probability 

from state Ri to Rj, for i, j=1, 2, 3, 4, then 
the matrix A=[ pij] is said to be the 

transition matrix of the MC. 

With the help of the flow-diagram of 
Figure 1 one finds that 

                

             R1    R2    R3   R4 

  A =  
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where we obviously have that  

p31 + p33 + p34 = 1 

(probability of the certain event).  

Further let us denote by φ0,φ1,φ2,….. .. the 

successive phases of the above chain , and 

also denote by 

Pi = [p1
(i)  p2

(i)  p3
(i)  p4

(i)] 

the row - matrix giving the probabilities 

pj
(i) for the MC to be in each of the states 

Rj, j = 1, 2, 3, 4, at phase φi, i = 1, 2, …. . 

We obviously have  again that 

∑
=

4

1

)(

j

i

jp = 1. 

The above row-matrix is called the 
probability vector of the chain at phase φi .  

From the transition matrix A and the flow 

diagram of Figure 1 one obtain the tree of 

correspondence among the phases of the 

MC and its states shown in Figure 2. 

 

Figure 2: Tree of correspondence among 

phases and states of the MC 

From the above tree it becomes evident 

that 

P0 = [1 0 0 0], P1 = [0 1 0 0],  

P2 = [0 0 1 0] , P3 = [p31 0 p33 p34]. 

  Further it is well known that 

Pi+1 = PiA,    i = 0, 1, 2,…..   . 

Therefore one finds that 

P4 =  P3A = [p33p31  p31  p33
2  p34(p33+1)], 

P5 = P4A= [p33
2
p31 p33p31 p31+p33

3
 

p34(p33
2+p33+1)], 

etc. 
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Observe now that, when the chain reaches 

state R4, it is impossible to leave it, 

because the solution of the new problem 

via the CBR approach finishes there. 

Therefore, we have an absorbing MC with 
R4 its unique absorbing state.    

Applying standard techniques from the 

theory of absorbing MCs we bring the 
transition matrix A to its canonical (or 

standard) form A* by listing the 

absorbing state first and then  we make a 

partition of A* as follows:  

                              R4           R1   R2      R3 

A* =  
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Symbolically we can write 

A
*
 = 
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where Q stands for the transition matrix of 

the non absorbing states. Then the 

fundamental matrix of the chain is given 
by 

N = (I3 - Q)
- 1

 = 
)(

)(

3

3

QID

QIadj

−

−
  , 

where I3 denotes the 3X3 unitary matrix, 

adj (I3 - Q) denotes the adjoin matrix and 
D(I3 - Q) denotes the determinant of I3-Q. 

It is recalled that the adjoin of a given 

matrix is the matrix of the algebraic 
complements of the transpose of the given 

matrix.  

A straightforward calculation gives in our 

case that 

N=
33311

1

pp −−
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It is well known then that the entry nij of N 
gives the mean number of times at state Rj 

when the chain is started in state Ri. 

Therefore, since the present chain is 

always starting from R1, the sum  

t=n11+n12+n13 = 

3331

33

1

23

pp

p

−−

−  

gives the mean number of  phases of the 

chain before the absorption. In other 

words, the mean number of steps for the 

completion of the CBR process is t+1. It 

becomes therefore evident that, the bigger 
is the value of t, the greater is the 

difficulty encountered for the solution of 

the given problem via the CBR process. 
Another indication of this difficulty is of 

course the total time spent for the 

completion of the CBR process. 

The ideal case is when the CBR process is 

completed straightforwardly, i.e. without 

backwards from R3 to R1, or stays to R3 , 

as shown in Figure 1. In this case we have 

that p31=p33=0 and p34=1, therefore t=3. 

Therefore, in general is t 3≥ . 

The following simple example illustrates 

the above results: 

Example: A physician takes into account 

the diagnosis and treatment of a previous 

patient having similar symptoms in order 

to determine the disease and suggest the 

analogous treatment of the patient in front 
of him.  

If the initial treatment fails to improve the 

health of the patient, then the physician 
either revises the treatment (stay to R3 for 

two successive phases), or, in more 

difficult cases, gets a reminding of a 

previous similar failure and uses the 

failure case to improve its understanding 

of the present failure and correct it 

(transfer from R3 to R1). The process is 
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completed, when the physician succeeds to 

cure the patient.  

The recorded statistical data show that the 

probabilities of a straightforward cure of 

the patient as well as of each of the above 
two reactions of the physician in case of 

failure are equal to each other.  

This means that p13 = p33 = p34 =
3

1  and 

therefore t=7, i.e. the mean number of 
steps for the cure of the patient is 8. 

Further, one finds that 

P3 = [
3

1
  

3

1

3

1
], P4 = [

9

1
  

3

1
  

9

1
  

9

4
 ],  

P5 = [
27

1
  

9

1
   

9

4
 
27

13
] 

and so on.  

Observing, for example, the probability 
vector P5 one finds that the probability for 

the CBR process to be at the step of 

revision (R3) in the 6
th
 phase  from the 

beginning is 
9

4 , or approximately equal to 

44,44%, the corresponding probability to 

be at the step of retaining the acquired 

experience (R4) is 
27

13 , or approximately 

equal to 48,15%, etc. Note that in the last 

case it is possible that the CBR process 

has arrived to the absorbing state R4 in 
earlier. 

Remark: Knowing the exact movements 

of the physician during the CBR process 
one can calculate the number of steps 

needed for its completion directly from the 

flow-diagram of Figure 1. For example, 

assume that the initial treatment given to 

the patient failed to cure him/her and the 

physician got a reminding of a similar 

failure in the past in order to correct it. 

Assume further that the new treatment 

didn’t give the expected results and the 

physician revised it again succeeding in 
this way to cure the patient. Under the 

above assumptions it is easy from Figure 1 

to check that the number of steps needed 

for the absorption is exactly 8.  

 

4. Evaluating the Effectiveness 

of  

CBR Systems 
The challenge in CBR is to come up with 

methods that are suited for problem-

solving and learning in particular subject 

domains and for particular application 

environments. Core problems addressed 

by CBR research can be grouped into five 

areas: Representation of cases, and 

methods for retrieval, reuse, revision and 
retaining the acquired experience. A CBR 

system should support the problems 

appearing in the above five areas. A good 
system should support a variety of 

retrieval mechanisms and allow them to be 

mixed when necessary. In addition, the 
system should be able to handle large case 

libraries with the retrieval time increasing 

linearly (at worst) with the number of 

cases. 

Let us consider a CBR system including a 

library of n past cases and let ti, as it has 

been calculated in the previous section, be 

the mean number of steps for the 

completion of the CBR process for case ci, 
i=1,2,…,n. Each ti could be stored in the 

system’s library together with the 

corresponding case ci. We define then the 

system’s effectiveness, say t, to be the 

mean value of the ti’s of its stored cases, 

i.e. we have that      

t = 
n

t
n

i

i∑
=1   . 

The more problems are solved in future 

applications through the given system, the 

bigger becomes the number n of the stored 

cases in the system’s library and therefore 
the value of t is changing. As n increases it 

is normally expected that t will decrease, 

because the values of the ti’s of the new 
stored cases would be decreasing. In fact, 

the bigger is n, the better would be the 

chance of a new case to “fit” well (i.e. to 

have minor differences) with a known past 

case, and therefore the less would be the 
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difficulty of solving the corresponding 

problem via the CBR process. Thus we 

could say that a CBR system behaves well 

if, when n tends to infinity, then its 

efficiency t tends to 3. 

Example:  Consider a CBR system that 

has been designed in terms of the Schank’s 

model of dynamic memory for the 
representation of cases [1]. The basic idea 

of this model is to organize specific cases 

which share similar properties under a 

more general structure called a 

generalized episode (GE). During storing 

of a new case, when a feature of it matches 

a feature of an existing past case, a new 

GE is created. Hence the memory structure 

of the system is in fact dynamic, in the 

sense that similar parts of two case 
descriptions are dynamically generalized 

in to a new GE and the cases are indexed 

under this GE by their different features.  

In order to calculate the effectiveness of a 

system of this type we need first to 

calculate the effectiveness of the GE’s 

contained in it. For example, assume that 

the given system contains a GE including 

three cases, say c1, c2 and c3. Assume 
further that c1 corresponds to a 

straightforward successful application of 

the CBR process, that c2 is the case 
described in the example of Section III, 

and that c3 includes one “return” from R3 

to R1 and two “stays” to R3. Then t1=3 and 
t2=7, while for the calculation of t3 observe 

that p31=p34=
4

1  and p33=
2

1 , therefore t3=8. 

Thus the efficiency of this GE is equal to t 

= 
3

873 ++ = 6.  

Note that a complex GE may contain some 

more complex GE’s containing simpler 

ones [8; Figure 3]. In this case we need to 
calculate the effectiveness of the complex 

GE by considering all its cases only once, 

regardless if they belong or not to more 

than one of the simpler GE’s contained in 

it. Finally, the system’s effectiveness is the 

mean value of the effectiveness of all its 

GE’s. 

Remark:  An alternative approach for the 

representation of cases in a CBR system is 

the category and exemplar model applied 

first to the PROTOS system by Porter and 

Bareiss [9].. In this model the case 

memory is embedded in a network of 

categories, cases and index pointers. Each 
case is associated with a category. Finding 

a case in the case library that matches an 

input description is done by combining the 
features of the new problem case into a 

pointer to the category that shares most of 

these features. A new case is stored in a 

category by searching for a matching case 

and by establishing the appropriate feature 

indices. The process of calculating the 

effectiveness of a system of such type is 

analogous to the process described in the 

above example, the only difference being 

that one has to work with categories 
instead of GE’s.  In a similar way one may 

calculate the effectiveness of systems 

corresponding to other case memory 

models including Rissland and Ashley’s 

HYPO system in which cases are grouped 

under a set of domain-specific dimensions 

[10], the MBR model of Stanfill and Waltz  

[11], designed for parallel computation 

rather than knowledge-based matching, 
etc. 
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