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Abstract:  Ordinary Petri nets are classifiable as forward transition systems. This implies that by default, once a 
transition has fired it cannot be reversed. System representation and modeling is an interesting area used for 
modeling modern computer systems. Because of changes in technology systems contain diverse forms of 
behavior. In requirements engineering and requirements elicitation, system modelers can benefit from new 
approaches and new forms of system representation that build upon previous work. This work presents a new 
approach and view where it is possible to actually reverse a transition that has taken place. This idea is 
presented in a Bi-Directional or Bi-Directed transition net. The bi-directional net introduces the concept of 
reversing the normal firing order. In normal Petri nets once the firing occurs this is irreversible. In the bi-
directional net it is possible to reverse the transition. In this work the motivation and ideas behind the Bi-
Directional transition are explained and compared with normal Petri Nets. Some toy examples are included to 
support the ideas of the bi-directional net. From the findings and examples it is clearly indicated that the Bi-
Directional Net can be used to create models that can invert the transition firing order and reverse their 
behavior. Even though the Bi-Directional Net might look simpler in reality it is more complex. The results 
discuss some of the main properties and issues behind the bi-directional net. This paper is divided into the 
following sections: i) introduction to the area, ii) related work about transition systems and Petri Nets,  iii) 
motivation and problem definition,  iv) proposed solution,  v) implementation, vi) examples, vii) results and 
findings and viii) conclusions.   
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1 Introduction 
System representation is an interesting and 
intriguing area that requires considerable techniques 
and modeling disciplines. In the last decades 
substantial work and innovative changes have taken 
place in technologies and architectures of computer 
systems and their respective networking. Computer 
technologies have evolved and developed many new 
processes and formal or informal systems. Modern 
systems are large and complicated [1]-[6]. They 
contain many different forms of behavior.  It is 
obvious that systems require to be modelled using 
new tools. E.g. a large system can be composed of 
several subnets because otherwise it would be 
impossible to distinguish different activities in 
different places. Many modern systems in reality 
have parts or states that can be reversed. Using bi-
directional transitions can be useful for static 
representation and execution of structures 
representing these systems. Formal and semi-formal 

representations are important for requirements 
engineering and quality control.  

Different notations in literature have been used 
for representing and comprehending system 
behavior [7]-[10]. Bi-directional flows/arcs give a 
better representation of system behavior [6]. 
Different types of structures and models have been 
brought along to represent these systems. Some 
models have representation that is good for 
visualization [8]-[10].  

An interesting area of system modeling is that of 
symbolic modeling used for system representation. 
Symbolic modeling is how to computationally 
represent knowledge [7],[8]. Symbolic architectures 
offer advantages for human understanding of a 
system. In this work by symbolic modeling it is 
intended how to symbolically represent computer 
processes and architectures in a way that they are 
better understood by humans.  As an idea, symbolic 
modeling is the use of visual constructs or notations 
that supply information to different stakeholders 

Anthony Spiteri Staines
International Journal of Computers 

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 80 Volume 2, 2017



[9],[10]. Symbolic modeling here implies that large 
systems are simplified and reduced. I.e. the state 
space is compacted through abstraction rendering 
the model more compact [13]-[16]. 

Transition systems are simple but powerful 
formalisms that explain the operational workings of 
concurrency models. They create a framework for 
presenting underlying relationships and interactions 
between different approaches for the study of 
distributed systems [9],[10]. 

One problem is that it is difficult to classify 
which type of transition system corresponds to 
which model. Transition systems seem to cover a 
vast range of different types of networks and Petri 
net types seem to be part of transition systems. 
Normal Petri nets can be considered to be a special 
type of forward directed transition systems.  

A Petri net is a forward directed transition system 
[11]. In all classes of Petri nets the type of event 
ordering is normally forward based. Causal ordering 
or events can take place to a certain extent. 
However, reverse event ordering is usually 
disallowed from taking place. 

Concurrency, causality, conflict and confusion 
are not so simple to represent and define [11]. For 
this reason authors have preferred to use reduced or 
restricted net structures like elementary nets.  
Transition systems have similarities to elementary 
nets. Some Petri net classes are restricted or reduced 
for the simple reason that they give more strict 
control. Operations and control are easily 
represented in restricted classes. Elaborate 
definitions of controlled structures can be extended 
by including elements like traces, non-sequential 
processes, etc. In the real world many modern 
systems do not exhibit controlled behavior.   

In this work the normal view of Petri nets or 
similar types of networks [12] will be to go against 
the normal tradition of having Petri nets as being 
forward ordering transition systems. This is an 
oversimplification of real world transitions. This 
paper is structured as follows: 1 Introduction, 2 
Some Related Works that describe transition 
systems and Petri nets, 3 Motivation and Problem 
Definition, 4 Proposed Solution, 5 Implementation, 
6 Some Examples, 7 Results and Findings 8 
Conclusions. 
 

2 Some Related Work 
 
2.1 Transition Systems 
Transitions are the founding blocks of all system 
major processes. Transitions represent events that 
are taking place or are bound to take place in the 

future. Past events are also part of the scenario. 
Events can be composed of a number of transitions 
that occur in some causal ordering sequence. For 
modeling these types of behavior different notations 
have been created. The simplest form of diagrams 
for representing transitions is the state transition 
diagram or state transition graph. To this, different 
notations and elements have been added making it 
more complex and capable of representing more 
detail. In software modeling and software 
engineering other notations have been created like 
automata, UML activity diagrams, transition 
systems and Petri nets. 

For simple representation of transitions their 
depiction can be normally done using visual 
graphical notations. Pictorially a transition system 
can be represented as an edge labelled digraph with 
a given root [9],[10]. Hence, this type of system can 
be called a forward directed transition system, 
implying that the future states of the system are the 
result of the current states. It transits into a forward 
state. This means that the states in the future are the 
result of the current state. Hence it transits into a 
forward state. 

Formally a transition system is a pair (S,->) 
where S is a finite set of states, S= s1,s2,s3,…..,sn 
and -> is a finite set of transitions t1,t2,…..,tn. A 
transition from a state s1 to s2 ie. (s1,s2) is given as 
E ->, s1 ->s2. A labelled transition system (LTS) is 
a tuple (S,A,->) . The edge from s1 to s2 is written 
s1 –a-> s2.  I.e. the edge is given a label [9],[10].  

Transition systems (TS) are used to describe the 
potential behavior of discrete systems. TS consists 
of states and transitions between states. System 
labelling can be simple or complex. Normally, 
transition systems are representable using directed 
graphs. i) TS by default have direction or single 
direction. ii) TS refers to any type of behavior when 
a state and transitions are involved. Simulation pre-
order represents the relationship between state 
transition systems where the moves of another 
system are intuitively matched.  
 
2.2 Petri Nets 
Petri nets are bi-partite graphs with special added 
features that can model concurrency, mutual 
exclusion, sequence and control in communicating 
systems that exhibit discrete behavior [11], [17]. 
Petri nets are based on automata principles and also 
on transition system properties. Petri nets can be 
considered to have two main types of structural 
representation. These are i) representational or 
pictorial structures and ii) executional structures that 
show the execution of the net. A third structure 
based on the mathematical representation of the net 
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can be included. In this work the focus is on the 
representational and executable structures. The 
executional structure of the net is a very important 
property of a Petri net.  

Other more complex and abstract classes of Petri 
nets are possible. E.g. Colored Petri Nets [17], 
Object oriented nets, higher order nets. Normally 
these structures have a fixed direction. This is 
because transitions have entry points and exit points.  
From a logical and controlled perspective this 
makes sense because it is significantly easier to 
understand and control what is happening. 
 

3 Motivation and Problem Definition 
In this work the rules used in Petri nets are relaxed 
and not adhered to. Petri nets can be considered to 
be a special type of digraphs. The fact that digraphs 
are used implies that once a transition fires in a 
particular direction the firing cannot be reversed 
automatically. Transitions have deterministic and 
pre-ordered firing direction. The Petri net can be 
structured in such a way as to reverse its state, 
however this is normally done by adding more 
places, arcs and transitions. Reversing the state 
implies that deterministic behavior is still being 
used. A new network topology or a Petri net with 
undirected edges connected to nodes is created. This 
implies that transition firing can happen both ways 
i.e. bi-directionally. Modeling power is drastically 
increased and non-determinism principles are 
introduced.  Behavior that is not allowed to take 
place in the definition of classic Petri nets is allowed 
here. Obviously, many new issues are created and 
some form of control principles or rules might have 
to be defined. The advantage of this approach is that 
the modeling power of Petri nets is extended and 
reflects in a more precise way what takes place in 
modern systems where normally it makes sense to 
be able to reverse transitions. As a simple example, 
in many modern autonomic or autonomous control 
systems it is possible to have state reversal as an 
automatic or reset process.  Considerable research 
has been carried out in the direction of transition 
systems [7]-[9]. These structures are based on 
digraphs and are suitable for visualization. 

Symbolic modeling is imperative for 
understanding and representing system structures. 
Visualization techniques are useful for representing 
system structures like networks. Bi-directional 
transitions serve to explain in better detail the real 
scenario. However, it must also be considered that 
having transitions that can fire bi-directionally 
definitely increases the undecidedness in the system. 
Some reasons for bi-directionality in transition 
firing are: i) it is more realistic, ii) shortcut 

modeling can be used, iii) weak association and 
weak controls can be introduced, iv) more realism 
of what happens in the real world is introduced.  
 

4 Proposed Solution 
The proposed solution here a prima facie seems to 
be very simple. Instead of using directed arcs as in 
normal Petri nets the direction of the arcs is simply 
removed creating undirected arcs.  

However, this creates a number of issues that 
need to be addressed. The formal solution can be 
given in future works. A brief idea is given. By 
removing the direction of the arcs it is implied that 
tokens in the net can travel in both directions. This 
creates a structure that is more complex and abstract 
than a normal Petri net. The concept of 
undecidedness is introduced and the normal orderly 
or linear firing sequence that is found in Petri nets is 
no longer there. Even the normal firing routine in 
Petri nets will be changed.  

This type of structure will closely imitate what 
happens in the real world, where behavior is not 
necessarily ordered. The bi-directional transition net 
is suitable for i) static and ii) dynamic modeling. 
The latter is more difficult to control and will 
require some specific rules according to the case 
being modelled.  
 

5 Implementation 
By definition the bi-directed transition net (BDTN) 
or bi-directional Petri net has the following 
properties. The bi-directed net is a five tuple 
structure N = (P,T,E,IF,OF) where P = {p1,p2,p3 
,…,pn} a finite non- empty and non- negative set of 
places. T ={t1,t2,t3,…,tn} a finite non-negative and 
non-empty set of transitions. Transitions and places 
are disjoint. i.e. no object can be both a place and a 
transition. TP  and TP . 

)}{( TPE  , cTPIF   is an input 
function that defines the value of an arc from a place 
to a transition, cPTOF   is an output 
function that defines the value of an arc from a 
transition to a place. C is a set of non-negative 
integer values. i.e. 0c . For a normal Petri net, 
transition firing is controlled and regulated by the 
number of tokens available to a transition.  A 
transition t where Tt  is said to be enabled IFF 
every input place p of t where Pp  contains at 
least the minimum number of tokens equal to the 
weight of the directed arc that connects p to t, i.e. 
M(p) ≥ I(t, p) where Pp . By definition it has to 
have tokens for all the input places. For the BDTN 
this rule is relaxed. For firing to occur in the BDTN 
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Pp  input to t, where Tt , the sum of all 
tokens in places connected to t   firing value for 
the transition. I.e. for a transition to fire it has to 
have a certain value of tokens available directly.  

The firing here is associated with the transition 
and not with input arcs as is done in Petri nets. 
Similarly, when firing a transition, the output values 
are placed in accordance with the output arc 
weights. Here this is not the case, as the output 
values are placed according to the transition values. 
It is possible to create input and output rules or 
functions for the transitions. This is partially 
explained in fig. 1. Other forms of control can be 
included. E.g. it is possible to have arcs with 
negative values to indicate that the arc removes 
tokens and arcs with positive values to indicate that 
they place tokens. The following general rules will 
serve to give a brief overview of the implementation 
of the BDTN. i) Places can serve as inputs or 
outputs. Alternatively they can be called channels or 
stores. ii) For transition firing there have to be a 
sufficient amount of tokens in the input places. 
However some input places can be empty because 
firing is controlled by the transition and not the arcs. 
iii) There are various possibilities for output once a 
transition fires. One place can be left empty and the 
tokens moved into another place. This is different 
from traditional Petri nets where normally the 
output places cannot be left empty after transition 
firing. iv) Additional rules might need to be added 
independently to a model for a particular scenario. 
This would be a scenario related rule. v) Some form 
of ordering in firing might be necessary. 
 

6 Some Examples 
 
6.1 A Simple Web Login Process 
Fig. 1 clearly illustrates the concept of the BDTN in 
comparison to a typical Petri net. The idea of a web 
login process is introduced and compared. In fig. 1 
a) the Petri net shows that at each stage of the 
process e.g. at the pwd entered stage it is possible to 
roll back to a previous state, this is achieved by the 
extra transitions that have been added. In fig. 1 b) 
the BDTN shows the same functionality of the Petri 
net but at each stage connecting arcs have no 
direction, implying that the tokens can flow bi-
directionally. Hence automatically a state is 
reversible or a new state can be achieved. E.g. at the 
signon pressed state a token in this place can be 
removed and placed in the pwd entered state, thus 
reversing the state. It is obvious that the BDTN 
model is more compact and elaborate than the Petri 
net for modeling purposes.  

 
6.2 Static Comparison of a Petri Net with a 
Bi-Directional Net  
Fig. 2 shows how the BDTN compares with a 
normal Petri net. In a normal Petri net arcs are 
always directed and are either input or output arcs. 
On the other hand this paper is proposing a net 
structure where the arcs do not have a specific 
direction or are unidirectional. The overall structure 
still looks like a normal Petri net from the static 
point of view. However, the BDTN’s dynamic 
functionality will be significantly different than that 
of the Petri net. 
 
6.3 Dynamic Operations of an Elementary 
Bi-Directional Net  
Fig. 3 shows how the dynamic operations for the 
BDTN given in fig. 2 ii). i.e. fig. 2 shows all the 
possibilities that are available when firing the main 
transition T1. Note that this is not a given sequence 
of how the outputs occur and all places have a 
restriction of one and the arcs can carry only one 
single token. The transition requires a minimum 
input of two tokens for firing. This is clearly 
indicated by the number two in the transition. There 
is no given temporal order how this firing will affect 
the output. I.e. the output and the input can happen 
in any order. The output can become the input for 
the next transition firing. Hence, the structure in fig. 
2 ii) is a live structure that is continuously enabled. 
However fig. 3 shows all the possible six states of 
the system which are reachable. The structure is a 
live structure without deadlock.  
 
6.4 A Simplified Bi-Directional Net with One 
Token 
Fig. 4 shows a simpler version of fig. 3. This has 
been obtained by reducing the token to one and the 
transition requires only a single token for firing. 
Clearly the system has less states. These are just 
four states.  It is shown again that the firing can 
occur in any order. 
 
6.5 A More Complex Bi-Directional Net 
Fig. 5 shows a more complex BDTN. In this 
example transition t1 and t2 require a minimum of 
two tokens for firing. The tokens can be present in 
any of the places connecting to t1 and t2. E.g. t1 is 
enabled and can fire as long as two tokens are 
available together from any given combination 
p1,p2,p3 and p4. In fig. 5 t1 is enabled because there 
is one token in p1 and one token in p2 which give 
the two tokens required by t1 for firing. If t1 fires 
then the possibilities listed in fig.3 are all available.  
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Figure 1:  A Simple Web Login Process a) Petri Net Model and b) Bi-Directional Model 
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Figure 2:  i) A Simple Petri Net vs ii) A Bi-Directional 

Net 

 

 
 

 
Figure 3:  Possible Markings/States for an Elementary Bi-

Directional Net

 

 
 

 
Figure 4:  A Simplified BDTN with a Single Token 
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Transition t2 has been restricted. I.e. it can fire only 
if one token is present in p3 and one token in p4 or 
two tokens are present in p5. So t2 functions like a 
two way switch. This can be done because the place 
capacity of p5 is two and the connecting undirected 
arc from t2 to p5 and vice-versa has a weight of two 
implying that either two tokens are outputted or 
inputted in a single instance of firing t2.  Fig. 6 
indicates the presence of choice in this net. In fig. 6 
having one token in p3 and one token in p4 and the 
concept of bi-directionality implies that both 
transition t1 and transition t2 are simultaneously 
enabled. But only one can fire because firing one 
automatically will disable the other. Again this net 
structure is completely reversible and live. I.e. the 
firing can go on indefinitely unless some restrictions 
or conditions are added. This shows that a plethora 
of new possibilities are opened up by connecting 
transitions, places and undirected arcs. The detailed  
workings of this network structure are not shown 
here.  
 
6.6 A Circuit Representation using a Petri 

Net and a Bi-Directional Net 
Fig. 7 shows a normal Petri net circuit and a BDTN. 
Even though structurally they look similar there are 
big differences in the operations that are possible. In 
the Petri net tokens can flow only in one direction. 
On the other hand in the BDTN the token flow can 
be in both directions. So the BDTN serves as a dual 
circuit.  
 

7 Results and Findings 
This paper shows how a new form of Petri Net 
called a BDTN can be used. This structure retains 
many of the main essential structural properties 
found in general Petri net classes. However, it is 
clearly indicated that the behavior and firing is not 
similar.  

It is obvious that BDTNs offer more detail than 
Petri nets. This comes at the expense of having 
complex behavior that might not always be 

controllable. But if the BDTNs are properly 
constructed and restricted it is possible to achieve 
better control. This is indicated in fig. 6 where the 
possible firing of the net has been restricted by 
using place capacity restriction and arc weights. The 
simple web login process indicate the usefulness of 
the BDTN as a static and dynamic modeling 
notation and tool for very simple processes. These 
processes are serially linked together. This example 
shows how we can reverse the process from one 
stage to the previous state.  Fig. 2 shows that even 
though the structure looks simple, just by increasing 
the number of tokens in the places it is possible to 
generate great complexity. This can be seen when 
fig. 3 is compared to fig. 4. Fig. 7 compares a 
normal Petri net with a BDTN. The bi-directional is 
reversible at every instance and hence it expresses 
more behavior than the Petri net. To represent the 
same behavior using a Petri net would require 
adding more arcs and transitions. Hence the result of 

this is that the BDTN is shown to be more compact.  
Fig. 5 indicates how even a simple structure 
becomes complex when the arc weights are greater 
than one. Fig. 6 shows how the net in fig. 5 contains 
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Figure 5:  A Complex Bi-Directional Net 

 
 

 
 

 
Figure 7:  A Circuit in a i) Petri Net and ii) BDTN 
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Figure 6:  Free Choice in the BDTN 
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free choice. Either t1 or t2 can fire but not both. Fig. 
8 shows the marking graph for the BDTN in fig. 4. 
The marking graph clearly indicates that it is 
possible to reverse a state to any other state directly. 
The marking graph in fig. 8 clearly shows the bi-
directionality linking in the net. It is possible to 
construct a complete Petri net from this marking 
graph. The marking graph for the net in fig.3 is 
similar but more complex to construct and link and 
it will have six states. The more complex the 
BDTN, the more difficult is the construction of the 
marking graph. If a Petri net is compared to the 
BDTN in terms of the marking graph, the marking 

graph for the Petri net will be much simpler to 
construct and depict. The marking graph can be 
constructed symbolically to represent the structures.  

The main results of this work have shown that i) 
it is possible to construct a BDTN, ii) the BDTN can 
capture more detail than a Petri net, iii) the BDTN 
will require some additional form of restriction or 
control. 

When a BDTN structure has places that connect 
to multiple transitions, there is undecidedness or the 
issue of choice. This implies that it is unknown 
which transition fires. This analogy compares to the 
real world situation. E.g. if a person is in front of 
two or more shops he can enter whichever shop he 
wants. Petri nets can exhibit choice which is 
controlled to an extent. In the BDTN this choice is 
uncontrolled.  

The BDTN can be transformed into a Petri net by 
adding more input arcs, output arcs and transitions. 
The resultant behavior should be identical. But 
obviously the resultant Petri net is a more complex 
structure.  

An interesting feature of the BDTN is that this 
structure can be combined with normal Petri nets. 
This implies that there is a possibility of creating 
more dynamic and powerful structures. 

A fundamental difference between the Petri net 
and the BDTN is that the Petri net structures allow 
for what can be called a memory effect, because the 

current state is the result of the previous states that 
are identifiable. The memory effect depends on the 
system transition timeline. This would be easily 
evidenced in a Petri net.  On the other hand, this 
type of memory effect and timeline transition firing 
seems to be lost in the BDTN because the previous 
states cannot be simply recalled from the current 
state. This could cause problems or be of an 
advantage depending on what needs to be modelled. 
If the memory effect is needed for the BDTN some 
solution needs to be found. For strictly forward 
transition system behavior the BDTN is not suitable 
if the requirements need to be strictly adhered to.  

A state explosion is when the number of states in 
the system increase exponentially. This situation 
becomes uncontrollable.   
 

8 Conclusions 
This work has introduced a new type of Petri net   
which has been called a BDTN. Although this 
structure behaves like a Petri net it can capture more 
detail. Even a simple looking BDTN can manifest 
complex behavior because if it has more than one 
transition and many places and two or more tokens.   

Combining the BDTN with Petri nets will result 
in notations useful for more expressive modeling.  
The opposite also holds true.  

There is the issue of the memory effect. The 
BDTN seems to cancel out memory and always 
remain in the current state. I.e. the fact that multiple 
previous states exist make it difficult to trace the 
original states and sequences.  

This work is incomplete in the sense that just a 
very trivial idea of the BDTN has been presented 
along with some toy examples. Proper rules for 
firing have not yet been established. It has been left 
to the user to interpret and set the firing rules for 
these structure thus allowing a lot of room for 
experimenting and more possibilities.  

The BDTN could prove to be useful for symbolic 
representation and modeling of some network and 
system classes in the real world. 

For future work the BDTN can be constructed 
along with a Petri net and comparisons made as to 
which is the most useful for the problem approach. 
As previously mentioned combining the BDTN with 
Petri net structures could prove to be useful for 
requirements elicitation. From the representational 
point of view the BDTN is useful for system 
representation. It will help to stimulate thinking and 
visualization of system behavior. The BDTN can 
definitely benefit from the support of other 
notations. This work has shown the usefulness of 
the BDTN approach. 
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Figure 8:  A Marking Graph for the Bi-Directional 
Net shown in Fig.4. 
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