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Abstract: - The paper proposes a concept for a knowledge representation approach that consists of the 

knowledge structure in the form of ontology, knowledge base in the form of rules and environment model in 

the form of objects in the environment. The approach is developed for domains where the main problem is to 

choose the most appropriate capability for a particular action. Both the agents’ knowledge and also knowledge 

structures can be edited by the user after launching the system. An Ontology Learning Tool is implemented for 

this purpose. Additionally the knowledge base can be complemented by the agents themselves as a result of the 

learning process that is based on the user’s feedback. The proposed approach is explained in this paper on an 

example of vacuum cleaning multi-robot system. The implementation is done in the form that is suitable for 

development of JADE based multi-agent systems. The first validation of the concept is intended in a virtual 

multi-agent environment where JADE agents simulate cleaning robots. 
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1 Introduction 
Nowadays one of the widely used forms to structure 

knowledge and to define a common semantics in the 

communications among agents is the use of 

ontologies as a common framework to define the 

meanings of the concepts used. Agent development 

environments offer ontology support to enable 

knowledge sharing among agents by enabling to 

encode class instances into messages, for example 

JADE Ontology Support [2] allows encoding classes 

defined in the ontology into message content field of 

the FIPA ACL [6] messages. This approach fulfils 

the needs for semantics based communications. At 

the same time, it does not allow to change the 

ontology itself to obtain new concepts during the 

lifetime of the system. 

Ontology learning is a new discipline that tries to 

solve the problem that the designer of the system 

has to create the knowledge structure in the form of 

ontology before the agents can use it. Various 

methods for automatically building ontologies and 

as a result saving human efforts exist. Authors of 

[5], [8] and [10] give good overviews of the existing 

methods. As concluded in [12], there are still many 

unsolved things in the area of ontology learning. 

Methods for learning ontologies from text and big 

data based methods dominate the state of the art 

[10]. Despite saving human efforts these methods do 

not change the situation that ontology must be ready 

before starting to use the system. Semi-supervised 

learning methods have been developed for web 

crawlers that are capable to learn ontologies based 

on the information available online [4]. At the same 

time there is a lack of such mechanisms for agents 

working in other environments. 

Additionally to the main part of the ontology – 

the concept hierarchy, it is necessary to have 

knowledge about the classes described in the 

hierarchy. Two approaches are used to represent 

knowledge like this. One option is to use 

mechanisms provided by the ontology description 

languages like OWL [9] to store additional rules 

about the actions and classes describing objects in 

the environment. Another option is to use additional 

custom knowledge base to store rules representing 

the additional knowledge about the classes. The 

second approach is more flexible, because richer 

knowledge representation mechanisms compared to 

the ones available in OWL specification can be 

used. 

To enable full flexibility of the system, the 

following approach is preferable to creating the 

whole ontology before the deployment of the 

system. The main part of the ontology is created by 

human designer or by using some ontology learning 

technique. The major part of knowledge about these 
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concepts also is created by the designer of the 

system and inserted into the knowledge base. 

Afterwards the system must be capable to extend the 

knowledge based on the particular environment and 

the system’s experience in it. The majority of the 

changes will be done in the knowledge base, but 

also the ontology must be extendable. 

The aim of the research done at the Department 

of Artificial Intelligence and System Engineering is 

to create a framework that would enable the agents 

to collectively change the knowledge structure used 

in the multi-agent system and to actually implement 

the proposed method in one of the agent 

development platforms, in particular JADE platform 

[1]. This paper outlines the first step towards such a 

solution, namely, the conceptual framework that 

will be implemented as a part of the future research. 

The remainder of the paper is organized as 

follows. Section 2 outlines the use case that has 

been applied for requirements definition and also 

later on will be used for validation of the proposed 

framework. Section 3 outlines the chosen 

knowledge representation approach. Section 4 

proposes a knowledge update approach, including 

the machine learning method enabling the agents to 

learn new relationships between the objects and 

agent’s actions based on the agents’ experience. 

Section 5 concludes the paper and outlines the most 

important directions of future work. 

 

2 Use case 
Domains where autonomous agents need to find the 

most appropriate capability for the particular task 

usually require rich knowledge about the 

capabilities and actions to find the best match 

between agent’s capabilities and tasks or actions 

that must be done in the environment (from now on 

in this paper will be named actions). This 

knowledge must include the semantics of both 

actions and capabilities. One of such domains is a 

fleet of heterogeneous cleaning robots working in 

indoors environment and cleaning different surfaces. 

The first multi-robot systems in the cleaning domain 

start to appear, for example [11], but there are no 

mechanisms in such systems to change the 

knowledge structure of the system after it is 

deployed. It may become a serious obstacle in 

creating fully autonomous multi-robot systems. Due 

to this reason this domain is chosen as a case study 

for the knowledge representation and update 

mechanism research. 

The following model of the multi-robot system is 

considered. The environment consists of various 

surfaces that need to be cleaned. Two types of 

surfaces are considered in this paper, namely, floors 

and furniture. Further on, each type of the surfaces 

require different cleaning methods, in particular, 

some methods are more efficient in cleaning 

particular surface, some are useless, and some are 

even damaging the surface and thus are not allowed 

to be used. On the other hand each robot has 

particular capabilities or cleaning methods that it is 

equipped with. For example, a cleaning robot may 

have a vacuum cleaning capability and a wet 

cleaning capability. The aim of the decision making 

is to allocate the cleaning tasks to the most 

appropriate robots and as a consequence to get close 

to optimal cleaning result. 

After creating a management system for task 

allocation among robots, both new objects for 

cleaning and new robots with new cleaning methods 

appear and as a consequence must be dealt with. 

Additionally, the types of the surfaces make a long 

(practically infinite) list and it is impossible to 

consider all of them before building the system. As 

a consequence the system must be capable to learn 

and adapt to new environments. 

The study of this problem is done in a simulated 

environment where each robot is represented by an 

intelligent agent and the tasks are done in the 

software environment. The feedback about the 

quality of the results is evaluated by the user of the 

system (expert) according to the expert’s knowledge 

about the applicability of the particular robot to the 

particular object. 

 

 

3 Knowledge representation approach 
The knowledge representation is done based on the 

ontology. Ontology is represented in the form 

supported by JADE framework, i.e., it is formed as 

Java class hierarchy. As a consequence all other 

knowledge except the class hierarchy is represented 

outside the ontology. The developed knowledge 

representation approach consists of the following 

parts: 

 Class hierarchy, whose main parts are the class 

hierarchies of the capabilities and actions; 

 Model of the environment stored in the form of 

ontology class instances; 

 Set of rules defining the knowledge about the 

relations between capabilities and actions; 

 Priority model for reasoning. 

 

3.1 Class hierarchy 
The class hierarchy defines the classes used to 

model the domain. It is stored in the form of Java 

classes using the JADE Bean Ontology [3]. The two 
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main hierarchies are included in the ontology. First, 

the hierarchy of actions represents the actions that 

the agents have to do in the environment. Second, 

the hierarchy of capabilities defines the capabilities 

that agents can have in this domain. Additionally 

any other classes that are used in the 

communications among agents can be defined in 

separate hierarchies. 

In the use case considered in this paper and 

described in Section 2 the hierarchies contain the 

following classes. The first hierarchy is defining the 

areas to be cleaned. As discussed above, two types 

of areas are included in the case study, namely floor 

and furniture surfaces. As a consequence 

FloorCover and Furniture are the direct subclasses 

of the class Action. The second hierarchy consists of 

the cleaning methods that agents may be capable to 

do. The superclass of this hierarchy is 

CleaningMethod. 

The Ontology Learning Tool for creating the 

knowledge structures for multi-agent systems has 

been developed. The classes of the ontology can be 

defined in this tool. The Java code of the classes can 

also be generated by the tool. Figure 1 contains the 

class hierarchy of the cleaning methods. 

 

Fig. 1. Class hierarchy of cleaning methods 

3.2 The environment model 
The environment model is defined as a set of 

instances of the action classes defined in the 

ontology. These instances define the objects that the 

environment consists of. In the cleaning use case 

two types of instances are considered, namely, floor 

areas and pieces of furniture. Each instance 

describes a particular object that needs cleaning. For 

each of them the type of the object is defined by its 

class. Load of the object that defines how quickly 

the object gets dirty, importance and size of the 

object are specified as attributes. Additional 

attributes like location, accessibility, etc., can also 

be specified for a particular class of objects. The 

instances are stored in a centralised repository and 

are available to all agents during the operation of the 

system. User can create requests and give feedback 

to the system by stating facts about the particular 

instances and results of their cleaning.  

 

3.3 The set of rules 
The knowledge about the applicability of each 

capability is stored in the form of rules. These rules 

are used for the system to find the most appropriate 

capability for each action that the system has to do. 

In particular, in our use case for each time when 

some object must be cleaned a robot equipped with 

a suitable cleaning mechanism must be chosen. 

The following types of rules are used in the 

proposed approach: 

 The default rules defining relationships between 

actions and capabilities; 

 Additional rules stating additional knowledge 

about particular classes or instances and their 

relationships. 

The default rules are generated based on the list of 

cleaning methods specified by the designer during 

the definition of the furniture or floor cover class. 

These rules just state what capabilities (cleaning 

methods in the use case) are applicable to what 

actions (furniture and floor areas in the use case). 

The additional (user defined) rules are explicitly 

defined by the user of the tool (designer of the 

particular multi-agent system). These rules are 

domain specific and can state specific facts about 

instances and/or classes. In the use case rules can 

state the following facts: 

 A specific relationship among classes or between 

a class and an instance stating one of the 

following: 

─ Always rule: stating that the cleaning method 

is the only one that should always be used for 

cleaning particular class or instance; 

─ Never rule: stating that the cleaning method 

should never be used for cleaning particular 

class or instance; 

─ Priority rule: increasing or decreasing the 

priority of the relationship among classes; 

 Parameter rule: stating the appropriateness of a 

cleaning method for the particular values of 

attributes of the particular class of objects. 

3.4 The priority model 
The developed knowledge representation approach 

enables the use of a priority based decision making 

to find the most appropriate agent to carry out the 

particular action. In our use case it means to find the 

most appropriate agent and a cleaning method that it 

is equipped with for cleaning a particular object. 

The priority model is based on the following 
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assumptions. The values of priority are in a scale 

from 0 (lowest) to 100 (highest). The priority is 

found separately for each cleaning method that the 

agent has and the priority of the agent as a whole is 

the maximum value of its capabilities. The rules are 

used to find the priorities of cleaning methods in the 

following way: 

 If there is never rule about the pair of cleaning 

method and object, then the priority is 0; 

 If there is always rule about the pair of cleaning 

method and object, then the priority is 100; 

 If there is none of the above rules and there is a 

default rule then the priority is 60; 

 If there is none of the above rules and there is a 

default rule connecting superclass of cleaning 

method to the object class or vice versa, then the 

priority is 60-20*difference in hierarchy levels to 

the superclass. If the calculated priority is below 

10, it is set to exactly 10. 

 If there is a priority rule relating the 

corresponding instances, classes or superclasses 

then the corresponding increase or decrease of 

priority is done. If the calculated priority is below 

10 or above 100, it is set to exactly 10 or 100 

respectively. 

 If there are no rules about the particular classes 

and instances then the priority is set to the default 

value of 30. 

 If there is a parameter rule relating the 

corresponding instance, class or superclass to the 

particular value of an attribute then the 

corresponding increase or decrease of priority is 

done. If the calculated priority is below 10 or 

above 100, it is set to exactly 10 or 100 

respectively. 

 The priority is updated based on the estimated 

cleaning time including the time needed for the 

existing tasks of the particular agent. The priority 

is decreased by 5 for each time unit multiplied 

with the importance of the particular object (it has 

scale 1 to 5). A particular value of a time unit is 

defined based on the particular application and 

length of task execution.  

3.5 The agents 
The multi-agent system consists of one manager 

agent and a number of cleaning agents that simulate 

cleaning robots in the use case described above. The 

manager agent monitors the environment and 

whenever it identifies the need to clean a particular 

object it starts a Contract Net protocol [7] to allocate 

the task to the most appropriate cleaning agent. The 

agents use the priority model to calculate their 

appropriateness to the particular task and make bids 

equal to their priority values. The agent with the 

highest priority value is chosen to execute the task. 

 

 

4 Knowledge structure update 
The Section 3 outlined the knowledge representation 

approach. This section describes the architecture of 

the system that creates, uses and updates the 

described knowledge and knowledge structures. The 

architecture of the whole system is described first, 

followed by the descriptions of the particular 

components and concluded by the learning 

mechanism. 

 

4.1 Architecture of the system 
The architecture of the whole system is composed of 

the following main components: knowledge base, 

manager agent with its interfaces and the set of 

agents (see Figure 2). The knowledge base consists 

of the rule base, environment model that are both 

based on the class hierarchies defined in the 

ontologies, i.e., they are using classes from these 

hierarchies to define their instances and additional 

knowledge about them in the form of rules. 

The relationships among the mentioned higher 

level components are the following. The agents use 

the knowledge base for their priority based decision 

making. They also use the ontology to define the 

semantics of the communications according to the 

JADE Ontology support [2]. Finally, agents collect 

the example set for the learning mechanism. The 

manager agent updates the knowledge base and 

ensures the fulfilment of user’s requests by 

contracting the appropriate agent to do the particular 

task. 

The remaining components or parts of the 

system, namely the multi-agent system, the manager 

agent as well as the rule based machine learning 

approach are described in details in the following 

subsections. 

 

4.2 The multi-agent system 
The multi-agent system (MAS) consists of two 

types of agents. The manager agent represents the 

user and acts on behalf of him/her to find the most 

appropriate performer of each task. A Contract Net 

protocol is used to allocate tasks to the most 

appropriate agent. The set of cleaning agents is 

heterogeneous in the sense that each agent can have 

different capabilities. The agents simulate cleaning 

robots. Each cleaning agent knows its capabilities 

and can use the common knowledge base to 

calculate its appropriateness to the particular task 

and to choose the particular method to execute it. 
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Fig. 2. The architecture of the system 

The scenario for executing one cleaning task is the 

following: 

1. The manager agent forms the task either based on 

explicit command by user or based on the 

environment monitoring. The need for cleaning in 

the virtual environment is simulated by a 

particular frequency of cleaning needed for each 

object. 

2. The manager agent starts the Contract Net 

protocol and sends out the task description; 

3. The cleaning agents calculate their priority values 

and make their bids accordingly; 

4. The manager agent chooses the best agent from 

the bidders and awards the task; 

5. The chosen cleaning agent does the job and 

reports when finished; 

6. The user gives his/her evaluation about the 

cleaning result; 

7. Based on the user’s feedback the particular agent 

forms an example and adds it to the example set. 

Steps 6 and 7 are done only during the learning 

period of the system. Later on they are omitted. 

 

4.3 The manager agent 
The manager agent’s purpose is to serve as an 

interface between the system and its users and to 

organise the work of the set of other agents. It is an 

agent with two user interfaces, namely the user 

interface for knowledge engineer and the user 

interface for the operator of the system. 

The user interface for the knowledge engineer is the 

Ontology Learning Tool, the functionality necessary 

for the following tasks: 

 Defining the class hierarchies to be included in 

the ontology; 

 Defining the environment model consisting of the 

class instances; 

 Specifying the user defined rules. 

Ontology classes according to the standards of 

JADE platform are generated by the tool based on 

the ontology defined in the tool, additionally the 

environment model and set of rules are saved as 

objects into a knowledge base file that can be later 

on used by the multi-agent system. Currently after 

generation of new ontology classes the system must 

be restarted and recompiled. Creation of a 

mechanism that allows changing the ontology 

during the runtime is a future work. The ontology 

can be also automatically extracted from an existing 

multi-agent system and improved in the Ontology 

Learning Tool. 

The user interface for the end user or system’s 

operator allows doing the following tasks: 

 Configure the multi-agent system. The ontology, 

environment as well as the rule base can be 

specified. In the simulated environment it is 

possible to create the simulation scenario by 

specifying all the agents that will be part of the 

system and their capabilities. 
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 Make requests to do a particular task, i.e., to clean 

a particular object;  

 To follow the simulation of the cleaning system 

in terms of tasks done by particular agents and 

their results; 

 Giving feedback about the quality after the 

cleaning of a particular object is finished. 

 

4.4 The Learning Mechanism 
Not all facts needed for the operation of the multi-

agent system can be known during the design time. 

Important characteristics can change even during the 

runtime of the system. For example, new types of 

objects (furniture or floor covers) can be introduced 

into the environment, new cleaning methods can be 

introduced into the working system or some other 

important characteristics of the system may change. 

Additionally, the knowledge of the designer of the 

system about the particular environment may be 

imprecise. All of these reasons lead to the situation 

where the system is not capable to make optimal 

decisions. To deal with such a situation an 

autonomous system that is capable to learn new 

details about the particular environment is needed. 

The following learning approach is proposed to 

increase the autonomy of multi-agent systems. 

The system starts operating based on the set of 

rules defined by the knowledge engineer in the 

Ontology Learning Tool and stored in the rule base. 

After completing every task the user may give a 

feedback about the result of the cleaning. In the 

simulated environment the user must base his/her 

opinion on theoretical knowledge about the 

combination of the object and the cleaning method 

used while in real environment the feedback can be 

given based both on the experts knowledge and 

practical evaluation of the result. The feedback is 

collected in the example set in the traditional form 

for the inductive learning, namely the values of the 

attributes (cleaning method, object, and class of the 

object) and the evaluation. The evaluation is 

provided in the scale from (-3 as very bad to +3 as 

the best possible choice, 0 is used in case no 

feedback is available). 

The example set is used to calculate the offsets 

of priorities for the particular combinations. Offsets 

are recalculated after collecting a particular number 

of examples. It is done by adding up the evaluation 

of the following pairs and getting the corresponding 

offsets: 

 The particular cleaned object’s instance and the 

cleaning method of the particular agent; 

 The cleaned object’s class and the cleaning 

method of the particular agent; 

 The particular cleaned object’s instance and the 

cleaning method’s class; 

 The cleaned objects class and the cleaning 

method’s class. 

The resulting offset values for each pair are 

stored in the knowledge base together with the 

corresponding rules. These values are used during 

each calculation of the appropriateness by adding up 

all the offsets that are related to the particular 

situation, i.e., the offset corresponding to the 

cleaning method class and object class, cleaning 

method class and particular object (instance), 

particular cleaning method and object class as well 

as particular object and particular cleaning method. 

As a result, if exactly the same combination of a 

cleaning method and object’s instance is evaluated 

later on the offset is maximal while the offset for 

similar combinations (i.e., the objects of the same 

class) then the offset is smaller. The calculated 

offset is multiplied to the learning rate (see Equation 

1) and added to the priority calculated based on the 

rules given in the Section 4.2. 

 O = α ∗ ∑ Oi,ji,j ,   where (1) 

O – the final offset; 

α – learning rate; 

Oi.j – offset of a particular pair that is related to 

the particular combination of object and 

cleaning method. 

 

In the particular case study learning rate is set to 

1, but in other cases the author sees that lower 

values can also be used for more conservative 

learning speeds. 

Additionally to the described learning method 

new classes can be added to the class hierarchies by 

using Ontology Learning Tool. Whenever it is done, 

new ontology files are generated and the 

corresponding files are replaced in the system. 

Similarly, also the existing set of rules can be 

edited. Whenever any rule is added, removed or 

changed all the offsets related to the particular pairs 

of cleaning methods and objects are removed and 

the learning is started again from scratch. It is done 

to prevent combining new rules with the offsets 

calculated based on previous version of rules that 

can be misleading together with the new versions of 

the rules. 

 

 

5 Conclusions 
An approach for adaptive knowledge representation 

in multi-agent systems is proposed. It combines 
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knowledge representation, knowledge structure 

updating and learning mechanisms into the same 

framework. An Ontology Learning Tool is 

developed for defining and editing ontologies as 

well as for generating ontology classes to be used in 

multi-agent systems. Additionally, the tool has 

functionality for defining the contents of the 

knowledge base in the form of environment 

definition and rules. The rules defined by the 

designer serve as background knowledge for 

learning algorithm that finds the more precise 

preferences between actions in particular situations 

based on the system’s experience. The proposed 

approach enables development of multi-agent 

systems in domains with only limited 

understandings about priorities between the 

capabilities of different agents. The job of finding 

the exact priorities is done by the learning algorithm 

whose task is to do the fine-tuning of the values. 

Such a combination is preferred to only user defined 

rules or only machine learning approach because the 

user defined rules allow learning the exact 

representations relatively rapidly. The learning only 

approach requires significantly more trials to learn 

the same result while the user defined rules only 

limit the flexibility of the system. 

During this paper the proposed approach is 

implemented and explained on the example of 

cleaning agents, but the approach is general enough 

and can be applied to any domain where the system 

must find the most appropriate capabilities of the 

group of agents for doing different tasks. 

The main direction of the future work is to finish 

the implementation of the simulation environment 

for testing purposes of the proposed concept. It will 

enable practical validation of the proposed 

approach. 
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