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İstanbul Technical University

Informatics Institute
Computational Science and Engineering

Maslak, 34469, İstanbul
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Abstract: The Probabilistic Evolution Theory (PREVTH) has been effectively developed in recent few years to
solve the explicit autonomous ODE(s) accompanied by certain initial conditions. The theory focuses on the cases
where right hand side functions are conical in unknowns at the right hand side. If it is not so certain space extension
technies are used to get conicality. [1–6]. Theory gives an analytical Kronecker power series solution almost for all
practically encountered systems. The squarification reduces the enormous sparsity and gets very high efficiency.
This work is designed for the application of PREVTH Squarification on Henon-Heiles systems as a case study.
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1 Introduction
This section focuses on the initial value problem of a
set of explicit first order autonomous ODE with right
hand side functions given by

ẋ(t) = F0 + F1x(t) + F2x(t)
⊗2 (1)

where t represents the independent variable we can
call “time”. Here, ⊗ on the exponent means Kro-
necker power. x is a n element vector which is com-
posed of unknowns. After “Constancy Adding Space
Extension (CASE)” which is detailed in [4–6], is ap-
plied and flexibilities are chosen appropriately, the so-
lution of (1) is given below

x(t) = e−βt
∞∑
j=0

1

j!

(
1− e−βt

β

)j
Tja

⊗j+1 (2)

where Tjs are certain rectangular matrices that are the
type n × nj . This solution is written under the speci-
fications

F0 ≡ 0, F1 ≡ −βIn (3)

Here, β is arbitrarily inserted parameter whose value
can be determined in accordance with certain needs.
Tjs rectangular matrices in (2) can be written that

Tj ≡
j∏

k=1

Mk, j = 0, 1, 2, ... (4)

where M matrices nk×nk+1 dimensional rectangular
matrices and are called “Monocular Matrices”. Mk is
explicitly given below

Mk ≡
k−1∑
`=0

I⊗`n ⊗ F⊗ I⊗k−1−`n , k = 1, 2, ... (5)

Tjs can be called “Telescope Matrices”since they
carry the matrices from nj dimensional spaces to n
dimensional spaces. Telescope matrices which are ex-
tremely sparse (having plenty of zero elements), can
be put into a more concise structure by using Squarifi-
cation. Thus, the disadvantages coming from the spar-
sity of the telescopic expansion in Kronecker powers
of initial vector, disappear. The most promising one is
the squarifictaion of the telescope matrices [5].

2 Squarification of Telescope Matri-
ces

In (2), if a is an n element vector, a⊗j+1 is a very
higher dimensional vector with type of nj+1. To get
conciseness in calculations for the product of the n×
nj type telescope Tj matrix and a⊗j+1 vector with
nj+1 element, we can foresee that

Tja
⊗j+1 = Sj(a)a, j = 0, 1, 2, ... (6)

where Sjs are n× n type square matrices. These can
be called “Squarified Telescope Matrices”or briefly
“SquTelMats”.
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In (4), when j becomes 0, the product over M
matrices is assumed to be identity matrix. In that case,
it is obtained that

T0a = a = S0(a)a =⇒ S0(a) ≡ In (7)

In is an identity matrix with the type n× n.
When taking j equal to 1 from (4), it is obtained

that
T1a

⊗2 = M1a
⊗2 = Fa⊗2 (8)

where F is n× n2 type generator matrix.
Let us now partition F which is of n× n2 type to

n× n type square blocks as follows

F ≡
[

F(1) · · · F(n)
]

(9)

From this equation, we can write

F =
n∑
i=1

eTi ⊗ F(i) (10)

Here e is an n element unit vector. Thus multiplying
F and a⊗2, we can write that

Fa⊗2 =
n∑
i=1

(
eTi ⊗ F(i)

)
(a⊗ a) (11)

Using the distributive properties of Kronecker prod-
uct, from (11) we can conclude that(

eTi ⊗ F(i)
)
(a⊗ a) =

(
eTi a

)
⊗
(
F(i)a

)
(12)

The Kronecker product of scalar and matrix or vector
equals to the product of scalar and matrix or vector. In
that case(

eTi ⊗ F(i)
)
(a⊗ a) = aiF

(i)a, i = 1, 2, 3, ...

(13)
Therefore we can write

Fa⊗2 =

(
n∑
i=1

aiF
(i)

)
a (14)

Using the Kronecker product of two different vectors,
we can conclude that

F(a⊗ b) =

(
n∑
i=1

aiF
(i)

)
b (15)

The matrix F is squarified by the vector a as follows

bF,ae =
n∑
i=1

aiF
(i) (16)

Here b symbol stands for taking the base from left
hand side and e symbol stands for pushing this base
from right hand side.

The joint work of Melike Ebru Kırkın and Coşar
Gözükırmızı describes reductive cases between its
third and fifth sections inclusive. [2].

3 The Case Of Symmetric Commu-
tative Blocks

When all blocks of F are symmetric commutative and
eigenvectors sets of these are same, we conclude that

F ≡
[

Φ1 . . . Φn

]
, ΦjΦk −ΦkΦj = 0

Φj = ΦT
j , j, k = 1, 2, . . . , n (17)

In that case, the spectral composition of commutative
matrices dictates us that

Φj = ϕj,1u1u
T
1 + · · ·+ ϕj,nunu

T
n ,

j = 1, 2, ..., n (18)

Therefore, in (15), substituting Φ for F(i), the image
of Kronecker product of two vectors under F is con-
cluded that

F (a⊗ b) =
n∑
j=1

ajΦjb . (19)

From (18), substituting
∑n
k=1 ϕj,kuku

T
k for Φj

F (a⊗ b) =
n∑
j=1

aj

n∑
k=1

ϕj,kuku
T
k b (20)

where a linear combination of the eigenvalues of each
Φs appear. This equation can be rewritten

F (a⊗ b) =
n∑
k=1

 n∑
j=1

ajϕj,k

(uTk b
)

uk (21)

If we consider the vector ϕkwhose ascending index
elements are ϕ1,k, ϕ2,k, · · · ϕn,k then

F (a⊗ b) =
n∑
k=1

(
aTϕk

) (
uTk b

)
uk (22)

where the orthogonality between a and ϕ is apparent
and b is orthogonal to all.

3.1 Squtelmats For Symmetric Commuta-
tive Blocks

Consider S4, where there are 24 additive expressions,
for squtelmats to symmetric block case which in-
volves the following expression. We can focus on this

F(In ⊗ F)(I⊗2n ⊗ F)(I⊗3n ⊗ F)a⊗5 (23)

This multiplication should be from right to left. From
(23), the first multiplication can be treated as follows

(I⊗3n ⊗ F)a⊗5 = a⊗3 ⊗ Fa⊗2 = a⊗3 ⊗ F(a⊗ a)

=

[
a⊗3 ⊗

(
n∑
k=1

(
aTϕk

) (
uTk a

)
uk

)]
(24)
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If the identity matrix and the vector are in the same
type, then their Kronecker product is equal to itself of
the vector. Here, F (a⊗ a) can be written using (22).
When the result is inserted to its place in (22), we can
multiply out the next term

(I⊗2n ⊗ F)

[
a⊗3 ⊗

(
n∑
k=1

(
aTϕk

) (
uTk a

)
uk

)]

= a⊗2 ⊗ F

(
a⊗

(
n∑
k=1

(
aTϕk

) (
uTk a

)
uk

))
(25)

where, we have used the fact that a⊗3 can be consid-
ered as the Kronecker product of a⊗2 and a. Thus
by also using the Kronecker product of a⊗2 with the
consistent identity matrix we can arrive at

(I⊗2n ⊗ F)

[
a⊗3 ⊗

(
n∑
k=1

(
aTϕk

) (
uTk a

)
uk

)]

= a⊗2 ⊗
n∑

k2=1

(
aTϕk2

)
uTk2

 n∑
k1=1

(
aTϕk1

) (
uTk1a

)
uk1

uk2 (26)

Using orthonormality we can get

(I⊗2n ⊗ F)

[
a⊗3 ⊗

(
n∑
k=1

(
aTϕk

) (
uTk a

)
uk

)]

= a⊗2 ⊗
n∑

k1=1

(
aTϕk1

)2 (
uTk1a

)
uk1 (27)

Multiplying out the next term with this expression we
write

(In ⊗ F)

a⊗2 ⊗
n∑

k1=1

(
aTϕk1

)2 (
uTk1a

)
uk1


= a⊗ F

a⊗
n∑

k1=1

(
aTϕk1

)2 (
uTk1a

)
uk1


= a⊗

n∑
k1=1

(
aTϕk1

)3 (
uTk1a

)
uk1 (28)

and finally

F(In ⊗ F)(I⊗2n ⊗ F)(I⊗3n ⊗ F)a⊗5

=
n∑

k1=1

(
aTϕk1

)4 (
uTk1a

)
uk1 (29)

where we have obtained one finite sum forming a lin-
ear combination of the eigenvectors.

Consider the another term of S4

F(In ⊗ F)(I⊗2n ⊗ F)(I⊗2n ⊗ F⊗ In)a
⊗5 . (30)

This structure is more complicated. When the similar
operations are applied, we can obtain that

F(In ⊗ F)(I⊗2n ⊗ F)(I⊗2n ⊗ F⊗ In)a
⊗5

=
n∑

k2=1

n∑
k1=1

(
aTϕk2

) (
aTϕk1

) (
uTk1a

)
(
uTk1ϕk2

) (
uTk2a

)
uk2 (31)

This squarification problem is important to simplify
to problem of the finding linear combination coef-
ficients. Moreover working with scalar with coeffi-
cients are simplier than working with scalar matrices.

4 The Case Of Equal Blocks
Under consideration of equality blocks of F, we can
obtain the squarification results, as follows

bF,ae =
n∑
i=1

ai Φ =
n∑
i=1

eTi aΦ,

bF,aej =
(

n∑
i=1

ai

)j
Φj ,

bF, bF,aeae =
n∑

i2=1

eTi2

(
n∑
i=1

eTi aΦ

)
aΦ

=
n∑

i2=1

n∑
i1=1

eTi2

(
eTi1aΦ

)
aΦ (32)

bF, bF, bF,aeaeaeae =
n∑

i3=1

n∑
i2=1

n∑
i1=1

eTi3

(
eTi2

(
eTi1aΦ

)
aΦ
)

aΦ (33)

These reductions are derived from commutativity and
symmetry together.

5 The Case Of Equal Identity Matrix
Blocks

Under consideration of equality identity matrix blocks
of F, the squarifications can be concluded that

bF,ae =
(

n∑
i=1

eTi a

)
I =

n∑
i=1

ai I ,

bF,aej =
(

n∑
i=1

ai

)j
I ,
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bF, bF,aeae =
n∑

i2=1

n∑
i1=1

eTi2

(
eTi1a

)
a

=

 n∑
i2=1

n∑
i1=1

ai1ai2

 I (34)

bF, bF, bF,aeaeae

=
n∑

i3=1

n∑
i2=1

n∑
i1=1

eTi3

(
eTi2

(
eTi1a

)
a
)

a

=

 n∑
i3=1

n∑
i2=1

n∑
i1=1

ai1ai2ai3

 I (35)

It is used since a squarification produces a square ma-
trix by definition.

5.1 Squtelmats For Equal Identity Matrix
Blocks

Therefore some squtelmats can be given as follows

S0 = I ,

S1 =

(
n∑
i=1

ai

)
I ,

S2 = 2

(
n∑
i=1

ai

)2

I ,

S3 = 6

(
n∑
i=1

ai

)3

I (36)

6 Recursion Of Squarification

F(a⊗ b) = bF,aeb (37)

F(F⊗ I)a⊗3 = F(Fa⊗2 ⊗ a)

= F(bF,aea⊗ a)

= bFbF,aeaea (38)

F(I⊗ F)a⊗3 = F(a⊗ Fa⊗2)

= F(a⊗ bF,aea)
= bF,aebF,aea (39)

S2 = bFbF,aeaea + bF,aebF,aea
= bF,ae2 + bFbF,aeaea
= S1(a)

2 + bFbF,aeaea (40)

F(I⊗ F)(I⊗ I⊗ F)a⊗4

= F(I⊗ F)(a⊗ a⊗ Fa⊗2)

= F(I⊗ F)(a⊗ a⊗ bF,aea)
= F(a⊗ F(a⊗ bF,aea))
= F(a⊗ bF,aebF,aea)
= bF,aebF,ae2a
= bF,ae3a (41)

F(I⊗ F)(I⊗ F⊗ I)a⊗4

= F(I⊗ F)(a⊗ Fa⊗2 ⊗ a)

= F(I⊗ F)(a⊗ bF,aea⊗ a)

= F(a⊗ F(bF,aea⊗ a))

= F(a⊗ bFbF,aeaea)
= bF,aebF, bF,aeaea (42)

F(F⊗ I)(I⊗ I⊗ F)a⊗4

= F(F⊗ I)(a⊗ a⊗ Fa⊗2)

= F(F⊗ I)(a⊗ a⊗ bF,aea)
= F(Fa⊗2 ⊗ bF,aea)
= F(bF,aea⊗ bF,aea)
= bF, bF,aeaebF,aea (43)

F(F⊗ I)(I⊗ F⊗ I)a⊗4

= F(F⊗ I)(a⊗ Fa⊗2 ⊗ a)

= F(F⊗ I)(a⊗ bF,aea⊗ a)

= F(F(a⊗ bF,aea)⊗ a)

= F(bF,aebF,aea⊗ a)

= bF, bF,aebF,aeaea (44)

F(F⊗ I)(F⊗ I⊗ I)a⊗4

= F(F⊗ I)(Fa⊗2 ⊗ a⊗ a)

= F(F⊗ I)(bF,aea⊗ a⊗ a)

= F(F(bF,aea⊗ a)⊗ a)

= F(bF, bF,aeaea⊗ a)

= bF, bF, bF,aeaeaea (45)

F(I⊗ F)(F⊗ I⊗ I)a⊗4

= F(I⊗ F)(Fa⊗2 ⊗ a⊗ a)

= F(I⊗ F)(bF,aea⊗ a⊗ a)

= F(bF,aea⊗ bF,aea)
= bF, bF,aeaebF,aea (46)

S3 = bF,ae3a
+ bF,aebF, bF,aeaea
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+ bF, bF,aeaebF,aea
+ bF, bF,aebF,aeaea
+ bF, bF, bF,aeaeaea
+ bF, bF,aeaebF,aea
= 3S1(a)S2(a)− 2S1(a)

+ bF1S2(a)e (47)

S4 = bF,aeS3 + 3bF,S2aebF,ae
+ 3bF, bF,aeaeS2 + bF,S3ae (48)

Sj =
j−1∑
k=0

(
j − 1

k

)
bF,SkaeSj−1−k,

j = 1, 2, ... (49)

7 Implementation For Henon Heiles
Systems

The Henon Heiles System is described with the four
equations which are given as follows

ẋ = px (50)

ṗx = −x− 2λxy (51)

ẏ = py (52)

ṗy = −y − λ(x2 − y2) (53)

We can write these four equations as second degree
multinomial ODE sets with right hand side.

ẋ1 = x2 (54)

ẋ2 = −x1 − 2x1x3 (55)

ẋ3 = x4 (56)

ẋ4 = −x3 − x21 + x23 (57)

We can construct algorithms by Mupad to easily find
the solution for Henon Heiles System. In this algo-
rithm, it is used the recursion of Squarification in (49).

The initial conditions are assumed that

x(0) = a ≡ [0.1 0.2 0.3 0.4]T (58)

Using the truncuations of 2,3,4,5,6,15 and 30, we can
find the graphics of the functions in 0 to 1 time slot
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According to the initial conditions which are given by
(58), the absoute error as follows

x(0) = a ≡ [1.1 1.2 1.3 1.4]T (59)

Using the truncuations of 2,3,4,5,6,15 and 30, we can
find the graphics of the functions in 0 to 1 time slot
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According to the initial conditions which are given by
(59), the absoute error as follows
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