
A Conceptual Approach for Knowledge Structure Update and Learning

in Multi-Agent Systems

EGONS LAVENDELIS

Department of Artificial Intelligence and Systems Engineering

Riga Technical University

1 Kalku Street, Riga, LV-1658

LATVIA

egons.lavendelis@rtu.lv

Abstract: - The paper proposes a concept for a knowledge representation approach that consists of the

knowledge structure in the form of ontology, knowledge base in the form of rules and environment model in

the form of objects in the environment. The approach is developed for domains where the main problem is to

choose the most appropriate capability for a particular action. Both the agents’ knowledge and also knowledge

structures can be edited by the user after launching the system. An Ontology Learning Tool is implemented for

this purpose. Additionally the knowledge base can be complemented by the agents themselves as a result of the

learning process that is based on the user’s feedback. The proposed approach is explained in this paper on an

example of vacuum cleaning multi-robot system. The implementation is done in the form that is suitable for

development of JADE based multi-agent systems. The first validation of the concept is intended in a virtual

multi-agent environment where JADE agents simulate cleaning robots.

Key-Words: - Knowledge Structure, Multi-Agent System, Ontology Learning, Machine Learning

1 Introduction
Nowadays one of the widely used forms to structure

knowledge and to define a common semantics in the

communications among agents is the use of

ontologies as a common framework to define the

meanings of the concepts used. Agent development

environments offer ontology support to enable

knowledge sharing among agents by enabling to

encode class instances into messages, for example

JADE Ontology Support [2] allows encoding classes

defined in the ontology into message content field of

the FIPA ACL [6] messages. This approach fulfils

the needs for semantics based communications. At

the same time, it does not allow to change the

ontology itself to obtain new concepts during the

lifetime of the system.

Ontology learning is a new discipline that tries to

solve the problem that the designer of the system

has to create the knowledge structure in the form of

ontology before the agents can use it. Various

methods for automatically building ontologies and

as a result saving human efforts exist. Authors of

[5], [8] and [10] give good overviews of the existing

methods. As concluded in [12], there are still many

unsolved things in the area of ontology learning.

Methods for learning ontologies from text and big

data based methods dominate the state of the art

[10]. Despite saving human efforts these methods do

not change the situation that ontology must be ready

before starting to use the system. Semi-supervised

learning methods have been developed for web

crawlers that are capable to learn ontologies based

on the information available online [4]. At the same

time there is a lack of such mechanisms for agents

working in other environments.

Additionally to the main part of the ontology –

the concept hierarchy, it is necessary to have

knowledge about the classes described in the

hierarchy. Two approaches are used to represent

knowledge like this. One option is to use

mechanisms provided by the ontology description

languages like OWL [9] to store additional rules

about the actions and classes describing objects in

the environment. Another option is to use additional

custom knowledge base to store rules representing

the additional knowledge about the classes. The

second approach is more flexible, because richer

knowledge representation mechanisms compared to

the ones available in OWL specification can be

used.

To enable full flexibility of the system, the

following approach is preferable to creating the

whole ontology before the deployment of the

system. The main part of the ontology is created by

human designer or by using some ontology learning

technique. The major part of knowledge about these

E. Lavendelis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 141 Volume 1, 2016

concepts also is created by the designer of the

system and inserted into the knowledge base.

Afterwards the system must be capable to extend the

knowledge based on the particular environment and

the system’s experience in it. The majority of the

changes will be done in the knowledge base, but

also the ontology must be extendable.

The aim of the research done at the Department

of Artificial Intelligence and System Engineering is

to create a framework that would enable the agents

to collectively change the knowledge structure used

in the multi-agent system and to actually implement

the proposed method in one of the agent

development platforms, in particular JADE platform

[1]. This paper outlines the first step towards such a

solution, namely, the conceptual framework that

will be implemented as a part of the future research.

The remainder of the paper is organized as

follows. Section 2 outlines the use case that has

been applied for requirements definition and also

later on will be used for validation of the proposed

framework. Section 3 outlines the chosen

knowledge representation approach. Section 4

proposes a knowledge update approach, including

the machine learning method enabling the agents to

learn new relationships between the objects and

agent’s actions based on the agents’ experience.

Section 5 concludes the paper and outlines the most

important directions of future work.

2 Use case
Domains where autonomous agents need to find the

most appropriate capability for the particular task

usually require rich knowledge about the

capabilities and actions to find the best match

between agent’s capabilities and tasks or actions

that must be done in the environment (from now on

in this paper will be named actions). This

knowledge must include the semantics of both

actions and capabilities. One of such domains is a

fleet of heterogeneous cleaning robots working in

indoors environment and cleaning different surfaces.

The first multi-robot systems in the cleaning domain

start to appear, for example [11], but there are no

mechanisms in such systems to change the

knowledge structure of the system after it is

deployed. It may become a serious obstacle in

creating fully autonomous multi-robot systems. Due

to this reason this domain is chosen as a case study

for the knowledge representation and update

mechanism research.

The following model of the multi-robot system is

considered. The environment consists of various

surfaces that need to be cleaned. Two types of

surfaces are considered in this paper, namely, floors

and furniture. Further on, each type of the surfaces

require different cleaning methods, in particular,

some methods are more efficient in cleaning

particular surface, some are useless, and some are

even damaging the surface and thus are not allowed

to be used. On the other hand each robot has

particular capabilities or cleaning methods that it is

equipped with. For example, a cleaning robot may

have a vacuum cleaning capability and a wet

cleaning capability. The aim of the decision making

is to allocate the cleaning tasks to the most

appropriate robots and as a consequence to get close

to optimal cleaning result.

After creating a management system for task

allocation among robots, both new objects for

cleaning and new robots with new cleaning methods

appear and as a consequence must be dealt with.

Additionally, the types of the surfaces make a long

(practically infinite) list and it is impossible to

consider all of them before building the system. As

a consequence the system must be capable to learn

and adapt to new environments.

The study of this problem is done in a simulated

environment where each robot is represented by an

intelligent agent and the tasks are done in the

software environment. The feedback about the

quality of the results is evaluated by the user of the

system (expert) according to the expert’s knowledge

about the applicability of the particular robot to the

particular object.

3 Knowledge representation approach
The knowledge representation is done based on the

ontology. Ontology is represented in the form

supported by JADE framework, i.e., it is formed as

Java class hierarchy. As a consequence all other

knowledge except the class hierarchy is represented

outside the ontology. The developed knowledge

representation approach consists of the following

parts:

 Class hierarchy, whose main parts are the class

hierarchies of the capabilities and actions;

 Model of the environment stored in the form of

ontology class instances;

 Set of rules defining the knowledge about the

relations between capabilities and actions;

 Priority model for reasoning.

3.1 Class hierarchy
The class hierarchy defines the classes used to

model the domain. It is stored in the form of Java

classes using the JADE Bean Ontology [3]. The two

E. Lavendelis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 142 Volume 1, 2016

main hierarchies are included in the ontology. First,

the hierarchy of actions represents the actions that

the agents have to do in the environment. Second,

the hierarchy of capabilities defines the capabilities

that agents can have in this domain. Additionally

any other classes that are used in the

communications among agents can be defined in

separate hierarchies.

In the use case considered in this paper and

described in Section 2 the hierarchies contain the

following classes. The first hierarchy is defining the

areas to be cleaned. As discussed above, two types

of areas are included in the case study, namely floor

and furniture surfaces. As a consequence

FloorCover and Furniture are the direct subclasses

of the class Action. The second hierarchy consists of

the cleaning methods that agents may be capable to

do. The superclass of this hierarchy is

CleaningMethod.

The Ontology Learning Tool for creating the

knowledge structures for multi-agent systems has

been developed. The classes of the ontology can be

defined in this tool. The Java code of the classes can

also be generated by the tool. Figure 1 contains the

class hierarchy of the cleaning methods.

Fig. 1. Class hierarchy of cleaning methods

3.2 The environment model
The environment model is defined as a set of

instances of the action classes defined in the

ontology. These instances define the objects that the

environment consists of. In the cleaning use case

two types of instances are considered, namely, floor

areas and pieces of furniture. Each instance

describes a particular object that needs cleaning. For

each of them the type of the object is defined by its

class. Load of the object that defines how quickly

the object gets dirty, importance and size of the

object are specified as attributes. Additional

attributes like location, accessibility, etc., can also

be specified for a particular class of objects. The

instances are stored in a centralised repository and

are available to all agents during the operation of the

system. User can create requests and give feedback

to the system by stating facts about the particular

instances and results of their cleaning.

3.3 The set of rules
The knowledge about the applicability of each

capability is stored in the form of rules. These rules

are used for the system to find the most appropriate

capability for each action that the system has to do.

In particular, in our use case for each time when

some object must be cleaned a robot equipped with

a suitable cleaning mechanism must be chosen.

The following types of rules are used in the

proposed approach:

 The default rules defining relationships between

actions and capabilities;

 Additional rules stating additional knowledge

about particular classes or instances and their

relationships.

The default rules are generated based on the list of

cleaning methods specified by the designer during

the definition of the furniture or floor cover class.

These rules just state what capabilities (cleaning

methods in the use case) are applicable to what

actions (furniture and floor areas in the use case).

The additional (user defined) rules are explicitly

defined by the user of the tool (designer of the

particular multi-agent system). These rules are

domain specific and can state specific facts about

instances and/or classes. In the use case rules can

state the following facts:

 A specific relationship among classes or between

a class and an instance stating one of the

following:

─ Always rule: stating that the cleaning method

is the only one that should always be used for

cleaning particular class or instance;

─ Never rule: stating that the cleaning method

should never be used for cleaning particular

class or instance;

─ Priority rule: increasing or decreasing the

priority of the relationship among classes;

 Parameter rule: stating the appropriateness of a

cleaning method for the particular values of

attributes of the particular class of objects.

3.4 The priority model
The developed knowledge representation approach

enables the use of a priority based decision making

to find the most appropriate agent to carry out the

particular action. In our use case it means to find the

most appropriate agent and a cleaning method that it

is equipped with for cleaning a particular object.

The priority model is based on the following

E. Lavendelis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 143 Volume 1, 2016

assumptions. The values of priority are in a scale

from 0 (lowest) to 100 (highest). The priority is

found separately for each cleaning method that the

agent has and the priority of the agent as a whole is

the maximum value of its capabilities. The rules are

used to find the priorities of cleaning methods in the

following way:

 If there is never rule about the pair of cleaning

method and object, then the priority is 0;

 If there is always rule about the pair of cleaning

method and object, then the priority is 100;

 If there is none of the above rules and there is a

default rule then the priority is 60;

 If there is none of the above rules and there is a

default rule connecting superclass of cleaning

method to the object class or vice versa, then the

priority is 60-20*difference in hierarchy levels to

the superclass. If the calculated priority is below

10, it is set to exactly 10.

 If there is a priority rule relating the

corresponding instances, classes or superclasses

then the corresponding increase or decrease of

priority is done. If the calculated priority is below

10 or above 100, it is set to exactly 10 or 100

respectively.

 If there are no rules about the particular classes

and instances then the priority is set to the default

value of 30.

 If there is a parameter rule relating the

corresponding instance, class or superclass to the

particular value of an attribute then the

corresponding increase or decrease of priority is

done. If the calculated priority is below 10 or

above 100, it is set to exactly 10 or 100

respectively.

 The priority is updated based on the estimated

cleaning time including the time needed for the

existing tasks of the particular agent. The priority

is decreased by 5 for each time unit multiplied

with the importance of the particular object (it has

scale 1 to 5). A particular value of a time unit is

defined based on the particular application and

length of task execution.

3.5 The agents
The multi-agent system consists of one manager

agent and a number of cleaning agents that simulate

cleaning robots in the use case described above. The

manager agent monitors the environment and

whenever it identifies the need to clean a particular

object it starts a Contract Net protocol [7] to allocate

the task to the most appropriate cleaning agent. The

agents use the priority model to calculate their

appropriateness to the particular task and make bids

equal to their priority values. The agent with the

highest priority value is chosen to execute the task.

4 Knowledge structure update
The Section 3 outlined the knowledge representation

approach. This section describes the architecture of

the system that creates, uses and updates the

described knowledge and knowledge structures. The

architecture of the whole system is described first,

followed by the descriptions of the particular

components and concluded by the learning

mechanism.

4.1 Architecture of the system
The architecture of the whole system is composed of

the following main components: knowledge base,

manager agent with its interfaces and the set of

agents (see Figure 2). The knowledge base consists

of the rule base, environment model that are both

based on the class hierarchies defined in the

ontologies, i.e., they are using classes from these

hierarchies to define their instances and additional

knowledge about them in the form of rules.

The relationships among the mentioned higher

level components are the following. The agents use

the knowledge base for their priority based decision

making. They also use the ontology to define the

semantics of the communications according to the

JADE Ontology support [2]. Finally, agents collect

the example set for the learning mechanism. The

manager agent updates the knowledge base and

ensures the fulfilment of user’s requests by

contracting the appropriate agent to do the particular

task.

The remaining components or parts of the

system, namely the multi-agent system, the manager

agent as well as the rule based machine learning

approach are described in details in the following

subsections.

4.2 The multi-agent system
The multi-agent system (MAS) consists of two

types of agents. The manager agent represents the

user and acts on behalf of him/her to find the most

appropriate performer of each task. A Contract Net

protocol is used to allocate tasks to the most

appropriate agent. The set of cleaning agents is

heterogeneous in the sense that each agent can have

different capabilities. The agents simulate cleaning

robots. Each cleaning agent knows its capabilities

and can use the common knowledge base to

calculate its appropriateness to the particular task

and to choose the particular method to execute it.

E. Lavendelis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 144 Volume 1, 2016

Set of agents

Knowledge base

User
(Knowledge engineer)

Manager agent

Knowledge about capabilities

Definitions of concepts sent

Rules
Contract Net
Configuration

Feedback

Updates

Class hierarchies

Environment
model

Rule baseIs based on

Is based on

Set of
capabilities

Learning set
Set of examples with

feedback

User
(MAS operator)

Classes
Rules

Environment

Ontology Learning Tool

Agents
Tasks

Feedback

Updates
Learning

mechanism

MAS Management Tool

Uses

CollectUse

Fig. 2. The architecture of the system

The scenario for executing one cleaning task is the

following:

1. The manager agent forms the task either based on

explicit command by user or based on the

environment monitoring. The need for cleaning in

the virtual environment is simulated by a

particular frequency of cleaning needed for each

object.

2. The manager agent starts the Contract Net

protocol and sends out the task description;

3. The cleaning agents calculate their priority values

and make their bids accordingly;

4. The manager agent chooses the best agent from

the bidders and awards the task;

5. The chosen cleaning agent does the job and

reports when finished;

6. The user gives his/her evaluation about the

cleaning result;

7. Based on the user’s feedback the particular agent

forms an example and adds it to the example set.

Steps 6 and 7 are done only during the learning

period of the system. Later on they are omitted.

4.3 The manager agent
The manager agent’s purpose is to serve as an

interface between the system and its users and to

organise the work of the set of other agents. It is an

agent with two user interfaces, namely the user

interface for knowledge engineer and the user

interface for the operator of the system.

The user interface for the knowledge engineer is the

Ontology Learning Tool, the functionality necessary

for the following tasks:

 Defining the class hierarchies to be included in

the ontology;

 Defining the environment model consisting of the

class instances;

 Specifying the user defined rules.

Ontology classes according to the standards of

JADE platform are generated by the tool based on

the ontology defined in the tool, additionally the

environment model and set of rules are saved as

objects into a knowledge base file that can be later

on used by the multi-agent system. Currently after

generation of new ontology classes the system must

be restarted and recompiled. Creation of a

mechanism that allows changing the ontology

during the runtime is a future work. The ontology

can be also automatically extracted from an existing

multi-agent system and improved in the Ontology

Learning Tool.

The user interface for the end user or system’s

operator allows doing the following tasks:

 Configure the multi-agent system. The ontology,

environment as well as the rule base can be

specified. In the simulated environment it is

possible to create the simulation scenario by

specifying all the agents that will be part of the

system and their capabilities.

E. Lavendelis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 145 Volume 1, 2016

 Make requests to do a particular task, i.e., to clean

a particular object;

 To follow the simulation of the cleaning system

in terms of tasks done by particular agents and

their results;

 Giving feedback about the quality after the

cleaning of a particular object is finished.

4.4 The Learning Mechanism
Not all facts needed for the operation of the multi-

agent system can be known during the design time.

Important characteristics can change even during the

runtime of the system. For example, new types of

objects (furniture or floor covers) can be introduced

into the environment, new cleaning methods can be

introduced into the working system or some other

important characteristics of the system may change.

Additionally, the knowledge of the designer of the

system about the particular environment may be

imprecise. All of these reasons lead to the situation

where the system is not capable to make optimal

decisions. To deal with such a situation an

autonomous system that is capable to learn new

details about the particular environment is needed.

The following learning approach is proposed to

increase the autonomy of multi-agent systems.

The system starts operating based on the set of

rules defined by the knowledge engineer in the

Ontology Learning Tool and stored in the rule base.

After completing every task the user may give a

feedback about the result of the cleaning. In the

simulated environment the user must base his/her

opinion on theoretical knowledge about the

combination of the object and the cleaning method

used while in real environment the feedback can be

given based both on the experts knowledge and

practical evaluation of the result. The feedback is

collected in the example set in the traditional form

for the inductive learning, namely the values of the

attributes (cleaning method, object, and class of the

object) and the evaluation. The evaluation is

provided in the scale from (-3 as very bad to +3 as

the best possible choice, 0 is used in case no

feedback is available).

The example set is used to calculate the offsets

of priorities for the particular combinations. Offsets

are recalculated after collecting a particular number

of examples. It is done by adding up the evaluation

of the following pairs and getting the corresponding

offsets:

 The particular cleaned object’s instance and the

cleaning method of the particular agent;

 The cleaned object’s class and the cleaning

method of the particular agent;

 The particular cleaned object’s instance and the

cleaning method’s class;

 The cleaned objects class and the cleaning

method’s class.

The resulting offset values for each pair are

stored in the knowledge base together with the

corresponding rules. These values are used during

each calculation of the appropriateness by adding up

all the offsets that are related to the particular

situation, i.e., the offset corresponding to the

cleaning method class and object class, cleaning

method class and particular object (instance),

particular cleaning method and object class as well

as particular object and particular cleaning method.

As a result, if exactly the same combination of a

cleaning method and object’s instance is evaluated

later on the offset is maximal while the offset for

similar combinations (i.e., the objects of the same

class) then the offset is smaller. The calculated

offset is multiplied to the learning rate (see Equation

1) and added to the priority calculated based on the

rules given in the Section 4.2.

 O = α ∗ ∑ Oi,ji,j , where (1)

O – the final offset;

α – learning rate;

Oi.j – offset of a particular pair that is related to

the particular combination of object and

cleaning method.

In the particular case study learning rate is set to

1, but in other cases the author sees that lower

values can also be used for more conservative

learning speeds.

Additionally to the described learning method

new classes can be added to the class hierarchies by

using Ontology Learning Tool. Whenever it is done,

new ontology files are generated and the

corresponding files are replaced in the system.

Similarly, also the existing set of rules can be

edited. Whenever any rule is added, removed or

changed all the offsets related to the particular pairs

of cleaning methods and objects are removed and

the learning is started again from scratch. It is done

to prevent combining new rules with the offsets

calculated based on previous version of rules that

can be misleading together with the new versions of

the rules.

5 Conclusions
An approach for adaptive knowledge representation

in multi-agent systems is proposed. It combines

E. Lavendelis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 146 Volume 1, 2016

knowledge representation, knowledge structure

updating and learning mechanisms into the same

framework. An Ontology Learning Tool is

developed for defining and editing ontologies as

well as for generating ontology classes to be used in

multi-agent systems. Additionally, the tool has

functionality for defining the contents of the

knowledge base in the form of environment

definition and rules. The rules defined by the

designer serve as background knowledge for

learning algorithm that finds the more precise

preferences between actions in particular situations

based on the system’s experience. The proposed

approach enables development of multi-agent

systems in domains with only limited

understandings about priorities between the

capabilities of different agents. The job of finding

the exact priorities is done by the learning algorithm

whose task is to do the fine-tuning of the values.

Such a combination is preferred to only user defined

rules or only machine learning approach because the

user defined rules allow learning the exact

representations relatively rapidly. The learning only

approach requires significantly more trials to learn

the same result while the user defined rules only

limit the flexibility of the system.

During this paper the proposed approach is

implemented and explained on the example of

cleaning agents, but the approach is general enough

and can be applied to any domain where the system

must find the most appropriate capabilities of the

group of agents for doing different tasks.

The main direction of the future work is to finish

the implementation of the simulation environment

for testing purposes of the proposed concept. It will

enable practical validation of the proposed

approach.

Acknowledgement
This work is partly supported by the Latvian

National research program SOPHIS under grant

agreement Nr.10-4/VPP-4/11.

References:

[1] Bellifemine F.L., Caire G., Greenwood, D.

Developing Multi-agent Systems with

JADE, Wiley Series in Agent Technology,

2007, 300p.

[2] Caire, G., Cabanillas, D., Jade Tutorial

Application-Defined Content Languages

and Ontologies, Technical Report, Telecom

Italia, 30 p., 2010 Available online:

http://jade.tilab.com/doc/tutorials/CLOntoS

upport.pdf (last visited 18.02.2016).

[3] Cancedda, P., Caire., G. JADE Tutorial

Creating Ontologies by Means of the Bean-

Ontology Class. Telecom Italia. 2010.

Available Online:

http://jade.tilab.com/doc/tutorials/BeanOnto

logyTutorial.pdf (Last Visited 04.03.2016).

[4] Dong, H. and Hussain, F. K. SOF: a semi-

supervised ontology-learning-based focused

crawler. Concurrency and Computation:

Practice and Experience, 25, 2013, pp.

1755–1770.

[5] Drumond L., Girardi, R., A Survey of

Ontology Learning Procedures,

Proceedings of the 3rd Workshop on

Ontologies and Their Applications

collocated with SBIA 2008, Salvador,

Brazil.

[6] FIPA ACL Message Structure Specification,

2002. Available Online:

http://www.fipa.org/specs/fipa00061/SC000

61G.pdf (Last visited 18.02.2016).

[7] FIPA Contract Net Interaction Protocol

Specification, Geneva, Switzerland, 2002,

Available Online:

http://www.fipa.org/specs/fipa00029/SC000

29H.pdf (Last visited 01.03.2016).

[8] Hazman, M., El-Beltagy, S.R., Rafea, A., A

Survey of Ontology Learning Approaches.

International Journal of Computer

Applications, Volume 22–No.9, May 2011,

pp 36-43.

[9] Heflin J., An Introduction to the OWL Web

Ontology Language. Available Online:

http://www.cse.lehigh.edu/~heflin/IntroToO

WL.pdf (Last visited 25.02.2016).

[10] Lehmann, J., Voelker, J. An Introduction

to Ontology Learning, in Jens Lehmann &

Johanna Voelker, ed., 'Perspectives on

Ontology Learning' , AKA / IOS Press,

2014, pp. ix-xvi .

[11] Nikitenko, A., Grundspenkis, J., Liekna,

A., Ekmanis, M., Kulikovskis, G.,

Andersone, I. Multi-Robot System for

Vacuum Cleaning Domain. Advances in

Practical Applications of Heterogeneous

Multi-Agent Systems. The PAAMS

Collection: Proceedings of the 12th

International Conference (PAAMS 2014),

Spain, Salamanca, 4-6 June, 2014.

Heidelberg: Springer, 2014, pp.363-366.

[12] Zouaq A.,Gasevic, D., Hatala, M.,

Unresolved Issues in Ontology Learning -

Position Paper - Proceedings of CSWS2011,

2011, pp. 52-57.

E. Lavendelis
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 147 Volume 1, 2016

