

An Intelligent Database System using Natural Language Processing

Abstract: - – Enormous amount of data are being processed and exchanged in our daily life, and database,
which is used to organize data has been an active research topic for a long time. Database plays a major role in
many computer systems and there is always a demand from technical and nontechnical people to ease the
process of accessing data on database. Using Natural Language to directly interact with a database is a nice and
user friendly solution. In order to achieve this type of communication between the computer (In particular,
database) and human we have to make the computer understand what the human asks, and then, be able to
respond with the right answer that was expected to be extracted from the database.
 In this paper we present an intelligent system for converting Natural Language queries into equivalent
database Structured Query Language (SQL). Our system also allows processing complex Natural Language
queries. We call this Intelligent Agent based Natural Language Interface to Database (INLIDB). The query
results from the INLIDB is presented in an attractive succinctly viewable format. We have obtained
encouraging results from INLIDB.

Key-Words: - Natural Language Processing / Understanding, Semantic Parsing, Syntactic Parsing, Intelligent
Database, Structured Query Language, Artificial Intelligence.

1 Introduction
Natural Language Processing (NLP) has many
applications that require either Natural Language
understanding or Natural Language generation or
even both - for example Machine Translation, which
focuses on translating text from one human
language to another automatically. Another good
example of NLP is Information Extraction which is
concerned with “factual information in free text
[1]”. This paper is concerned with one of the
important applications of NLP, which is Natural
Language Interface to Database (NLIDB). Figure 1
from [2] shows the components of Natural
Language Interface to Database. The idea of NLIDB
systems came from the method of questioning the
database that uses Natural Language queries like
English instead of database language to query the
database.
 This paper is concerned with one of the important
applications of NLP, which is Natural Language
Interface to Database. The importance of NLIDB
system is that it makes it easy for users with no
programming experience to deal with a database.

User can just use Natural Language to interact with
a database which is very simple and easy. Also, the
user would not need a special training on using such
systems (maybe some training to know the
interface). The user is not forced to learn any
database language. It is hard to learn a formal query
language like SQL by a naive or inexperienced user.
Also, it is easier to use Natural Language in queries
that involve multiple database tables.
 The main objective of this paper is to make the
use of database much simpler where the users can
retrieve information using natural sentences by
means of implementing an intelligent agent that can
understand the user’s query and can generate the
answer in a nice presentable way.

2 Related Work
NLIDB systems have started in the early 1980s or
precisely in the 1970s. Since then, researchers have
been very interested in developing these systems,
and have always tried to find better solutions for the
commercial applications.

HESSA ALAWWAD
Department of Computer Science

Al Imam Mohammad Ibn Saud Islamic University
P.O. Box No. 5701, Riyadh-11432

SAUDI ARABIA
hessaalawwad@ccis.imamu.edu.sa

EMDAD KHAN
Department of Computer Science

Maharishi University of Management (MUM)
1000 North 4th Street, Fairfield, Iowa 52557

U.S.A
ekhan@mum.edu

H. Alawwad, E. Khan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 120 Volume 1, 2016

mailto:hessaalawwad@ccis.imamu.edu.sa
mailto:ekhan@mum.edu

 The main reason we need such systems is that

they offer a great substitution for people who deal

Figure 1: Components of NLIDB System.

with Database on a daily or periodic basis where
they are not required to learn the process of
retrieving data
using a database language like SQL. Rather, they
only require their language that they use every day
to communicate with people around them.
 In general, the existing methods to interact with
a database using NLP can be divided into three
categories: (1) Pattern Matching Models or
Template Based Approach. (2) Syntactic Models.
and (3) Syntactic and Semantic Models.
 In the first model, the entered query is
processed by matching it with a predefined set of
rules or patterns. The next step then translates it into
a logical form according to what pattern it belongs
to. From these rules, the database query is directly
formulated.
In the second model, a constituent syntactic tree
using a syntactic parser is used [3] where the leaves
are used in the process of mapping to a database
query based on predefined syntactic grammars. In
the third model, the use of semantics adds the
intelligence concept, and the query is processed
according to what it means.
 Existing NLIDB systems vary from each other
in the method they use to convert the query into a
database language such as SQL. Generally, there are
four steps to do the conversion: Lexical Analysis,
Syntactic / Semantic Analysis, Query Generation
and Answer extraction.
 LUNAR [4] is one of the most known syntax-
based systems. It came in early seventies (1973). It
is an English question answering system that
answers questions about the chemical analyzes of
the Apollo 11 moon rocks. It has three main parts:
the first one is a general purpose grammar and a
parser that covers a large subset of the language.
The second part is a semantic analyzer to get the

meaning from the question. The third part is
database retrieval and inference component to store
the data to be manipulated. The domain of the
system is restricted to lunar geology and chemistry
only. The main challenge they faced that there were
only a few general-purpose NLP resources available
at the time.
 The research continued for another decade,
where they focused on the syntactic parsing,
incorporating domain knowledge, dialog systems
and semantic parsing like in LADDER system [5].

3 Contribution
The existing NLIDB systems cover different areas
of linguistic and semantic parsing. Authors of
existing NLIDB systems proposed different
algorithms to handle a certain level of complexity,
but the existing systems do not cover complex
natural language queries with complex semantics.
 We have designed and built an Intelligent
NLIDB (INLIDB) that converts the queries from the
Natural Language form to its equivalent Structured
Query Language form. It starts with the Syntactic
analysis performed by Stanford POS tagger. Then,
The keyword extractor use the information from the
POS tagger to extract the keywords that are used by
the Named Entity Recognition tool. The Named
entity Recognizer defines the related domain
concepts like person or department. The identified
keywords are handled by a SQL Generator class.
For the complex queries, we propose an algorithm
that extracts the main keyword along with its
characteristics to be used in further processing.
 Section 4 discusses the System Architecture
and design decisions we made during design and
implementation of our intelligent agent. Section 5
describes how our NLIDB has been tested. It also
shows and discusses the results we have
achieved.

4 System Architecture
Our architecture has two major parts: a syntactic
parser and a semantic parser (Fig. 2).
 These parsers help extract the key features that
affect the whole process of transforming the natural
queries into its equivalent SQL statements. We also
show an algorithm to handle a higher level of
semantic complexity for Natural Language queries.

4.1 Syntactic Analysis
The Syntactic model in general presents linguistic
information based on tokenizers, morph analyzers,
part-of-speech tagging (POS). There are eight parts
of speech in the English grammar: verbs, nouns,

H. Alawwad, E. Khan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 121 Volume 1, 2016

pronouns, adjectives, adverbs, prepositions,
conjunctions and interjections [6].
 Stanford Log-linear Part-of-Speech Tagger [7],
which was used in this work, is a software that reads
an input (text) and assigns part of speech (lexical

 Fig. 2: System Architecture

category) to each word. It was presented in 2003 by
members of the computer science department in
Stanford University. The last release was in October
2014.
 If we send the following sentence: “What is the
salary of Ahmad?” to the POS tagger, we get the
response in Figure 3: “What_WP is_VBZ the_DT
salary_NN of_IN Ahmad_NNP ?_. “ with the tags
WP (Wh-pronoun), VBZ (Verb, 3rd person singular
present), DT (Determiner), NN (Noun, singular or

plural), IN (Preposition or subordinating
conjunction) and NNP (Verb, non-3rd person
singular present) assigned to the query words.

 The syntactic analyzer tags the tokens of the
sentence that are returned from the Token Analyzer.

Figure 3: Part of speech tagging for the sentence:

“What is the salary of Ahmad?”

The main reason we used the part-of-speech tagger
is to identify the parts that can be identified as our
keyword from the query. These keywords are going
to be passed to the next level of processing
which is concerned with its semantic side.
 We notice that the main words (nodes) of the
queries are: Nouns, Adjectives and Numbers. Other
words were discarded as they do not affect the
conversion process.

4.2 Semantic Analysis
The POS is not enough by itself to convert the
Natural Language query into SQL, so we need to
add
more information that we can use to understand the
query. For this, we have used Stanford Named
Entity Recognizer (NER) in order to assign the

H. Alawwad, E. Khan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 122 Volume 1, 2016

keywords we already extracted from the query to the
pre-defined category it belongs to.
 So, along with the POS tagger we used
Stanford NER to add some meaning to the category
or entity the keyword belongs to. Hence, the names
that would appear in the query would be recognized
as PERSON which according to our database means
that the person is an employee. For our department
names we had to train our own named entity
recognition model to recognize the departments as
Organizations.
 For example, if we send the sentence “What is
the salary of Ahmad who works in Programming
Department?” to be analyzed by the named entity
recognizer, we get the output as shown in figure 4.
The employee name “Ahmad” has been recognized
as Person. Then our module understands that this
Person is an employee according to our database
schema. This understanding gives us the ability to
construct the SQL statement.
 Figure 5 illustrates the process of understanding
the syntax of the query by using Stanford POS &
NER.
 The class QueryDefiner does the first step in
constructing the SQL statement. It determines the
SQL statement type by defining a list of synonym
we expect the user to use of each type: SELECT,
DELETE, INSERT. Like: ‘give me’, ‘show me’ and
‘what’ for SELECT.
 The second and third steps are to extract the
keywords. After discarding any tokens that do not
affect the transformation process to SQL statement
the token is added to the proper clause of the SQL
statement according to a set of rules that have been
defined to process the structure of the query.

Figure 4: NER output for the sentence “What is the
salary of Ahmad who works in Programming
Department?”

4.2.1 Semantic Role Labeling
There were some situations where the Stanford POS
and NER failed to understand the user’s query and
thus was not able to convert it to SQL.
 So we needed a Semantic role labeler which
presents the semantic relation between the
predicates (verbs) and arguments with labeled arcs.

In semantic parsing we perform a dependency
parsing to derive a syntactic dependency structure
where every token (word) except the root have a
link (dependency) to a head token. Then we apply a
Semantic role labeling where each predicate has a
semantic information.

__
1. Determine the desired action from the input

query (INSERT, DELETE or SELECT).
2. Remove any filler words to extract the keywords.
3. For each keyword:
 Check whether it is: Column\Table Name or
a synonym of one of them. If not:
 Check whether it is: Operator, Person,
Organization or a WHERE Clause condition.
4. Whether it was A or B. Add the keyword after
processing it to the proper clause of the SQL
statement.
5. Re-arrange the SQL string if necessary.

Figure 5: The algorithm used to understand the
syntax and semantic of the query by using Stanford
POS & NER.

 We used ClearNLP [8]. which is an open source
project developed at Emory University and has been
used in research like in [9].
 In general, argument goes through two tasks,
argument identification which is the task of finding
the argument of each predicate and argument
classification where each argument is assigned with
a semantic role with respect to the predicate [8].
 Figure 6 shows the flow of our framework. It
starts with the Syntactic analysis performed by
Stanford POS tagger. Then, the keyword extractor
use the information from the POS tagger to extract
the keywords that are used by the NER. The Named
entity Recognizer defines the related domain
concepts like person or department.
 In complex queries we go through a
dependency semantic parsing. Then we move to the
nodes mapping which maps each node in the
keywords into the corresponding SQL statement
component. The SQL statement is executed against
our relational database. The retrieved response is

H. Alawwad, E. Khan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 123 Volume 1, 2016

then handled by the answer generation class to form
the answer to be presented to the user.

5 Results
We have thoroughly tested our system and we used
an input data that consists of hand crafted questions
specifically designed to verify that the Intelligent
Agent, IA can transform all the covered construction
rules (that have been defined) into correct SQL
statement. Also, wav files recorded from different

users have been used to test speech recognition tool.

 Figure 6: Flow of the framework

We used Sphinx4 [10] as the speech recognition

tool, MySQL as the RDBMS, the Stanford
Natural Language Part-of-Speech Tagger [7] as the
syntax parser, the Stanford Named Entity
Recognizer [11] as the semantic parser and
ClearNLP [12] for parsing complex queries. We
have implemented the IA (to implement our
algorithm and integrate all tools mentioned
above) in Java.
 The goal of this work is to ease the process of
querying relational database for non-technical users.
As such, we used the measurement in [13] where

there are two aspects to be evaluated (with some
modification to suite our framework):
• The quality of the returned SQL statement from

written Natural Language queries (effectiveness
and correctness).

• Whether our module was easy to be used by non-
technical users with spoken queries (usability).

5.1 Effectiveness

The effectiveness of our system is evaluated as the
percentage of the queries that were successfully
translated into SQL statements by our IA.

H. Alawwad, E. Khan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 124 Volume 1, 2016

 The test suite contained 70 questions about the
database. It has been evaluated by comparing the
correct SQL statement that corresponds to the user
query with the SQL statement we got from our IA.
The percentage of the success of our IA to transform
the queries in the test suite was 81.43 % (Figure 7).
Figure 7: The results of the Effectiveness measure
of the INLIDB.

5.2 Usability
The usability in our test is measured by

(a) How easy it is to say (or type) the query
naturally and

(b) The simplicity and accuracy of the results
obtained from IA.

Users were well satisfied with the results for all
the correctly generated SQL statements. They have
used 20 different queries using their natural
language. When they used spoken sentences (not
typed), the accuracy of correctly generated SQL
statements suffered to some extent due to the ASR
recognition accuracy which was about 80%. This,
however, can be improved by using more accurate
ASR tool and improved semantics in NLP.
Improved semantics can also improve the overall
accuracy shown in Figure 7, especially for complex
sentences.

6 Conclusion and Future Work
Adding the Natural Language processing
capabilities to a database by using an Intelligent
Agent (INLIDB), enhances the ease of use by the
users with no programming background to query the
database with their native language.
 One challenge in the NLIDB evolution is not
having good ability to overcome the Natural
Language problems like the semantics, ambiguity,
and universe of discourse which make the
transformation process difficult.
 The architecture of our system has five parts -
first, the syntactic parser where we have used
Stanford Part-of-Speech tagger to understand the
syntactical structure of the input query; second, the
semantic parser where we have used Stanford
Named Entity Recognition to recognize the
semantics of the entities; third, improving the
semantics by using Semantic Role Labeling for
which we have used ClearNLP; fourth, the SQL
statement generation class, and fifth, generation of a
nice presentable result that a nontechnical person
can easily understand.

 One of the characteristics that distinguishes our
research is the focus on extracting the keywords to
be processed by the syntactic and semantic parsers.
The rules to handle the structure of the query were
also designed to use what have been understood by
the parsers in the transformation process.
 In order to manage complex queries we
proposed an algorithm to extract the main keyword
and its’ characteristics to be used in further
processing.

 The overall result of our test suite was 81.43%
and the result of our proposed algorithm to process
complex queries was 80%. These are moderate but
encouraging results given the complexity of
developing them from scratch and under the hard
time constraints. According to the user satisfactory
survey, we concluded that the users were pleased
with the system performance and some degree of
syntactic and semantic processing are needed to
improve the results. The intelligent agent still needs
improvements in several areas, especially for
complex sentences. Key future works are:

(a) Further improving the rules and

(b) Adding more advanced semantics, especially
using SEBLA (Semantic Engine using Brain-Like
Approach) [15].

References:
[1] J. Piskorski and R. Yangarber, Multi-source,
 Multilingual Information Extraction and
 Summarization, 2013.
[2] N. Nihalani, S. Silakari, and M. Motwani,
 "Natural Language Interface for Database: A
 Brief review," IJCSI International Journal of
 Computer Science, 2011.
[3] L. R. Tang, "Using a Machine Learning
Approach
 for Building Natural Language Interfaces for
 Database: Application of Advanced Techniques
in
 Inductive Logic Programming," 2008.
[4] W.A.WOODS, "Semantics and Quantification in
 Natural Language Question Answering," Bolt
 Beranek and Newman Inc., Cambridge,
 Massachusetts1977.
[5] G. G. HENDRIX, E. D. SACERDOTI, D.
 SAGALOWICZ, and J. SLOCUM, " Developing
 a Natural Language Interface to Complex Data,"
 vol. 3, pp. 105- 147, 1978.

H. Alawwad, E. Khan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 125 Volume 1, 2016

[6] A.Rudnicky.SphinxKnowledgeBaseTool--
VERSION3.Available:http://
www.speech.cs.cmu.edu/tools/lmtool-new.html
[7] L. Niu, J. Lu, and G. Zhang, Cognition in
 Business Decision Support Systems, 2009.
[8] J. Lafferty, A. McCallum, and F. C. Pereira,
 “Conditional random fields:Probabilistic models
 for segmenting and labeling sequence data.,"
 2001.
[9] J. D. Choi, "Optimization of Natural Language
 Processing Components for Robustness and
 Scalability," Ph.D, Computer Science and
 Cognitive Science, University of Colorado
 Boulder, 2012.
[10] L. Rabiner and B.-H. Juang, Fundamentals of
 speech recognition, 1993.
[11]
(1992).ThePennTreebankProject.Available:http://w
ww.cis.upenn.edu/ ~treebank/
[12] O. Babko-Malaya, "Propbank annotation
 guidelines," 2005.
[13] F. Li and H. V. Jagadish, "Constructing an

 Interactive Natural Language Interface for
 Relational Database," presented at the
 International Conference on Very Large Data
 Bases, Hawaii, 2015.
[14] H. Alawwad, “An Intelligent Database System
 using Natural Language Processing with typed
 or spoken sentences”, Master’s Thesis, Al
Imam
 Mohammad Ibn Saud Islamic University
 (IMSIU), Saudi Arabia, March 2016.
[15] E. Khan, "Intelligent Internet: Natural
Language
 and Question & Answer based Interaction”,
 INTERNATIONAL JOURNAL of
 COMPUTERS AND COMMUNICATIONS,
 (NAUN & UNIVERSITY PRESS) Oct. 2013.

H. Alawwad, E. Khan
International Journal of Computers

http://www.iaras.org/iaras/journals/ijc

ISSN: 2367-8895 126 Volume 1, 2016

http://www.speech.cs.cmu.edu/tools/lmtool-new.html

	Figure 1: Components of NLIDB System.
	The test suite contained 70 questions about the database. It has been evaluated by comparing the
	correct SQL statement that corresponds to the user query with the SQL statement we got from our IA. The percentage of the success of our IA to transform the queries in the test suite was 81.43 % (Figure 7).
	Figure 7: The results of the Effectiveness measure of the INLIDB.
	References:

