
An Introduction to Bi-Directional Transition Network Modeling

Anthony (tony) Spiteri Staines
Department of Computer Information Systems

University of Malta
Msida MSD 2080

MALTA
toni_staines@yahoo.com

Abstract: Ordinary Petri nets are classifiable as forward transition systems. This implies that by default, once a
transition has fired it cannot be reversed. System representation and modeling is an interesting area used for
modeling modern computer systems. Because of changes in technology systems contain diverse forms of
behavior. In requirements engineering and requirements elicitation, system modelers can benefit from new
approaches and new forms of system representation that build upon previous work. This work presents a new
approach and view where it is possible to actually reverse a transition that has taken place. This idea is
presented in a Bi-Directional or Bi-Directed transition net. The bi-directional net introduces the concept of
reversing the normal firing order. In normal Petri nets once the firing occurs this is irreversible. In the bi-
directional net it is possible to reverse the transition. In this work the motivation and ideas behind the Bi-
Directional transition are explained and compared with normal Petri Nets. Some toy examples are included to
support the ideas of the bi-directional net. From the findings and examples it is clearly indicated that the Bi-
Directional Net can be used to create models that can invert the transition firing order and reverse their
behavior. Even though the Bi-Directional Net might look simpler in reality it is more complex. The results
discuss some of the main properties and issues behind the bi-directional net. This paper is divided into the
following sections: i) introduction to the area, ii) related work about transition systems and Petri Nets, iii)
motivation and problem definition, iv) proposed solution, v) implementation, vi) examples, vii) results and
findings and viii) conclusions.

Key-Words: Bi-directionality, Symbolic Representation, Systems Modeling, Network Representation, Petri
Nets, Transition Systems

1 Introduction
System representation is an interesting and
intriguing area that requires considerable techniques
and modeling disciplines. In the last decades
substantial work and innovative changes have taken
place in technologies and architectures of computer
systems and their respective networking. Computer
technologies have evolved and developed many new
processes and formal or informal systems. Modern
systems are large and complicated [1]-[6]. They
contain many different forms of behavior. It is
obvious that systems require to be modelled using
new tools. E.g. a large system can be composed of
several subnets because otherwise it would be
impossible to distinguish different activities in
different places. Many modern systems in reality
have parts or states that can be reversed. Using bi-
directional transitions can be useful for static
representation and execution of structures
representing these systems. Formal and semi-formal

representations are important for requirements
engineering and quality control.

Different notations in literature have been used
for representing and comprehending system
behavior [7]-[10]. Bi-directional flows/arcs give a
better representation of system behavior [6].
Different types of structures and models have been
brought along to represent these systems. Some
models have representation that is good for
visualization [8]-[10].

An interesting area of system modeling is that of
symbolic modeling used for system representation.
Symbolic modeling is how to computationally
represent knowledge [7],[8]. Symbolic architectures
offer advantages for human understanding of a
system. In this work by symbolic modeling it is
intended how to symbolically represent computer
processes and architectures in a way that they are
better understood by humans. As an idea, symbolic
modeling is the use of visual constructs or notations
that supply information to different stakeholders

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 80 Volume 2, 2017

[9],[10]. Symbolic modeling here implies that large
systems are simplified and reduced. I.e. the state
space is compacted through abstraction rendering
the model more compact [13]-[16].

Transition systems are simple but powerful
formalisms that explain the operational workings of
concurrency models. They create a framework for
presenting underlying relationships and interactions
between different approaches for the study of
distributed systems [9],[10].

One problem is that it is difficult to classify
which type of transition system corresponds to
which model. Transition systems seem to cover a
vast range of different types of networks and Petri
net types seem to be part of transition systems.
Normal Petri nets can be considered to be a special
type of forward directed transition systems.

A Petri net is a forward directed transition system
[11]. In all classes of Petri nets the type of event
ordering is normally forward based. Causal ordering
or events can take place to a certain extent.
However, reverse event ordering is usually
disallowed from taking place.

Concurrency, causality, conflict and confusion
are not so simple to represent and define [11]. For
this reason authors have preferred to use reduced or
restricted net structures like elementary nets.
Transition systems have similarities to elementary
nets. Some Petri net classes are restricted or reduced
for the simple reason that they give more strict
control. Operations and control are easily
represented in restricted classes. Elaborate
definitions of controlled structures can be extended
by including elements like traces, non-sequential
processes, etc. In the real world many modern
systems do not exhibit controlled behavior.

In this work the normal view of Petri nets or
similar types of networks [12] will be to go against
the normal tradition of having Petri nets as being
forward ordering transition systems. This is an
oversimplification of real world transitions. This
paper is structured as follows: 1 Introduction, 2
Some Related Works that describe transition
systems and Petri nets, 3 Motivation and Problem
Definition, 4 Proposed Solution, 5 Implementation,
6 Some Examples, 7 Results and Findings 8
Conclusions.

2 Some Related Work

2.1 Transition Systems
Transitions are the founding blocks of all system
major processes. Transitions represent events that
are taking place or are bound to take place in the

future. Past events are also part of the scenario.
Events can be composed of a number of transitions
that occur in some causal ordering sequence. For
modeling these types of behavior different notations
have been created. The simplest form of diagrams
for representing transitions is the state transition
diagram or state transition graph. To this, different
notations and elements have been added making it
more complex and capable of representing more
detail. In software modeling and software
engineering other notations have been created like
automata, UML activity diagrams, transition
systems and Petri nets.

For simple representation of transitions their
depiction can be normally done using visual
graphical notations. Pictorially a transition system
can be represented as an edge labelled digraph with
a given root [9],[10]. Hence, this type of system can
be called a forward directed transition system,
implying that the future states of the system are the
result of the current states. It transits into a forward
state. This means that the states in the future are the
result of the current state. Hence it transits into a
forward state.

Formally a transition system is a pair (S,->)
where S is a finite set of states, S= s1,s2,s3,…..,sn
and -> is a finite set of transitions t1,t2,…..,tn. A
transition from a state s1 to s2 ie. (s1,s2) is given as
E ->, s1 ->s2. A labelled transition system (LTS) is
a tuple (S,A,->) . The edge from s1 to s2 is written
s1 –a-> s2. I.e. the edge is given a label [9],[10].

Transition systems (TS) are used to describe the
potential behavior of discrete systems. TS consists
of states and transitions between states. System
labelling can be simple or complex. Normally,
transition systems are representable using directed
graphs. i) TS by default have direction or single
direction. ii) TS refers to any type of behavior when
a state and transitions are involved. Simulation pre-
order represents the relationship between state
transition systems where the moves of another
system are intuitively matched.

2.2 Petri Nets
Petri nets are bi-partite graphs with special added
features that can model concurrency, mutual
exclusion, sequence and control in communicating
systems that exhibit discrete behavior [11], [17].
Petri nets are based on automata principles and also
on transition system properties. Petri nets can be
considered to have two main types of structural
representation. These are i) representational or
pictorial structures and ii) executional structures that
show the execution of the net. A third structure
based on the mathematical representation of the net

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 81 Volume 2, 2017

can be included. In this work the focus is on the
representational and executable structures. The
executional structure of the net is a very important
property of a Petri net.

Other more complex and abstract classes of Petri
nets are possible. E.g. Colored Petri Nets [17],
Object oriented nets, higher order nets. Normally
these structures have a fixed direction. This is
because transitions have entry points and exit points.
From a logical and controlled perspective this
makes sense because it is significantly easier to
understand and control what is happening.

3 Motivation and Problem Definition
In this work the rules used in Petri nets are relaxed
and not adhered to. Petri nets can be considered to
be a special type of digraphs. The fact that digraphs
are used implies that once a transition fires in a
particular direction the firing cannot be reversed
automatically. Transitions have deterministic and
pre-ordered firing direction. The Petri net can be
structured in such a way as to reverse its state,
however this is normally done by adding more
places, arcs and transitions. Reversing the state
implies that deterministic behavior is still being
used. A new network topology or a Petri net with
undirected edges connected to nodes is created. This
implies that transition firing can happen both ways
i.e. bi-directionally. Modeling power is drastically
increased and non-determinism principles are
introduced. Behavior that is not allowed to take
place in the definition of classic Petri nets is allowed
here. Obviously, many new issues are created and
some form of control principles or rules might have
to be defined. The advantage of this approach is that
the modeling power of Petri nets is extended and
reflects in a more precise way what takes place in
modern systems where normally it makes sense to
be able to reverse transitions. As a simple example,
in many modern autonomic or autonomous control
systems it is possible to have state reversal as an
automatic or reset process. Considerable research
has been carried out in the direction of transition
systems [7]-[9]. These structures are based on
digraphs and are suitable for visualization.

Symbolic modeling is imperative for
understanding and representing system structures.
Visualization techniques are useful for representing
system structures like networks. Bi-directional
transitions serve to explain in better detail the real
scenario. However, it must also be considered that
having transitions that can fire bi-directionally
definitely increases the undecidedness in the system.
Some reasons for bi-directionality in transition
firing are: i) it is more realistic, ii) shortcut

modeling can be used, iii) weak association and
weak controls can be introduced, iv) more realism
of what happens in the real world is introduced.

4 Proposed Solution
The proposed solution here a prima facie seems to
be very simple. Instead of using directed arcs as in
normal Petri nets the direction of the arcs is simply
removed creating undirected arcs.

However, this creates a number of issues that
need to be addressed. The formal solution can be
given in future works. A brief idea is given. By
removing the direction of the arcs it is implied that
tokens in the net can travel in both directions. This
creates a structure that is more complex and abstract
than a normal Petri net. The concept of
undecidedness is introduced and the normal orderly
or linear firing sequence that is found in Petri nets is
no longer there. Even the normal firing routine in
Petri nets will be changed.

This type of structure will closely imitate what
happens in the real world, where behavior is not
necessarily ordered. The bi-directional transition net
is suitable for i) static and ii) dynamic modeling.
The latter is more difficult to control and will
require some specific rules according to the case
being modelled.

5 Implementation
By definition the bi-directed transition net (BDTN)
or bi-directional Petri net has the following
properties. The bi-directed net is a five tuple
structure N = (P,T,E,IF,OF) where P = {p1,p2,p3
,…,pn} a finite non- empty and non- negative set of
places. T ={t1,t2,t3,…,tn} a finite non-negative and
non-empty set of transitions. Transitions and places
are disjoint. i.e. no object can be both a place and a
transition. TP and TP .

)}{(TPE  , cTPIF  is an input
function that defines the value of an arc from a place
to a transition, cPTOF  is an output
function that defines the value of an arc from a
transition to a place. C is a set of non-negative
integer values. i.e. 0c . For a normal Petri net,
transition firing is controlled and regulated by the
number of tokens available to a transition. A
transition t where Tt is said to be enabled IFF
every input place p of t where Pp contains at
least the minimum number of tokens equal to the
weight of the directed arc that connects p to t, i.e.
M(p) ≥ I(t, p) where Pp . By definition it has to
have tokens for all the input places. For the BDTN
this rule is relaxed. For firing to occur in the BDTN

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 82 Volume 2, 2017

Pp input to t, where Tt , the sum of all
tokens in places connected to t  firing value for
the transition. I.e. for a transition to fire it has to
have a certain value of tokens available directly.

The firing here is associated with the transition
and not with input arcs as is done in Petri nets.
Similarly, when firing a transition, the output values
are placed in accordance with the output arc
weights. Here this is not the case, as the output
values are placed according to the transition values.
It is possible to create input and output rules or
functions for the transitions. This is partially
explained in fig. 1. Other forms of control can be
included. E.g. it is possible to have arcs with
negative values to indicate that the arc removes
tokens and arcs with positive values to indicate that
they place tokens. The following general rules will
serve to give a brief overview of the implementation
of the BDTN. i) Places can serve as inputs or
outputs. Alternatively they can be called channels or
stores. ii) For transition firing there have to be a
sufficient amount of tokens in the input places.
However some input places can be empty because
firing is controlled by the transition and not the arcs.
iii) There are various possibilities for output once a
transition fires. One place can be left empty and the
tokens moved into another place. This is different
from traditional Petri nets where normally the
output places cannot be left empty after transition
firing. iv) Additional rules might need to be added
independently to a model for a particular scenario.
This would be a scenario related rule. v) Some form
of ordering in firing might be necessary.

6 Some Examples

6.1 A Simple Web Login Process
Fig. 1 clearly illustrates the concept of the BDTN in
comparison to a typical Petri net. The idea of a web
login process is introduced and compared. In fig. 1
a) the Petri net shows that at each stage of the
process e.g. at the pwd entered stage it is possible to
roll back to a previous state, this is achieved by the
extra transitions that have been added. In fig. 1 b)
the BDTN shows the same functionality of the Petri
net but at each stage connecting arcs have no
direction, implying that the tokens can flow bi-
directionally. Hence automatically a state is
reversible or a new state can be achieved. E.g. at the
signon pressed state a token in this place can be
removed and placed in the pwd entered state, thus
reversing the state. It is obvious that the BDTN
model is more compact and elaborate than the Petri
net for modeling purposes.

6.2 Static Comparison of a Petri Net with a
Bi-Directional Net
Fig. 2 shows how the BDTN compares with a
normal Petri net. In a normal Petri net arcs are
always directed and are either input or output arcs.
On the other hand this paper is proposing a net
structure where the arcs do not have a specific
direction or are unidirectional. The overall structure
still looks like a normal Petri net from the static
point of view. However, the BDTN’s dynamic
functionality will be significantly different than that
of the Petri net.

6.3 Dynamic Operations of an Elementary
Bi-Directional Net
Fig. 3 shows how the dynamic operations for the
BDTN given in fig. 2 ii). i.e. fig. 2 shows all the
possibilities that are available when firing the main
transition T1. Note that this is not a given sequence
of how the outputs occur and all places have a
restriction of one and the arcs can carry only one
single token. The transition requires a minimum
input of two tokens for firing. This is clearly
indicated by the number two in the transition. There
is no given temporal order how this firing will affect
the output. I.e. the output and the input can happen
in any order. The output can become the input for
the next transition firing. Hence, the structure in fig.
2 ii) is a live structure that is continuously enabled.
However fig. 3 shows all the possible six states of
the system which are reachable. The structure is a
live structure without deadlock.

6.4 A Simplified Bi-Directional Net with One
Token
Fig. 4 shows a simpler version of fig. 3. This has
been obtained by reducing the token to one and the
transition requires only a single token for firing.
Clearly the system has less states. These are just
four states. It is shown again that the firing can
occur in any order.

6.5 A More Complex Bi-Directional Net
Fig. 5 shows a more complex BDTN. In this
example transition t1 and t2 require a minimum of
two tokens for firing. The tokens can be present in
any of the places connecting to t1 and t2. E.g. t1 is
enabled and can fire as long as two tokens are
available together from any given combination
p1,p2,p3 and p4. In fig. 5 t1 is enabled because there
is one token in p1 and one token in p2 which give
the two tokens required by t1 for firing. If t1 fires
then the possibilities listed in fig.3 are all available.

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 83 Volume 2, 2017

a)

b)

Figure 1: A Simple Web Login Process a) Petri Net Model and b) Bi-Directional Model

1

1

2

3

2

1

1

1

1

p1 p2

p3 p4

p1 p2

p3 p4

t1

t1

i)

ii)

Figure 2: i) A Simple Petri Net vs ii) A Bi-Directional

Net

Figure 3: Possible Markings/States for an Elementary Bi-

Directional Net

Figure 4: A Simplified BDTN with a Single Token

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 84 Volume 2, 2017

Transition t2 has been restricted. I.e. it can fire only
if one token is present in p3 and one token in p4 or
two tokens are present in p5. So t2 functions like a
two way switch. This can be done because the place
capacity of p5 is two and the connecting undirected
arc from t2 to p5 and vice-versa has a weight of two
implying that either two tokens are outputted or
inputted in a single instance of firing t2. Fig. 6
indicates the presence of choice in this net. In fig. 6
having one token in p3 and one token in p4 and the
concept of bi-directionality implies that both
transition t1 and transition t2 are simultaneously
enabled. But only one can fire because firing one
automatically will disable the other. Again this net
structure is completely reversible and live. I.e. the
firing can go on indefinitely unless some restrictions
or conditions are added. This shows that a plethora
of new possibilities are opened up by connecting
transitions, places and undirected arcs. The detailed
workings of this network structure are not shown
here.

6.6 A Circuit Representation using a Petri

Net and a Bi-Directional Net
Fig. 7 shows a normal Petri net circuit and a BDTN.
Even though structurally they look similar there are
big differences in the operations that are possible. In
the Petri net tokens can flow only in one direction.
On the other hand in the BDTN the token flow can
be in both directions. So the BDTN serves as a dual
circuit.

7 Results and Findings
This paper shows how a new form of Petri Net
called a BDTN can be used. This structure retains
many of the main essential structural properties
found in general Petri net classes. However, it is
clearly indicated that the behavior and firing is not
similar.

It is obvious that BDTNs offer more detail than
Petri nets. This comes at the expense of having
complex behavior that might not always be

controllable. But if the BDTNs are properly
constructed and restricted it is possible to achieve
better control. This is indicated in fig. 6 where the
possible firing of the net has been restricted by
using place capacity restriction and arc weights. The
simple web login process indicate the usefulness of
the BDTN as a static and dynamic modeling
notation and tool for very simple processes. These
processes are serially linked together. This example
shows how we can reverse the process from one
stage to the previous state. Fig. 2 shows that even
though the structure looks simple, just by increasing
the number of tokens in the places it is possible to
generate great complexity. This can be seen when
fig. 3 is compared to fig. 4. Fig. 7 compares a
normal Petri net with a BDTN. The bi-directional is
reversible at every instance and hence it expresses
more behavior than the Petri net. To represent the
same behavior using a Petri net would require
adding more arcs and transitions. Hence the result of

this is that the BDTN is shown to be more compact.
Fig. 5 indicates how even a simple structure
becomes complex when the arc weights are greater
than one. Fig. 6 shows how the net in fig. 5 contains

2

2

1

1

1

1

1

1

2

t1

t2

p1

p2

p3

p4

p5

2

1
1

1

1

Figure 5: A Complex Bi-Directional Net

Figure 7: A Circuit in a i) Petri Net and ii) BDTN

2

2

1

1

1

1

1

1

2

t1

t2

p1

p2

p3

p4

p5

2

1
1

1

1

Figure 6: Free Choice in the BDTN

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 85 Volume 2, 2017

free choice. Either t1 or t2 can fire but not both. Fig.
8 shows the marking graph for the BDTN in fig. 4.
The marking graph clearly indicates that it is
possible to reverse a state to any other state directly.
The marking graph in fig. 8 clearly shows the bi-
directionality linking in the net. It is possible to
construct a complete Petri net from this marking
graph. The marking graph for the net in fig.3 is
similar but more complex to construct and link and
it will have six states. The more complex the
BDTN, the more difficult is the construction of the
marking graph. If a Petri net is compared to the
BDTN in terms of the marking graph, the marking

graph for the Petri net will be much simpler to
construct and depict. The marking graph can be
constructed symbolically to represent the structures.

The main results of this work have shown that i)
it is possible to construct a BDTN, ii) the BDTN can
capture more detail than a Petri net, iii) the BDTN
will require some additional form of restriction or
control.

When a BDTN structure has places that connect
to multiple transitions, there is undecidedness or the
issue of choice. This implies that it is unknown
which transition fires. This analogy compares to the
real world situation. E.g. if a person is in front of
two or more shops he can enter whichever shop he
wants. Petri nets can exhibit choice which is
controlled to an extent. In the BDTN this choice is
uncontrolled.

The BDTN can be transformed into a Petri net by
adding more input arcs, output arcs and transitions.
The resultant behavior should be identical. But
obviously the resultant Petri net is a more complex
structure.

An interesting feature of the BDTN is that this
structure can be combined with normal Petri nets.
This implies that there is a possibility of creating
more dynamic and powerful structures.

A fundamental difference between the Petri net
and the BDTN is that the Petri net structures allow
for what can be called a memory effect, because the

current state is the result of the previous states that
are identifiable. The memory effect depends on the
system transition timeline. This would be easily
evidenced in a Petri net. On the other hand, this
type of memory effect and timeline transition firing
seems to be lost in the BDTN because the previous
states cannot be simply recalled from the current
state. This could cause problems or be of an
advantage depending on what needs to be modelled.
If the memory effect is needed for the BDTN some
solution needs to be found. For strictly forward
transition system behavior the BDTN is not suitable
if the requirements need to be strictly adhered to.

A state explosion is when the number of states in
the system increase exponentially. This situation
becomes uncontrollable.

8 Conclusions
This work has introduced a new type of Petri net
which has been called a BDTN. Although this
structure behaves like a Petri net it can capture more
detail. Even a simple looking BDTN can manifest
complex behavior because if it has more than one
transition and many places and two or more tokens.

Combining the BDTN with Petri nets will result
in notations useful for more expressive modeling.
The opposite also holds true.

There is the issue of the memory effect. The
BDTN seems to cancel out memory and always
remain in the current state. I.e. the fact that multiple
previous states exist make it difficult to trace the
original states and sequences.

This work is incomplete in the sense that just a
very trivial idea of the BDTN has been presented
along with some toy examples. Proper rules for
firing have not yet been established. It has been left
to the user to interpret and set the firing rules for
these structure thus allowing a lot of room for
experimenting and more possibilities.

The BDTN could prove to be useful for symbolic
representation and modeling of some network and
system classes in the real world.

For future work the BDTN can be constructed
along with a Petri net and comparisons made as to
which is the most useful for the problem approach.
As previously mentioned combining the BDTN with
Petri net structures could prove to be useful for
requirements elicitation. From the representational
point of view the BDTN is useful for system
representation. It will help to stimulate thinking and
visualization of system behavior. The BDTN can
definitely benefit from the support of other
notations. This work has shown the usefulness of
the BDTN approach.

(1000)

(0100) (0010)

(0001)

Figure 8: A Marking Graph for the Bi-Directional
Net shown in Fig.4.

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 86 Volume 2, 2017

References:
[1] A. Spiteri Staines, A Colored Petri Net for the

France-Paris Metro, NAUN International
Journal of Computers, Issue 2,Vol. 6., 2012,
pp. 111-118.

[2] T. Spiteri Staines and F. Neri, A Matrix
Transition Oriented Net for Modeling
Distributed Complex Computer and
Communication Systems, WSEAS Transactions
on Systems, Vol. 13, 2014, pp. 12-22.

[3] T. Spiteri Staines, Implementing a Matrix
Vector Transition Net, British Journal of
Mathematics & Computer Science, ISSN:
2231-0851, Vol.: 4, Issue.: 14, 2014, pp. 1921-
1940.

[4] A. Spiteri Staines, Some Fundamental
Properties of Petri Nets, International Journal
of Electronics Communication and Computer
Engineering, IJECCE, vol.4, Issue 3, 2013, pp.
1103-1109.

[5] K. van Hee, Information Systems: A Formal
Approach, Cambridge Univ. Press, 2009.

[6] G.-C. Yang, Distributed System Modeling with
Bidirectional Petri Nets, Proc. Of the
'Computer Systems and Software Engineering
conf. (CompEuro ’92), IEEE, 1992, pp.401-
405.

[7] D. Kleyko, E. Osipov, On bidirectional
transitions between localist and distributed
representations: “The case of common
substrings search using Vector Symbolic
Architecture”, BICA 2104, 5th Annual Int.
Conf. on Biologically Inspired Cognitive
Architectures, Procedia Comp. Science, Vol 41,
2014, pp 104-113.

[8] T.D. Kelly, Symbolic and Sub-Symbolic
Representations in Computational Models of
Human Cognition, Theory& Psychology, Sage
Publications: Vol. 13, No. 6, 2003, pp. 847-
860.

[9] F. van Ham, H. Van de Wetering And J.J. van
Wijk, Interactive Visualization of State
Transition Systems, Transactions on
Visualization and Computer Graphics, Vol. 8,
No.3, IEEE, 2002, pp. 1- 11.

[10] J. Osis, and E. Asnina, Topological Modeling
for Model-Driven Domain Analysis and
Software Development: Functions and
Architectures, Model-Driven Domain Analysis
and Software Development: Architectures and
Functions, 2010, pp. 15-39.

[11] T. Murata, Petri Nets: Properties, Analysis and
Applications, Proc. Of the IEEE, Vol 74 issue
4, IEEE, 1989, pp.541-89.

[12] M. Bouhalouane, S. Larbi And H. Haffaf,
Combining Bond Graphs and Petri Nets
Formalisms for Modeling Hybrid Dynamic
Systems, 10th Int. Conf. on Future Networks
and Communication, Science Direct, Procedia
Computer Science, Elsevier, 2015, pp. 252-
259.

[13] H. Kaindl And J.M. Carroll, Symbolic
Modeling in Practice, Communications of the
ACM, vol. 42, No 1, 1999, pp. 28-37.

[14] D. Ross, Structured Analysis: A Language for
Communicating Ideas, IEEE Trans. Softw. Eng.
,Vol.3, No 1, IEEE, 1977.

[15] R.A. Kremer And B.R. Gaines, “Embedded
Interactive Concept Maps in Web Documents”,
In Proc. Of WebNet96, H. Maurer, Ed.
Charlottesville, VA, 1996, pp. 273-280.

[16] M. Janakova, Software Development with
Regards to Simulations: Are Interaction
Features Needed for a Better Description of
Actual Reality?, WSEAS Transactions on
Information Science and Applications, Vol. 11,
2014,pp. 177-185.

[17] L. De Carvalho Vidal, L. E. De Souza, D. De
Paula Santos Silva, R. Sebastiao Nadur, Petri
Nets: an Analysis of its Properties through a
Model of Titanium Injection System and Other
Pulverized into Blast Furnaces by using the
Software CPN Tools, WSEAS Transactions on
Systems, Vol. 15, 2016, pp. 207-213.

Anthony Spiteri Staines
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 87 Volume 2, 2017

