H₂ Production from Prokaryotic Algae Namely Synechocystis sp., Spirulina platensis, and Anabaena variabilis under Direct Photolysis and Indirect Biophotolysis

RUKİYE ÖZTEKİN*, DELİA TERESA SPONZA*
Department of Environmental Engineering
Dokuz Eylül University
Tınaztepe Campus, 35160 Buca/Izmir,
TURKEY
*Corresponding

Abstract: - This study explores the potential of biohydrogen production from some prokaryotic Algae (Synechocystis sp., Spirulina platensis, and Anabaena variabilis) under some environmental factors the influencing microalgal hydrogen (H₂) production, determining the H₂ production yields. The main environmental conditions affecting H₂ production efficiency include the C/N ratio, pH, illumination intensity, incubation temperature, algae numbers and duration of H₂ production. The effect of C/N ratio (0.1, 0.2, 0.4, 0.8 and 1.0), pH (6.5, 7.0, 7.5, 8.0, 8.5 and 9.0), illumination intensity (120, 168, 180, 216 and 250 μmol/m².s), incubation temperature (20, 25, 30, 35 and 40°C), algae numbers and duration of H₂ production (20, 40, 80, 100 and 120 hours), respectively, were examined for the H₂ production yields with prokaryotic Algae namely Synechocystis sp., Spirulina platensis, and Anabaena variabilis under direct photolysis and indirect biophotoylsis processes. Algae cultivation is crucial for biohydrogen production. Maximum 99.40% H₂ production efficiency was measured at 0.1 C/N ratio, at pH=7.5, at 168 μmol/m².s illumination intensity, at 30°C incubation temperature, at 35 EMS/100 ml Synechocystis sp., algae counts, after 100 h duration of H₂ production, respectively, with Synechocystis sp., prokaryotic algae under direct photolysis process. Maximum 99.54% H₂ production yield was obtained at 0.1 C/N ratio, at pH=9.0, at 180 mol/m².s, at 35°C, at 88 EMS/100 ml Spirulina platensis algae counts, after 100 h, respectively, with Spirulina platensis prokaryotic algae under direct photolysis process. Maximum 99.44% H₂ production efficiency was found at 0.1 C/N ratio, at pH=7.5, at 216 mol/m².s, at 30°C, at 172 EMS/100 ml Anabaena variabilis algae counts, after 40 h, respectively, with Anabaena variabilis prokaryotic algae under direct photolysis process. H₂ production yields in direct photolysis are higher than those in indirect biophotolysis. The responsible enzyme for H₂ evolution is a reversible hydrogenase because it catalyzes the reaction in both directions. The reversible hydrogenase and nitrogenase, however, are sensitive to the O_2 evolved in biophotolysis and promptly deactivated at quite low O_2 partial pressures (< 2% v/v), which results in a transient H₂ evolution. This intrinsic incompatibility of biophotolysis is a major barrier for sustained H₂ evolution. This is because direct energy is converted into H₂ energy in direct photolysis. Energy losses in direct photolysis are negligible compared to indirect biophotolysis. Therefore, H₂ production yields in direct photolysis are much higher. Additionally, the study conducts a Technical Economic Analysis (TEA) to evaluate the economic feasibility.

Key-Words: - Algae cultivation; *Anabaena variabilis*; Direct photolysis; H₂ production; Illumination intensity; Indirect biophotolysis; Prokaryotic algae; *Synechocystis sp.*; *Spirulina platensis*, Technical economic analysis (TEA).

Received: April 18, 2025. Revised: May 19, 2025. Accepted: June 16, 2025. Published: November 19, 2025.

1 Introduction

Growing concerns about global warming and the limited amount of available fossil energy have increased the need to shift the energy production towards renewable sources. Hydrogen (H₂) is extensively proposed as a future source of alternative energy. Some species of microalgae are currently being

investigated as potential sources of bioenergy and biofuels such as H₂, [1], [2], [3], [4], [5].

The limited source of fossil fuels and the simultaneous increase of their price along with the growing demand for energy sources, the existence of an alternative and environmentally friendly energy source is required to overcome the challenges of using fossil fuels in terms of waste issues and climate changes, [6],

ISSN: 2534-8825 1 Volume 9, 2025

[7]. Different types of renewable energy sources, such as wind energy, solar, biomass, and geothermal, can be considered a proper substitute, and geothermal can be regarded as an appropriate substitute for fossil fuels, [8], [9]. However, between all different types of renewable energy sources, the potential of utilization of biomass for H₂ production as one of the significant sustainable energy sources is unquestionable, [10], [11]. That is due to two reasons: first, the availability and diversity of the biomass in terms of type and conversion reaction routes, and second, the unique characteristics of H₂ as an energy (i.e., zero carbon emission and possessing the highest amount of energy per weight unit, [12]. Algae, among all various types of biomasses, is believed to be a promising source for H₂ generation mainly because of its straightforward cellular structure, fixing carbon dioxide (CO₂) by utilizing for their growth, fast growth rate, and ease of cultivation methods, [13], [14]. Due to the awareness of consumers about the numerous benefits and unique characteristics of algae, the microalgae market has been growing at a Compound Annual Growth Rate (CAGR) of 5.4%, which was valued at 3.78 billion in 2017 and predicted to reach 5.17 billion in 2023, [15].

On the other hand, due to the versatile application of H₂, an almost 6–10% increase in its utilization has been reported, with approximately 55 million tons generation per year, [16]. As of 2024, and according to H₂ Insights 2024 the market size has surpassed USD 6.49 billion and is anticipated to expand at a CAGR of more than 31% from 2024 to 2032. By 2030, global green H₂ deployment is expected to reach 150 GW, equating to roughly 63,750 tons/day. The cost for green H₂ production in 2020 was approximately 6 USD/kg based on the international hydrogen-promoting organization, the Hydrogen Council, [17].

Low-carbon hydrogen has emerged as a promising alternative among all sources of clean energy, [18]. Biohydrogen production methods have received attention owing to their potential to reduce reliance on fossil fuels and electricity compared with traditional H₂ production methods. Additionally, microalgae-based photosynthetic H₂ production does not release CO₂ into the environment. Instead, this photosynthetic H₂ production method captures CO₂ during the production process, making it an environmentally friendly method, [19]. Although, both prokaryotic and eukaryotic microalgae can produce H₂ through photosynthesis, their H₂ production processes and mechanism vary. These distinctions inevitably lead to the fact that the enhanced H₂ production strategies to prokaryotic and eukaryotic microalgae are significantly different. However, current reviews have paid little attention to the difference between prokaryotic and eukaryotic microalgae in H₂ production.

Microalgae can produce H₂ through various thermochemical or biological approaches, [20]. The thermochemical process possessed many advantages, including the capability of working under different types of feedstocks, [21], fast reaction, conversion rate, and high energy efficiency. It is worth mentioning that the yield and composition of the desired products can be significantly influenced by operating conditions such as temperature, pressure, concentration of feedstock, etc. Thus, specifying the optimum operating condition is paramount, [22]. On the other hand, biological approaches occur under ambient temperature and pressure. Hence, this reduces the final cost of the operation and provides an area for large-scale production, [23]. Furthermore, CO₂ can be fixed during the process, which is another merit of the biological approach. Nevertheless, the reaction takes longer than the thermochemical process and is highly dependent on the type of microorganisms, [24], [25].

The simplest most sustainable and efficient way to produce H₂ with microalgae is the so-called direct biophotolysis, which involves direct transfer of electrons from H₂O to the hydrogenase. However, until to date H₂ production of significant amounts of H₂ from direct biophotolysis is strongly limited by the O₂ sensitivity of hydrogenase which is the most challenging barrier to overcome, [26], [27]. Oxygen acts as a transcriptional repressor, an inhibitor of hydrogenase maturation, and an irreversible inhibitor of hydrogenase catalytic activity, [28], [29], [30].

Synechocystis sp. PCC6803 is a strain of unicellular, freshwater cyanobacteria. *Synechocystis sp.* PCC6803 image was given at Fig. 1.

* Figure 1 can be found in the Appendix section.

Synechocystis sp. PCC6803 is capable of both phototrophic growth by oxygenic photosynthesis during light periods and heterotrophic growth by glycolysis and oxidative phosphorylation during dark periods, [31]. Gene expression is regulated by a circadian clock and the organism can effectively anticipate transitions between the light and dark phases, [32]. Their observations that slr0388 (identified a hypothetical protein, encoded by the ORF slr0388 in CyanoBase, [33]), is involved in both phototactic motility and natural transformation provide further evidence that these two processes are intrinsically linked in Synechocystis sp. strain PCC 6803, [34]. Apart from the molecular machinery of the type IV pili (Tfp) genetic complement, the regulation of phototaxis and natural transformation is likely to involve other common genes that indirectly influence the biogenesis of the Tfp apparatus, as observed with slr0388 in this study. To that end, the identification of other factors specific only to the regulation of natural transformation should

facilitate the elucidation of pathways that distinguish this process from phototactic motility, [34]. Synechocystis sp. strain PCC 6803 is one of the best-studied strains that can grow in the dark using glucose as the sole carbon source; however, it requires short, regular exposure to light for heterotrophic growth, [35].

Spirulina platensis is a filamentous, gram-negative cyanobacterium, [36]. Spirulina platensis image was shown at Fig. 2.

* Figure 2 can be found in the Appendix section.

This bacterium is non-nitrogen-fixing photoautotroph, [37]. Spirulina platensis filamentous, motile bacterium. Motility has been described as a vigorous gliding without a visible flagella, [37]. As a photoautotroph the major carbon source is CO₂ and H₂O are a source of electrons to perform CO₂ reduction. Spirulina platensis has been found in environments with high concentrations of carbonate and bicarbonate. Spirulina platensis can also be found in high salt concentrations because of its alkali and salt tolerance. The temperature optimum for this organism is around 35°C, [38]. Based on environmental conditions, culture medium often has a pH between 9.0– 10.0, inorganic salts, and a high bicarbonate concentration, [39].

Arthrospira is a representative filamentous non-N₂ fixing cyanobacterium that lacks any differentiation such as for the heterocyst, akinete or hormogonium, which develops in some filamentous N₂-fixing cyanobacteria. This cyanobacterium is also well known as 'Spirulina' because of its useful property as a food. However, current taxonomy claims that the name 'Spirulina' for strains used as food supplements is inappropriate, and there is agreement that Arthrospira is a distinct genus, [40], consisting of over 30 different species including A. platensis and A. maxima. Arthrospira platensis shows vigorous gliding motility of filamentous cells (trichomes) with rotation along their long axis. Gliding is a self-propulsion across a solid or semi-solid material without the aid of any visible flagellum, [41]; however, the mechanism of gliding motility is not fully understood. This organism possesses ecologically very characteristics such as alkali and salt tolerance and algal mat production on the periphery of lakes. Arthrospira platensis is also able to grow under high salt concentrations of 1.5-fold higher than sea water, [42]. Accordingly, it often dominates in lakes with high carbonate/bicarbonate levels and high pH levels, [43].

Arthrospira platensis has become an important industrial organic material as a health supplement, a source of beta-carotene and a natural coloring agent. It has been approved for treating symptoms of radiation sickness after the Chernobyl disaster in Russia, [44].

The presence of hydrogenase in its cells also makes this *Cyanobacterium* a useful material for clean energy production, [45]. Despite its various useful applications, very little is known about the biology, physiology and genetic system of *A. platensis*. For production of useful products, gene manipulation through genetic engineering should be considered. However, genetic transformation of *Arthrospira* has had limited success to date, [46], and thus commercial use of this organism has faced barriers due to difficulties in gene manipulation. To overcome these barriers, restriction-modification (RM) systems based on its genome sequence may prove useful.

Anabaena variabilis is a species of filamentous cyanobacterium. Anabaena variabilis prokaryotic algae was illustrated at Fig. 3.

* Figure 3 can be found in the Appendix section.

This species of the genus Anabaena and the domain Eubacteria is capable of photosynthesis. This species, though photoautotrophic like other cyanobacteria, can also be heterotrophic, meaning that it may grow without light in the presence of fructose, [47]. Anabaena variabilis also can convert atmospheric dinitrogen to NH₃ via N₂ fixation. Anabaena variabilis is a phylogenic-cousin of the more well-known species Nostoc spirrilum. Both of these species along with many other cyanobacteria are known to form symbiotic relationships with plants. Other cyanobacteria are known to form symbiotic relationships with diatoms, though no such relationship has been observed with Anabaena variabilis. Anabaena variabilis is also a model organism for studying the beginnings of multicellular life due to its filamentous characterization and cellular-differentiation capabilities, [48].

Two well-studied filamentous heterocyst-forming cyanobacterial strains, namely, Nostoc punctiforme ATCC 29133 and Anabaena variabilis ATCC 29413, are capable of true heterotrophic growth in complete darkness, [49], [50]. The former strain grows on glucose or fructose, while A. variabilis ATCC 29413 can use only fructose, [49]. In these two heterocyst-forming strains, sugars support not only growth in the dark but also nitrogen fixation, an energetically expensive reaction. A. variabilis is not known to be an endosymbiont; however, by morphology, phenotype, and genetics, it is virtually identical to many strains called Anabaena azollae, isolated from the symbiotic association of cyanobacteria with the H₂O fern Azolla, [51]. Fructose dramatically affects the physiology of *A*. variabilis. The cells grow faster, are bigger, and in filaments that have differentiated heterocysts, produce more and larger heterocysts, fixing more N2 and producing more H₂ than do cells grown photoautotrophically, [52]. [14C] fructose, which is taken up

almost immediately by vegetative cells in a filament, is quickly transported in some form to the heterocysts, where the ¹⁴C compound accumulates and is metabolized to provide a reductant for N₂ fixation, [49]. Although, fructose supports nitrogen fixation in whole filaments, isolated heterocysts cannot use fructose as a source of reductant, suggesting either that fructose cannot be transported by heterocysts or that fructose is converted to another compound in the vegetative cell before it moves to the heterocyst, [53]. Growth with fructose results in increased respiration and decreased chlorophyll, [54]. In long-term, dark grown, fructoseadapted cells, there is an increase in photosystem II (PS II), resulting in a decrease in the ratio of photosystem I (PS I) to PS II, [47]. Cells grown with low CO₂ in the presence of fructose do not fix CO2 well because of decreased carbonic anhydrase and decreased ribulose bis-phosphate carboxylase oxygenase, [55]. decrease in O₂ production in fructose grown cells is thought to contribute to a micro-oxic environment that better supports N₂ fixation, [49]. Microarray analysis of Ribonucleic acid (RNA) from the non-N2-fixing unicellular cyanobacterium Synechocystis sp. strain PCC 6803 under conditions of N₂ starvation shows increased expression of genes important in glycolysis, the oxidative pentose phosphate pathway, and glycogen catabolism and increased activities of glucose-6phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, two key enzymes of the oxidative pentose phosphate pathway, [56]. Uptake of fructose in A. variabilis and Nostoc sp. strain ATCC 29150 is constitutive but increases after exposure to fructose, [57], and is energy dependent in A. variabilis, [58].

The C/N ratio affects the level of microalgal NAD(P)H or plastoquinone (PQ) oxidation, which influences the expression of hydA genes, [59]. The pH level regulates the activity of hydrogen-producing enzymes, such as nitrogenase and hydrogenase, [60]. Illumination intensity significantly influences the transfer of electrons and the synthesis of Adenosine Triphosphate (ATP) and Nicotinamide Adenine Dinucleotide Phosphate [NAD(P)H]. As the illumination intensity exceeds the light saturation point, it inhibits the production of H₂ in microalgae, [61].

It's important to note that understanding the kinetics and fundamental reaction pathways is crucial for designing practical reactors, conducting lifecycle assessments, and performing techno-economic analyses. However, these areas are often overlooked due to their complex mechanics. To gain more insight into the phenomena and thermodynamics involved, it's helpful to model and optimize different processes, whether they are thermochemical or biological. Doing so makes it possible to predict how a process will behave on a lab and pilot scale before conducting actual experiments. On the other hand, the process economy is

one of the most vital evaluation tools for any process scaling. To perform economic analysis of the entire algae to H₂ system, analysis and calculation of both mass and energy balances are needed. The simulation data will study the overall technical possibility and provide a technical and economic analysis (TEA) of the process's life cycle. The primary goal of TEA is to define and calculate the baseline of capital expenditures (CAPEX), [62], and cost expenditures (OPEX) of the whole integrated biorefinery. The economic analysis showed that the \$6–15/kg-H₂ provided allows market leverage to be a power system. If the proposed design works, the production cost will go below \$2/kg-H₂ due to higher revenues generated from the higher production rate of H₂. It will calculate the by-products' revenues (minerals rich in phosphorus and N2 as fertilizer). Successful recovery of nutritious products would bring a gain of \$0.1/kg-H₂ produced, [63]. The TEA will be based on a specific and overall mass and energy balance (MEB) calculation for the whole process, from receiving wastewater, mixing food products, chamber operation, fuel cell, electricity transformation, and by-product recovery.

In this study, the potential of biohydrogen production from some prokaryotic Algae Namely Synechocystis sp., Spirulina platensis, and Anabaena variabilis under direct photolysis and indirect biophotolysis during some environmental factors the influencing microalgal H₂ production, determining the H₂ production yields. The main environmental conditions affecting H₂ production efficiency include the increasing C/N ratio (0.1, 0.2, 0.4, 0.8 and 1.0), pH (6.5, 7.0, 7.5, 8.0, 8.5 and 9.0), illumination intensity (120, 168, 180, 216 and 250 µmol/m².s), incubation temperature (20, 25, 30, 35 and 40°C), algae numbers and duration of hydrogen production (20, 40, 80, 100 and 120 hours), respectively. In addition to, the study conducts a Technical Economic Analysis (TEA) to evaluate the economic feasibility.

2 Materials and Methods

2.1 Bacterial Strains and Culturing Mediums

The positively phototactic strain of *Synechocystis sp.* strain PCC 6803 was purchased from Sigma-Aldrich, (Germany). Cells were grown either in BG-11 liquid medium, [64], or on BGTS agar (1%, w/v) plates consisting of BG-11 supplemented with 10 mM TES (pH=8.2 with KOH) and 0.3% (w/v) sodium thiosulfate, [Williams, 1988]. Where appropriate, antibiotics were added (7 μ g chloramphenicol/ml, 5 μ g kanamycin/ml or 5 μ g spectinomycin/ml). Cultures were grown without shaking under continuous light (25 μ mol photons/m².s) supplied by cool white fluorescent lamps at 28±1°C.

Arthrospira (Spirulina) platensis strain NIES-39 was obtained from Sigma-Aldrich, (Germany). The

cells were grown in the SOT medium, [65], at 30° C under continuous illumination at 30 μ mol photon/m².s with aeration with 1% (v/v) CO₂.

Anabaena variabilis was purchased from Sigma-Aldrich, Germany. Strains of A. variabilis FD, a derivative of A. variabilis 29413 that can grow at 40°C and supports the growth of bacteriophages better than the parent strain does, [66], and Anabaena sp. strain PCC 7120 were maintained on agar-solidified Allen and Arnon (AA) medium, [67], supplemented, when appropriate, with 5 mM NH₄Cl, 10 mM N-tris (hydroxymethyl)methyl-2-aminoethanesulfonic (TES), pH 7.2, 25 to 40 μg/ml neomycin sulfate, or 3 µg/ml leach of spectinomycin and streptomycin. Strains were grown photo-autotrophically in liquid cultures in an eightfold dilution of AA medium (AA/8) or in AA/8 supplemented with 5 mM NH₄Cl and 10 mM TES, pH 7.2, at 30°C, with illumination at 50 to 80 microeinsteins/m².s. Antibiotics were included as follows (when required): neomycin (3 to 5 µg/ml) and spectinomycin (0.3 µg/ml for liquid). For experiments to measure the growth of strains with fructose, cells were harvested at an optical density at 720 nm (OD_{720}) of 0.2, washed once in AA/8, and resuspended in AA/8 with the indicated concentrations of fructose at an OD_{720} of 0.02.

The studies on prokaryotic microalgae have mainly focused on three types involving Synechocystis sp., Spirulina platensis, and Anabaena variabilis. Actually, there are advantages to utilizing both eukaryotic and prokaryotic microalgae for H₂ production. On the one hand, most hydrogen-producing cyanobacteria exhibit a simple cell structure. Pigments and enzymes involved in photosynthesis are directly distributed in the chromatin. This makes prokaryotic microalgae more sensitive to H₂ production reactions under anaerobic conditions, [68]. On the other hand, numerous chloroplasts were distributed in eukaryotic microalgae, and the site of photosynthetic H₂ production was mainly concentrated on the thylakoid membrane chloroplasts, which meant that eukaryotic microalgae had a large H₂ production rate under hydrogenproducing conditions, [69].

2.3 The Electron Transfer Process of Prokaryotic Microalgae

During the process of cyclic photosynthetic electron transport, electrons pass through a structure that contains cytochrome, resulting in the generation of a gradient of protons. This proton gradient is subsequently utilized by ATP synthase to produce ATP, which is essential for the processes of N_2 fixation and H_2 synthesis. Externally derived organic matter is

processed through metabolic pathways of organic carbon such as the glycolysis (EMP) and the tricarboxylic acid cycle (TCA) to yield protons, electrons, and CO_2 . Electrons flow in a counter-current manner to ferredoxin (Fd), which in turn transfers electrons to nitrogenase to produce H $^+$ and e $^-$. Finally, electrons are transferred to nitrogenase, which results in ammonia (NH₃) and H₂ formation. In essence, to obtain substantial amounts of H₂, the quantity of N₂ and ammonium (NH₄ $^+$) should be restricted, [70]. Additionally, prokaryotic algae accumulate excess protons and electrons, which are converted to H₂ and released.

2.4 Production of Hydrogen

Prokaryotic Algae cells were transferred in a 1 liter Pyrex Roux-type bottle photobioreactor (PBR) (5 cm light path) with a flat cross section (12 x 5 cm width), a flat bottom, and five ports. The PBR was fitted with three probes for the continuous monitoring of pH, redox potential and dissolved O₂ concentration. The main port at the top (2.5 cm I.D.) was sealed with a stopper equipped with tygon tubes that connected the PBR headspace to the gas-to-liquid conversion bottle. The illumination level of a photon-flux density (PFD) of 160 µmol photons/m².s was provided by cool white fluorescent lamps (Dulux L, 55W/840, Osram, Italy). Mixing of the culture was provided by a rotating impeller driven magnetically from the bottom of the reactor, [71].

2.5 Analytical Methods

The PFD value at the culture surface was measured with quantum radio-photometer (LI-250A, Li-Cor Biosciences, Nebraska, USA) equipped with a cosinecorrected sensor. Culture parameters, such as pH, temperature, redox potential, dissolved O_2 concentration and H₂ gas production were monitored as described elsewhere, [71]. Culture's temperature was maintained at 26.0 ± 0.2 °C. The quantity of gas produced was monitored continuously according to Kosourov et al. [72]. Samples of the gas mixture produced were analyzed with a thermal conductivity detector (TCD) equipped gas chromatograph (model Clarus 500, PerkinElmer, Waltham, Massachusetts), with an at the following operating conditions: isothermal program at 35°C for 2.25 min; N₂ carrier gas flow 30 ml/min; injection temperature 150°C; detector temperature 150°C. A packed column (model Carbosieve S-II Spherical Carbon, Supelco) was used. Calibration of H₂ was performed by injecting known amounts of pure gas.

In vitro hydrogenase activity was determined as described in Hemschemeier et al. [73]. The reaction mixture of this assay contains Triton-X 100 (a mild detergent which lyses the algal cells), methyl viologen

ISSN: 2534-8825 5 Volume 9, 2025

as an artificial electron donor and sodium dithionite as an efficient reductant for methyl viologen. The hydrogenase activity of whole cells is defined as nmoles H₂ produced per hour and per µg chlorophyll.

2.6 Direct Photolysis Mechanism

One of the biological processes for H_2 production is direct photolysis. Within this pathway, H_2 will be generated from H_2O via two reactions, [74], [75], [76]. Splitting of H_2O molecules to H_2 protons, O_2 , and electrons with the aid of Photosystem II (PS II) proteins as following equation (Eq. 1):

$$2H_2O \rightarrow 4H^+ + O_2 + 4e^-$$
 (1)

Formation of H₂ from the combination of H₂ protons with electrons, which will be catalyzed by the ironhydrogenase enzymes found in the microalgae as following equation (Eq. 2):

$$2H^+ + 2e^- \rightarrow H_2$$
 (2)

One of the main challenges via direct photolysis is the sensitivity of the iron-hydrogenase enzymes to O_2 , a product of the photosynthesis process. To mitigate O_2 sensitivity, the algae growth medium could be purged with N_2 . The performance of the enzymes will be hampered, and H_2 production will drop over time, [77]. Therefore, suppressing O_2 and creating an anaerobic environment is necessary. Anaerobiosis is applicable mostly via sulfur deprivation, [78], and through nutrients that control photosynthetic activity, [79].

The supercritical water gasification (SCWG) method is reported to be the most efficient method for H₂ production. However, tar formation and the requirement for the H₂ purification step hinder their widespread application, [80]. Therefore, direct photolysis, as biological pathways that occur at ambient temperature and pressure, can be assumed as an alternative method to alleviate the challenges of the SCWG method. Nevertheless, one of the significant obstacles via direct photolysis is the presence of O₂, which hinders H₂ production, [6].

Comparisons of the general advantages and disadvantages of H₂ production by direct photolysis and indirect biophotolysis processes from algal microbes are summarized in Table 1.

* Table 1 can be found in the Appendix section.

2.7 Indirect Biophotolysis Mechanism

Indirect biophotolysis is another route in biological pathway. Solar energy can be converted from H₂O to H₂ as chemical energy through different steps with the aid of microalgae photosynthesis, [81]. Different steps can be summarized as, [82]: Production of biomass by

photosynthesis, Biomass growth, Production of 4 moles of H₂ per mol of glucose that stored in the algal cell through dark fermentation process, [83], along with the 2 moles of acetate and conversion of acetate to H₂.

The procedure consists of three reactions, two light dependent and one independent of light as described below, [84], [85].

First stage- aerobic equation as shown in Eq. 3:

$$6H_2O + 6CO_2 + light \rightarrow C_6H_{12}O_6 + 6O_2$$
 (3)

Second stage-anaerobic equations determined as following in Eq. 4 and Eq. 5:

$$C_6H_{12}O_6 + 2H_2O \rightarrow 4H_2 + 2CH_3COOH + 2CO_2$$
 (4)

$$2CH_3COOH + 4H_2O + light \rightarrow 8H_2 + 4CO_2 \qquad (5)$$

The overall reaction equation shown as following Eq. 6:

$$12H_2O + light \rightarrow 12H_2 + 6O_2$$
 (6)

Another alternative method to overcome the disadvantages of direct biophotolysis, the existence of O₂, is the indirect biophotolysis method. To evaluate H₂ production from microalgae Scenedesmus sp. via indirect biophotolysis process, a transient mathematical was conducted inside the well-stirred photobioreactor within the Vargas et al. [86], work in pilot scale. The process is comprised of two different stages: the aerobic stage, where the algae growth section is, and the anaerobic one, where H₂ production takes place due to the lack of O₂ by cutting off the air supply. Differential mass balance equations were considered to determine all mass fraction distributions for specious and system temperature. Later, to minimize the computational time, all sets of equations were discretized using a three-dimensional cell-centered finite volume scheme, vibrationally excited molecules (VEM), where the required largest time through the simulation process was reported as less than 10 min. The proposed model consists of four subsystems (i.e., reservoir, bundle of transparent tubes, pump, and opaque tubes) where algae growth occurs inside the transparent tubes due to light radiation. Runge-Kutta-Fehlberg method was used for numerical solutions by coding in Fortran software. The model was validated with experimental data for the growth step. However, more validation is required, especially during the H₂ production step. Based on the results, as expected, the algae mass fraction within the aerobic section (10 days) will increase till the introduction of the anaerobic section, where it drops by 50% within later 8 days. On the other hand, for the H₂ mass fraction, no significant H₂ generation was observed at the initial stage.

Nevertheless, after 10 days, H_2 production begins, [86]. It is worthwhile to mention the highest mass fraction of H_2 can reach 8×10^{-7} , which is very low.

Table 1 provides a comparison of the general advantages and disadvantages of direct photolysis and indirect biophotolysis processes in H₂ production from algal microbes.

3 Results and Discussions 3.1 Effect of C/N Ratio

To measure the H₂ production efficiencies of the prokaryotic algae *Synechocystis sp.*, *Spirulina platensis* and *Anabaena variabilis*, different C/N ratios (0.1, 0.2, 0.4, 0.8 and 1.0) were applied under direct photolysis process, and the efficiency results are given in Table 2.

* Table 2 can be found in the Appendix section.

In *Synechocystis sp.*, prokaryotic algae subjected to direct photolysis, H₂ production efficiencies ranging from 51.29% to 87.80% were measured at C/N ratios increasing from 0.2 to 1.0 (Table 2). When the C/N ratio increased from 0.2 to 1.0, H₂ production efficiencies decreased from 87.80% to 51.29% (Table 2). Maximum 99.40% H₂ production efficiency was found at 0.1 C/N ratio, with *Synechocystis sp.*, prokaryotic algae under direct photolysis process (Table 2).

In *Spirulina platensis* prokaryotic algae that underwent direct photolysis, H₂ production efficiencies varied between 55.47% and 86.15% when C/N ratios varied between 0.2 and 1.0 (Table 2). It was observed that when the C/N ratio increased from 0.2 to 1.0, H₂ production efficiencies decreased from 86.15% to 55.47% (Table 2). Maximum 99.54% H₂ production efficiency was obtained at 0.1 C/N ratio, with *Spirulina platensis* prokaryotic algae under direct photolysis process (Table 2).

H₂ production efficiencies in the range of 61.20%-93.46% were measured at C/N ratios varying from 0.2 to 1.0 in the prokaryotic alga *Anabaena variabilis* under direct photolysis process (Table 2). With the increase in C/N ratios from 0.2 to 1.0, H₂ production efficiencies decreased from 93.46% to 61.20% (Table 2). 99.44% maximum H₂ production yield was found at 0.1 C/N ratio with *Anabaena variabilis* prokaryotic algae under direct photolysis process (Table 2).

In order to measure the H_2 production efficiency of prokaryotic algae *Synechocystis sp., Spirulina platensis* and *Anabaena variabilis*, different C/N ratios (0.1, 0.2, 0.4, 0.8 and 1.0) were applied under indirect biophotolysis process and the results are summarized in Table 3.

* Table 3 can be found in the Appendix section.

In *Synechocystis sp.* prokaryotic algae, H₂ production efficiencies in the C/N ratio range from 0.2 to 1.0 under indirect biophotolysis process vary between 40.17% and 75.68% (Table 3). When the C/N ratio increased from 0.2 to 1.0, H₂ production efficiencies gradually decreased to 40.17% (Table 3). Maximum 89.47% H₂ production yield was measured at C/N ratio=0.1, with *Synechocystis sp.*, prokaryotic algae under indirect biophotolysis process (Table 3).

Using the prokaryotic algae *Spirulina platensis*, H₂ production efficiencies ranging from 44.36% to 75.04% were measured under indirect biophotolysis at C/N ratios ranging from C/N=0.2 to C/N=1.0 (Table 3). As the C/N ratio increased from 0.2 to 1.0, H₂ production efficiencies gradually decreased to 44.36% (Table 3). Maximum 89.63% H₂ production efficiency was observed at C/N =0.1 ratio, with *Spirulina platensis* prokaryotic algae under indirect biophotolysis process (Table 3).

H₂ production efficiencies ranging from 50.08% to 82.33% were measured under the indirect biophotolysis process at C/N ratios between C/N=0.2 and C/N=1.0 in the prokaryotic alga *Anabaena variabilis* (Table 3). As the C/N ratio increased from 0.2 to 1.0, H₂ production efficiencies gradually decreased to 50.08% (Table 3). 88.20% maximum C/N=0.1 ratio, with *Anabaena variabilis* prokaryotic algae under indirect biophotolysis process (Table 3).

Biophotolysis is the action of light on biological systems that results in dissociation of water into molecular H_2 and O_2 , $H_2O \rightarrow H_2 + \frac{1}{2}O$. Direct biophotolysis refers to sustained H_2 evolution under light irradiation. The light energy is absorbed by the pigments at photosynthetic system II (PSII), or photosynthetic system I (PSI) or both, which raises the energy level of electrons from water oxidation when they are transferred from PSII via PSI to ferredoxin. A portion of the light energy is directly stored in H_2 gas.

3.2 Effect of pH

In order to observe the H₂ production efficiencies in the prokaryotic algae *Synechocystis sp.*, *Spirulina platensis* and *Anabaena variabilis*, different pH values (6.5, 7.0, 7.5, 8.0, 8.5 and 9.0) were run under direct photolysis process and the results obtained are detailed in Table 4.

* Table 4 can be found in the Appendix section.

For *Synechocystis sp.*, prokaryotic algae under direct photolysis process, H₂ production efficiencies are in the range of 59.74%-85.47% in the range of pH=6.5 to pH=9.0 (Table 4). When pH=8.0 increased to pH=9.0, H₂ production efficiencies decreased from 85.47% to 59.74% (Table 4). Maximum 99.40% H₂ production efficiency was measured at pH=7.5, with *Synechocystis*

sp., prokaryotic algae under direct photolysis process (Table 4).

In *Spirulina platensis* prokaryotic algae, under direct photolysis process, H₂ production efficiencies in the pH = 6.5 - pH = 8.5 range vary between 49.51% and 91.87% (Table 4). When pH=8.5 decreased to pH=6.5, H₂ production efficiencies decreased from 91.87% to 49.51% (Table 4). 99.54% maximum H₂ production yield was obtained for pH=9.0 with *Spirulina platensis* prokaryotic algae under direct photolysis process (Table 4).

H₂ production efficiencies ranging from 65.57% to 97.09% were measured under direct photolysis in the prokaryotic algae *Anabaena variabilis* at pH values ranging from pH=6.5 to pH=9.0 (Table 4). It was observed that as pH=8.0 increased to pH=9.0, H₂ production efficiencies decreased from 97.09% to 65.57% (Table 4). Maximum 99.44% H₂ production yield was found at pH=7.5 with *Anabaena variabilis* prokaryotic algae under direct photolysis process (Table 4).

In order to determine the H₂ production activities in prokaryotic algae *Synechocystis sp., Spirulina platensis* and *Anabaena variabilis*, indirect biophotolysis was applied at different pH values (6.5, 7.0, 7.5, 8.0, 8.5 and 9.0) and the results are shown in Table 5.

* Table 5 can be found in the Appendix section.

For *Synechocystis sp.*, one of the prokaryotic algae under indirect biophotolysis process, H₂ production efficiencies vary between 42.58% and 76.35% in the range of pH=6.5 and pH=9.0 (Table 5). Between pH=8.0 and pH=9.0, H₂ production efficiencies decreased from 76.35% to 42.58% (Table 5). Maximum 89.47% H₂ production yield was found at pH=7.5, with *Synechocystis sp.*, prokaryotic algae under indirect biophotolysis process (Table 5).

In *Spirulina platensis* prokaryotic algae subjected to indirect biophotolysis, H₂ production efficiencies were measured between 40.37% and 80.75% when pH changed between pH = 6.5 and pH = 9.0 (Table 5). When the pH increased from pH=6.5 to pH=8.5, the H₂ production efficiency was observed to be 80.75% (Table 5). Maximum 89.63% H₂ production efficiency was obtained at pH=9.0, with *Spirulina platensis* prokaryotic algae under indirect biophotolysis process (Table 5).

H₂ production efficiencies ranging from 56.46% to 75.07% were recorded under indirect biophotolysis process in the prokaryotic alga *Anabaena variabilis* at pH values between pH=6.5 and pH=9.0. (Table 5). When pH increased from pH=8.0 to pH=9.0, H₂ production efficiencies decreased from 75.07% to 56.46% (Table 5). Maximum 88.20% H₂ production yield was measured at pH=7.5, with *Anabaena*

variabilis prokaryotic algae under indirect biophotolysis process (Table 5).

The pH is the most vital parameter that affects the growth rate and determines the H₂ yield. However, the optimal pH value varies depending on the algae species. It has been documented that most algae species grow at pH between 4.0 and 7.0, [87], [88]. A pH value lower than 4.0 provides excess protons that affect cellular activities by protonating essential enzymes' active side. This, in turn, lowers the kinetic activities of the cellular enzymes, which might lead to algae death. A pH above 7.0 directly affects the metabolism pathways, leading to cell death. A higher pH value than 7.0 provides a higher concentration of OH- ions, providing a hostile environment for the undesirable oxidation reaction. Zhang et al. [87] found that when algae are grown in CSTR at a pH range between 4.0 and 7.0, the optimal pH value is 5.5. Zhang et al. [87] discussed the highest H₂ production attained merely when metabolic reactions followed an ethanol fermentation type that occurred at a pH close to 4.5.

3.3 Effect of Illumination Intensity

In order to compare the H_2 production efficiencies in the prokaryotic algae *Synechocystis sp.*, *Spirulina platensis* and *Anabaena variabilis*, different illumination intensities (120, 168, 180, 216 and 250 μ mol/m².s) were examined under direct photolysis process and the results including the H_2 production efficiencies obtained are given in Table 6.

* Table 6 can be found in the Appendix section.

Synechocystis sp. from prokaryotic algae. Under the direct photolysis process, H₂ production efficiencies ranging from 65.48% to 99.40% were measured in the range of illumination intensities of 120 to 250 μmol/m².s, respectively. (Table 6). It was noted that when illumination intensity values varied between 120-250 μmol/m².s, H₂ production efficiency decreased from 87.10% to 65.48% (Table 6). Maximum 99.40% H₂ production efficiency was found at 168 μmol/m².s illumination intensity, with Synechocystis sp., prokaryotic algae under direct photolysis process (Table 6).

Under the direct photolysis process, H₂ production efficiencies ranging from 75.50% to 99.54% were observed between *Spirulina Platensis* prokaryotic algae and illumination intensities of 120 - 250 µmol/m².s. (Table 6). When the illumination intensity value increased from 216 to 250 µmol/m².s, H² production efficiencies decreased from 96.12% to 88.05% (Table 6). Maximum 99.54% H₂ production yield was obtained for 180 mol/m².s illumination intensity with *Spirulina platensis* prokaryotic algae under direct photolysis process (Table 6).

Under the direct photolysis process with *Anabaena variabilis* prokaryotic algae, H₂ production efficiencies ranging from 61.37% to 99.44% were measured for illumination intensities from 120 to 250 µmol/m².s (Table 6). It was observed that H₂ production efficiencies increased from 61.37% to 94.51% as illumination intensity values increased from 120 to 250 µmol/m².s (Table 6). 99.44% maximum H₂ production yield was found for 216 mol/m².s illumination intensity with *Anabaena variabilis* prokaryotic algae under direct photolysis process (Table 6).

In order to compare the H₂ production efficiencies in the prokaryotic algae *Synechocystis sp.*, *Spirulinaplatensis* and *Anabaena variabilis*, different illumination intensities (120, 168, 180, 216 and 250 µmol/m².s) were examined by applying indirect biophotolysis and the results including the obtained H₂ production efficiencies are given in Table 7.

* Table 7 can be found in the Appendix section.

Synechocystis sp. In prokaryotic algae, under the indirect biophotolysis process, illumination intensity values vary between 120 and 250 μ mol/m².s, while H₂ production efficiencies vary between 54.37% and 89.47%. (Table 7). While illumination intensity values varied between 180 and 250 μ mol/m².s, H₂ production efficiency decreased from 76.88% to 54.37%. (Table 7). Maximum 89.47% H₂ production efficiency was obtained at 168 μ mol/m².s illumination intensity with Synechocystis sp., prokaryotic algae under indirect biophotolysis process (Table 7).

Under the indirect biophotolysis process, H_2 production efficiencies of 64.39% and 89.63% were measured between *Spirulina platensis* prokaryotic algae and illumination intensities of 120 - 250 μ mol/m².s. (Table 7). When illumination intensity values increased from 180 to 250 μ mol/m².s, H_2 production efficiency decreased from 87.42% to 77.09% (Table 7). Maximum 89.63% H_2 production yield was found at 168 μ mol/m².s illumination intensity with *Spirulina platensis* prokaryotic algae under indirect biophotolysis process (Table 7).

By indirect biophotolysis with the prokaryotic algae *Anabaena variabilis*, H₂ production efficiencies ranging from 50.26% to 88.20% were observed for illumination intensities between 120 and 250 μmol/m².s (Table 6). H₂ production efficiencies increasing from 50.26% to 72.06% were seen when the illumination intensity values increased from 120 μmol/m².s to 180 μmol/m².s (Table 7). Maximum 88.20% H₂ production efficiency was measured at 216 μmol/m².s illumination intensity with *Anabaena variabilis* prokart-yotic algae under indirect biophotolysis process (Table 7).

Under limited light-intensity conditions, microalgae photosynthesis achieves a photon conversion efficiency

of about 80%, [89]. This indirect biophotolysis, therefore, consists of two stages in series: photosynthesis for carbohydrate accumulation, and dark fermentation of the carbon reserve for H₂ production. In this way, the O2 and H2 evolutions are temporally and/or spatially separated, [89]. This separation not only avoids the incompatibility of O2 and H₂ evolution (e.g., enzyme deactivation and the explosive property of the gas mixture), but also makes H₂ purification relatively easy because CO₂ can be conveniently removed from the H₂/CO₂ mixture, [90]. It is proposed a process of H₂ production via indirect biophotolysis by using natural light/dark cycles, [90]. According to this proposal, CO₂ is reduced to starch by photosynthesis in daytime, and the starch thus formed, is fermented to H₂ gas and organic acids under anaerobic conditions during nighttime. The organic acids and other fermentative products can be further used for H₂ evolution by photosynthetic bacteria under light irradiation.

3.4 Effect of Incubation Temperature

In order to comparatively define the H₂ production efficiencies of the prokaryotic algae *Synechocystis sp., Spirulina platensis* and *Anabaena variabilis*, different incubation temperatures (20, 25, 30, 35 and 40°C) were applied under direct photolysis process, and the results of H₂ production efficiencies at these different inhibition temperatures are summarized in Table 8.

* Table 8 can be found in the Appendix section.

Synechocystis sp. from prokaryotic algae under the direct photolysis process, H₂ production efficiencies ranging from 71.22% to 99.40% were obtained at incubation temperatures between 20°C and 40°C. (Table 8). It was observed that H₂ production efficiency decreased from 84.34% to 74.09% as the incubation temperature increased from 35°C to 40°C (Table 8). Maximum 99.40% H₂ production efficiency was measured at 30°C incubation temperature, with Synechocystis sp., prokaryotic algae under direct photolysis process (Table 8).

Under the direct photolysis process with the prokaryotic algae *Spirulina platensis*, it was measured that H₂ production efficiencies increased from 59.68% to 99.54% in response to the increase in incubation temperatures from 20°C to 40°C (Table 8). H₂ production efficiencies increased from 59.68% to 94.32% when incubation temperatures increased from 20°C to 30°C (Table 8). Maximum 99.54% H₂ production yield was found at 35°C incubation temperature, with *Spirulina platensis*, prokaryotic algae under direct photolysis process (Table 8).

H₂ production efficiency ranging from 77.82% to 99.44% was measured with *Anabaena variabilis*

prokaryotic algae under direct photolysis process at incubation temperatures ranging from 20°C to 40°C. (Table 8). Incubation temperatures increased from 35°C to 40°C when H₂ production efficiencies dropped from 95.08% to 79.89% (Table 8). Maximum 99.44% H₂ production yield was measured for 30°C incubation temperature with *Anabaena variabilis* prokaryotic algae under direct photolysis process (Table 8).

In order to compare the H₂ production efficiencies of the prokaryotic algae *Synechocystis sp.*, *Spirulinaplatensis* and *Anabaena variabilis*, different incubation temperatures (20, 25, 30, 35 and 40°C) were applied under the indirect biophotolysis process, and the results of the H₂ production efficiencies at these different inhibition temperatures are collected in Table 9.

* Table 9 can be found in the Appendix section.

Synechocystis sp. with the indirect biophotolysis process, H₂ production efficiencies ranging from 60.01% to 89.47% were measured from prokaryotic algae at incubation temperatures between 20°C and 40°C (Table 9). It was noted that when incubation temperatures increased from 35°C to 40°C, H₂ production efficiency decreased from 73.22% to 64.04% (Table 9). Maximum 89.47% H₂ production yield was obtained at 30°C incubation temperature, weith Synechocystis sp., prokaryotic algae under indirect biophotolysis process (Table 9).

Under the indirect biophotolysis process with the prokaryotic alga *Spirulina platensis*, it was measured that H₂ production efficiencies increased from 48.56% to 89.63% in response to increasing incubation temperatures from 20°C to 40°C (Table 9). It was noted that when incubation temperatures increased from 20°C to 30°C, H₂ production efficiencies increased from 48.56% to 83.20% (Table 9). Maximum 89.63% H₂ production efficiency was found at 35°C incubation temperature with *Spirulina platensis* prokaryotic algae under indirect biophotolysis process (Table 9).

H₂ production efficiencies ranging from 68.75% to 88.20% were measured during the indirect biophotolysis process with the prokaryotic algae *Anabaena variabilis* at incubation temperatures ranging from 20°C to 40°C. (Table 9). When incubation temperatures increased from 35°C to 40°C, H₂ production efficiencies decreased from 84.03% to 68.75% (Table 9). Maximum 88.20% H₂ production yield was measured at 30°C incubation temperature with *Anabaena variabilis* prokaryotic algae under indirect biophotolysis process (Table 9).

3.5 Effect of Algae Numbers at H₂ Production Efficiencies

In order to determine the effect of algae numbers on H₂ production efficiency in prokaryotic algae *Synechocystis sp., Spirulina platensis* and *Anabaena variabilis*, the algae numbers under direct photolysis process were examined.

For maximum H_2 production yields with prokaryotic algae, *Synechocystis sp.*, a maximum of 35 EMS/100 ml algae counts were measured under direct photolysis process.

For maximum H₂ production yields with Spirulina platensis prokaryotic algae, a maximum of 88 EMS/100 ml *Spirulina platensis* algae count was measured under direct photolysis process.

To observe the maximum H₂ production efficiency from the prokaryotic algae *Anabaena variabilis*, a maximum of 172 EMS/100 ml Anabaena variabilis algae count was obtained using direct photolysis process.

The effect of algae numbers on H₂ production efficiency in prokaryotic algae *Synechocystis sp.*, *Spirulina platensis* and *Anabaena variabilis*, the algae numbers under indirect biophotolysis process were operated.

For maximum H_2 production yields with prokaryotic algae, *Synechocystis sp.*, a maximum of 22 EMS/100 ml algae counts were measured under indirect biophotolysis process.

For maximum H₂ production yields with Spirulina platensis prokaryotic algae, a maximum of 64 EMS/100 ml *Spirulina platensis* algae count was measured under indirect biophotolysis process.

To observe the maximum H₂ production efficiency from the prokaryotic algae *Anabaena variabilis*, a maximum of 151 EMS/100 ml Anabaena variabilis algae count was obtained using indirect biophotolysis process.

Genes such as sufC, petN, pabV, accD, and psaM were involved in photosynthetic hydrogen production in both eukaryotic and prokaryotic microalgae. These genes are mainly responsible for synthesizing subunits or cytochromes related to PSI/PSII and play a role in regulating the electron transport chain during photosynthesis. The regulation can affect the generation of NADPH and ATP, which influences the efficiency of photosynthetic hydrogen production. The different key genes related to photosynthetic H₂ production exist in eukaryotic and prokaryotic microalgae, respectively. In prokaryotic microalgae, the hyp gene synthesizes Fe–S clusters and is related to the maturation of hydrogenases, [90]. In both eukaryotic and prokaryotic algae, Fe-S clusters are crucial components for capturing light energy and participating in electron transfer processes. In prokaryotic microalgae, the key genes encoding hydrogenases are hox gene, [91], and hup gene, [92]. Variations in the expression levels and functions of these genes between eukaryotic and

prokaryotic microalgae can lead to differences in the H₂ production capabilities of different microalgal species. Owing to these genetic differences, the [Fe–Fe] hydrogenase activity in eukaryotic algae is 10–100 times that of the [Ni–Fe] hydrogenase activity in prokaryotic algae, [93].

3.6 Effect of Duration of H₂ Production

In order to measure H₂ production efficiencies using prokaryotic algae *Synechocystis sp., Spirulina platensis* and *Anabaena variabilis*, direct photolysis process were applied at increasing the duration of H₂ production (20, 40, 80, 100 and 120 hours) and the results obtained are given collectively in Table 10.

* Table 10 can be found in the Appendix section.

Synechocystis sp. from prokaryotic algae under the direct photolysis process, H₂ production efficiencies ranging from 65.4% to 99.40% were obtained for duration of H₂ production between 20 and 120 h. (Table 10). When the duration of H₂ productions were increased from 20 h to 80 h, H₂ production efficiencies increased from 65.42% to 88.11% (Table 10). 99.40% maximum H₂ production yield was found for 100 h duration of H₂ production with Synechocystis sp., prokaryotic algae under direct photolysis process (Table 10).

H₂ production efficiencies ranging from 61.44% to 99.54% were obtained for the duration of H₂ production between 20 and 120, respectively, with *Spirulina platensis* prokaryotic algae under the direct photolysis process (Table 10). It was observed that when the duration H₂ productions were increased from 20 h to 80 h, H₂ production efficiencies increased from 61.44% to 91.14% (Table 10). Maximum 99.54% H₂ production yield was found for 100 h duration of H₂ production, with *Spirulina platensis* prokaryotic algae under direct photolysis process (Table 10).

It was noted that under the direct photolysis process with *Anabaena variabilis* prokaryotic algae, H₂ production efficiencies ranged from 66.47% to 99.44% within the duration of H₂ production between 20 and 120 h (Table 10). It was observed that when the duration of H₂ production increased from 80 h to 120 h, H₂ production efficiency decreased from 93.65% to 66.47% (Table 10). 99.44% maximum H₂ production efficiency was observed for 40 h duration of H₂ production with *Anabaena variabilis* prokaryotic algae under direct photolysis process (Table 10).

In order to measure H₂ production efficiencies using prokaryotic algae *Synechocystis sp.*, *Spirulina platensis* and *Anabaena variabilis*, indirect biophotolysis process were applied at increasing the duration of H₂ production (20, 40, 80, 100 and 120 h) and the results obtained are given collectively in Table 11.

* Table 11 can be found in the Appendix section.

Under the indirect biophotolysis process from *Synechocystis sp.*, prokaryotic algae, H₂ production efficiencies ranging from 54.30% to 89.47% were obtained during the duration of H₂ production between 20 and 120 h (Table 11). It was observed that when the duration of H₂ production increased from 20 h to 80 h, H₂ production efficiencies increased from 54.30 to 76.00% (Table 11). Maximum 89.47% H₂ production yield was found at 100 h the duration of H₂ production with *Synechocystis sp.*, prokaryotic algae under indirect biophotolysis process (Table 11).

H₂ production efficiencies ranging from 50.32% to 89.63% were measured with *Spirulina platensis* prokaryotic algae through indirect biophotolysis process for the duration of H₂ production between 20 and 120 h (Table 11). When the duration of H₂ production increased from 20 h to 80 h, H₂ production efficiencies increased from 50.32% to 80.04% (Table 11). Maximum 89.63% H₂ production efficiency was measured at 100 h the duration of H₂ production with Spirulina platensis prokaryotic algae under indirect biophotolysis process (Table 11).

It was noted that H₂ production efficiencies under indirect biophotolysis process with *Anabaena variabilis* prokaryotic algae varied between 55.38% and 88.20% within the duration of H₂ production between 20 and 120 h (Table 11). A decrease in H₂ production efficiencies from 82.51% to 55.38% was observed when the duration of H₂ production increased from 80 h to 120 h (Table 11). Maximum 88.20% H₂ production efficiency was found at 40 h the duration of H₂ production with *Anabaena variabilis* prokaryotic algae under indirect biophotolysis process (Table 11).

3.7 Technical Economic Analysis (TEA)

significant industrial development and Despite tremendous research on H₂ production from biomass feedstock, the process is still not yet on a commercial scale, [20], [94]. Successful H₂ enterprise depends greatly on technological innovation, technical feasibility, economic possibility, governmental policy, and environmental regulations. The financial and technical factors that affect the production cost of H₂ from algae was focused. The main challenges facing any renewable technology for fuels and energy production are the costs associated with process fabrication and operating costs, [20], [94]. Algae utilization for various purposes faces many challenges, such as production cost and environmental impact, [95]. [96]. Several studies estimated the cost of growing algae on different types of biomasses, [96]. The cost calculation varies significantly from one study to another. H₂ production costs from algae depend on

ISSN: 2534-8825 11 Volume 9, 2025

many factors, such as biomass price, algae productivity, wastewater treatment, bioreactor, maintenance, and labor cost, [96].

The process economy is one of the most vital evaluation tools for any process scaling. Perform a concerted economic analysis of the entire system, analysis and calculation of both mass and energy balances are needed, [97]. The simulation data will be used to study the overall technical possibility and provide TEA of the entire process life cycle. The primary goal of TEA is to define and calculate the baseline of capital expenditures (CAPEX) and cost expenditures (OPEX) of the integrated biorefinery. The TEA will be based on a specific and overall mass and energy balance (MEB) calculation for the whole process, from receiving feedstock to the final product's readiness for commercialization. The MEB will provide the foundation to build the first conceptual design with a detailed process: the conceptuy and lower production cost. Other factors that affect the final production cost, such as direct and indirect costs, will be considered. The payback period concerning the bank interest rate will also be calculated.

Artificial intelligence (AI) can aid in optimizing H₂ production from renewable resources in several ways, [96]:

- (I). Data Analysis: Artificial intelligence (AI) algorithms can analyze vast amounts of data from various renewable energy sources, such as solar, wind, and hydroelectric power, to identify patterns and optimize H₂ production processes.
- (II). Predictive Modeling: AI can create predictive models to forecast renewable energy availability and demand, enabling better planning and scheduling of H_2 production activities.
- (III). Process Optimization: AI can optimize the efficiency of H₂ production processes by continuously analyzing and adjusting parameters such as temperature, pressure, and catalyst usage based on real-time data and environmental conditions.
- (IV). Resource Allocation: AI algorithms can optimize the allocation of resources such as water, electricity, and raw materials to maximize H_2 production while minimizing waste and costs.
- (V). Fault Detection and Maintenance: Alpowered systems can detect equipment malfunctions and predict maintenance needs, ensuring continuous operation of H₂ production facilities.
- (VI). Integration with Energy Grid: AI can optimize the integration of H₂ production facilities with the energy grid, balancing supply and demand fluctuations and maximizing the use of renewable energy sources.
- (VII). Overall, AI technologies offer significant potential to improve the efficiency, reliability, and

sustainability of H₂ production from renewable resources.

The demand for green energy is expanding, and it seems that H₂ is the best option that can be produced and stored in large quantities, [94]. H₂ is a promising energy carrier that has various advantages compared to other energy sources. In addition to, H2 is gaining significant attention as a green alternative for transportation, energy sector, and energy storage. The H₂-based energy system consists of four major stages: production, storage, safety, and utilization. Artificial neural networks (ANN) are effectively used in predicting optimal operational parameters for H₂ production from different methods, [94]. The progress done in the application of ANNs in H₂ production technologies to maximize the H₂ productivity and decreasing its cost. The coefficient of determination (R²) and mean squared error (MSE) are used as performance criteria to evaluate the performance of the ANN applied in the different H₂ production methods, [95].

The main merit of using ANNs in H₂ production is the fast data processing in parallel implementations of the ANN model, [96]. ANNs are mostly employed for H₂ production approximations due to their excellent properties of flexibility, self-learning, fault tolerance, nonlinearity, and improved mapping of inputs to outputs, [96].

TEA detailed analysis of the annual cost of $\rm H_2$ production from microalgae was calculated for Operating cost such as, 12,000 \$/year (0.11 \$/kg) of Feedstock costs, 6,000 \$/year (0.06 \$/kg) of Electricity costs, 18,000 \$/year (0.16 \$/kg) of De-watering costs, 24,000 \$/year (0.22 \$/kg) of Human resource costs, 59,000 \$/year (0.53 \$/kg) of Maintenance & washing costs, 1,360,000 \$/year (12.44 \$/kg) of Capital-related charges costs and 1,480,000 \$/year (13.53 \$/kg) of $\rm H_2$ sales costs, respectively.

At Table 12 presents H₂ production costs from various algae-based technologies in comparison with studies in the literature.

* Table 12 can be found in the Appendix section.

The calculation cost of H₂ from algae is a relative cost, not an absolute one. This is due to variations in operating cost (OPEX) and capital investment from one region to another. For example, the OPEX in the USA is more significant than in China due to considerable differences in labor costs. However, we need to establish a minimum acceptable cost of H₂ production. The National Renewable Laboratory (NREL), USA, [98] defined the H₂ selling price as \$13.53/kg to compete with H₂ production from conventional technologies. The NREL cost calculation is based on cycling algae cultivation based on a photobioreactor.

This cost includes the cost of pressure swing adsorption and high-pressure storage. The production cost could be reduced significantly to only \$3.68/kg from the reactor. The cost can be further reduced down to \$0.57/kg by minimizing the production area to 1 m². The CAPEX for H₂ that uses only a flat pond is estimated at \$1.90 million with no compression and storage. The system based on a 300 kg H₂/d stand-alone system would require a \$51k operating cost, [98].

The main cost of H₂ production from algae is directly proportional to two main factors. The first factor is the capital investment of the bioreactor. Several types of reactors exist, such as Photobioreactors, Continuous stirred tank reactors (CSTR), Fixed-bed bioreactors, Membrane bioreactors, multistage bioreactors, and Hybrid bioreactors. Due to the low density of H₂, minimizing the bioreactor's size is essential. This could be achieved by increasing the algae's productivity value and looking for new cheap fabrication materials. Therefore, the bioreactor cost varies significantly based on material types, thus making it hard to estimate the lowest bioreactor cost. The second cost factor is the compression and storage of the H₂ gas. Compression and storage are energyintensive process steps. The photosynthetic efficiency capacity of microalgae is 10% for H₂, resulting in a new cost of \$50/m², [77], [99]. Moreover, the cost of thermal production corresponds to \$15/GJ. In the process of H₂ production, a large amount of wastewater is generated. The wastewater must be treated or disposed of in the local sewage at a cost determined by its chemical oxygen demand (COD). If H2 as fuel replaced 5% of fossil fuel for energy production, a massive amount of wastewater is generated, corresponding to 123-143 trillion liters. This would contribute to 10-20% of the overall production cost, [77], [99].

Biomass (feedstock) used for biofuel production, such as ethanol, butanol, and H₂, contributes significantly to the economic feasibility. In the financial analysis of H₂ production from algae, the minimum purchase price needs to be defined. The sugar derived from biomass is mainly used as the primary feedstock for H₂ production from algae. The minimum prices vary but are within the \$1500–2400/ton, [100]. However, calculating the biomass cost is still problematic for cost estimators. Nevertheless, the agronomic approach is the best to estimate the biomass cost via the production of a sustainable crop. Developing and optimizing biomass to H₂ involves multidisciplinary research efforts spanning introductory chemistry, biology, physics, and engineering. Maximizing the H₂ yield per day, per area, and amount of biomass is the key step toward a sustainable and economically feasible process.

The estimated production cost varies from one technology to another. This is related to the feedstock type, reactor-type gas collection, and compression provisions. The H_2 production cost is calculated in most literature as \$/kg H_2 to benchmark it with another fuel cost. The cost varies between \$2–13/kg H_2 depending on the predefined process boundaries. Amos, [98], presented the minimum cost as low as \$2.04/kg H_2 but without any H_2 collection, storage, and transportation provision. In the same study, the cost can be as high as 13.54/kg H_2 when the H_2 collection storage and transportation are included in the calculation.

The cost estimate for algae-to-hydrogen production provided is relative, not absolute. Variations in cost estimates are common in the literature for most technical economic analyses. To account for these variations, it is important to consider factors such as technological advancements, regional differences, scale of production, and input costs. Sensitivity analyses can also be conducted to assess how changes in key parameters affect the overall cost estimate. This approach helps ensure a more comprehensive understanding and allows stakeholders to make more decisions based informed on their specific circumstances, [98], [101].

3.8 Future Prospects

Microalgae can absorb large amounts of CO₂ from the atmosphere as a carbon source under normal culture conditions, which is a carbon-reducing process. The onset of commercialization for photosynthetic H₂ production from microalgae is initiated by the sulfurdeficient anaerobic photo-culture. However, limitations within this process may affect the life cycle assessment (LCA) process. These drawbacks mainly include the lack of experience in developing enclosed large-scale photobioreactors, the high cost of consumed materials, and the large amount of energy required during the cultivation process, [102]. Furthermore, it is important to analyze the environmental advantages associated with the use of biohydrogen in power generation, alongside the efficacy of photosynthesis H₂ production. Biohydrogen, when utilized as a fuel for power generation, mostly generates water vapor as a byproduct during the combustion process. Consequently, it may be postulated that the carbon emission coefficient associated with the utilization of H₂ is negligible, [103].

By pre-cultivating microalgae in wastewater, economic costs can be reduced, and at the same time, the metabolism of microalgae can remove organic pollutants in wastewater. In addition to, traditional wastewater treatment process requires significant amounts of energy, resulting in the emission of greenhouse gases and worsening the issue of global warming. The utilization of algal water treatment technology is extensively employed in the field of water quality management and tail water treatment owing to its notable benefits in terms of efficacy and safety. The investigation of the mutualistic relationship between

microalgae and bacteria is currently a prominent area of research.

During the first phase of microalgae cultivation in wastewater, a substantial quantity of organic debris might impede the growth of microalgae. Concurrently, the bacteria present in wastewater use this organic matter to proliferate extensively, resulting in the production of CO₂, [104]. Subsequently, the microalgae use solar energy, CO₂ produced by the bacteria, and N₂ and phosphorus in the wastewater to convert into their substances used for growth and reproduction, achieving both enhanced removal of pollutants from the wastewater and biomass energy recovery. Microalgae are autotrophic microorganisms and the O₂ produced by microalgae can be supplied to the bacteria as an electron acceptor, so there is no need for additional electrical aeration, [105]. As the O₂ levels in the co-culture system decrease, the culture will reach an anaerobic state This process guarantees the functioning of hydrogenase within microalgae, resulting in the successful generation of H₂ through the utilization of microalgae, [106], [107], [108]. Through, this production method, not only can energy consumption of electricity and the pro duction costs be reduced, but greenhouse gas emissions can also be reduced, and clean energy H₂ can be produced.

4 Conclusions

Prokaryotic Algae is a particularly promising microbe that has the potential to produce other fuels and chemicals. Also, algae can benefit greenhouse gas assimilation, water desalination, and other purposes. By understanding the various technologies and techniques involved in biohydrogen production from algae, researchers can strategically use algae for H₂ production while utilizing it for other high-value products.

The studies on prokaryotic microalgae have mainly focused on three types involving *Synechocystis sp.*, *Spirulina platensis* and *Anabaena variabilis*. There are advantages to utilizing both eukaryotic and prokaryotic microalgae for H₂ production. The most hydrogen-producing cyanobacteria exhibit a simple cell structure. Pigments and enzymes involved in photosynthesis are directly distributed in the chromatin. These prokaryotic microalgae especially, more sensitive to H₂ production reactions under anaerobic conditions.

Maximum 99.40% H₂ production efficiency was observed at 0.1 C/N ratio, at pH=7.5, at 168 μmol/m².s illumination intensity, at 30°C incubation temperature, at 35 EMS/100 ml *Synechocystis sp.*, algae counts, after 100 h duration of H₂ production, respectively, with *Synechocystis sp.*, prokaryotic algae under direct photolysis process.

Maximum 99.54% H₂ production yield was measured at 0.1 C/N ratio, at pH=9.0, at 180 mol/m².s,

at 35°C, at 88 EMS/100 ml *Spirulina platensis* algae counts, after 100 h, respectively, with *Spirulina platensis* prokaryotic algae under direct photolysis process.

Maximum 99.44% H₂ production efficiency was obtained at 0.1 C/N ratio, at pH=7.5, at 216 mol/m².s, at 30°C, at 172 EMS/100 ml *Anabaena variabilis* algae counts, after 40 h, respectively, with *Anabaena variabilis* prokaryotic algae under direct photolysis process.

 H_2 production yields in direct photolysis are higher than those in indirect biophotolysis. The responsible enzyme for H_2 evolution is a reversible hydrogenase because it catalyzes the reaction in both directions. The reversible hydrogenase and nitrogenase, however, are sensitive to the O_2 evolved in biophotolysis and promptly deactivated at quite low O_2 partial pressures (< 2%v/v), which results in a transient H_2 evolution. This intrinsic incompatibility of biophotolysis is a major barrier for sustained H_2 evolution. This is because direct energy is converted into H_2 energy in direct photolysis. Energy losses in direct photolysis are negligible compared to indirect biophotolysis. In addition to, H_2 production yields in direct photolysis are much higher.

The responsible enzyme for H_2 evolution is a reversible hydrogenase because it catalyzes the reaction in both directions The reversible hydrogenase and nitrogenase, however, are sensitive to the O_2 evolved in biophotolysis and promptly deactivated at quite low O_2 partial pressures (< 2% v/v), which results in a transient H_2 evolution. This intrinsic incompatibility of biophotolysis is a major barrier for sustained H_2 evolution. This is because direct energy is converted into H_2 energy in direct photolysis. Energy losses in direct photolysis are negligible compared to indirect biophotolysis. As a result, H_2 production yields in direct photolysis are much higher.

The influence of environmental factors on the H₂ production efficiency of prokaryotic microalgae followed the order of C/N ratio > incubation temperature > duration of H₂ production > illumination intensity > pH values. Therefore, significant differences were observed in the environmental factors affecting H₂ production efficiency prokaryotic microalgae. The microalgae-based H₂ production faces two limitations. First, hydrogenase plays a crucial role in the photosynthetic production of H₂ by microalgae. However, the activity of hydrogenase is hindered by O₂, necessitating the maintenance of the reaction system in an anaerobic environment. Second, microalgae-based photosynthetic H₂ production exhibits low energy conversion efficiency owing to the inherent limitations of solar energy fixation and utilization by microalgae during photosynthesis. Generally, only a small fraction of the absorbed light energy is converted into chemical

energy. However, maintaining an anaerobic environment and improving light conversion efficiency are crucial for optimizing environmental conditions for effective H₂ production.

It is observations that slr0388 is involved in both phototactic motility and natural transformation provide further evidence that these two processes are intrinsically linked in *Synechocystis sp.* strain PCC 6803. Apart from the Tfp genetic complement, the regulation of phototaxis and natural transformation is likely to involve other common genes that indirectly influence the biogenesis of the Tfp apparatus, as observed with slr0388 in the present study. As a result, the identification of other factors specific only to the regulation of natural transformation should facilitate the elucidation of pathways that distinguish this process from phototactic motility.

The photoautotrophic strain Anabaena sp. strain PCC 7120 to use fructose when growing in the light, suggest that strains that are naturally capable of sugar transport and utilization have evolved mechanisms that allow them both to use sugars efficiently and to overcome sugar toxicity. These are of course likely to be metabolically linked processes.

Per contra the heterotrophic growth requires the addition of glucose which is likely to be costly at large scale. Therefore, it will be important to consider potentially much cheaper sources (e.g., wastewater from sugar factories, and paper mills, baker's yeast and brewery). Yet, an important advantage of the O₂ consumption through respiration of organic substrates is represented by the purity of the H₂ produced (close to 98%), which strongly reduced the investment cost for H₂ purification, which can account for up to 50% of total cost.

The key advantage of using ANNs in H₂ generation is their ability to rapidly process data in parallel implementations of the ANN model. ANNs are widely preferred for H₂ generation approaches due to their excellent properties, such as flexibility, self-learning, fault tolerance, non-linearity, and improved mapping of inputs to outputs.

Acknowledgement:

Experimental analyzes in this study were performed at the Laboratories of the Canada Research Center, Ottawa, Canada. The authors would like to thank this body for providing financial support.

References:

[1] G. Torzillo A. Scoma, C. Faraloni, A. Ena, U. Johanningmeier, Increased Hydrogen Photoproduction by Means of a Sulfur Deprived

- Chlamydomonas reinhardtii D1 Protein Mutant, *International Journal of Hydrogen Energy*, Vol.34, 2009, pp. 4529-4536.
- [2] A. Melis, Photosynthesis-to-fuels: from Sunlight to Hydrogen, Isoprene, and Botryococcene Production, *Energy and Environmental Science*, Vol. 5, 2012, pp. 5531-5539.
- [3] G. Torzillo, A. Scoma, C. Faraloni, L. Giannelli, Advances in the Biotechnology of Hydrogen Production with the Microalga Chlamydomonas reinhardtii, *Critical Reviews in Biotechnology*, Vol.35, 2015, pp. 485-496.
- [4] E. Touloupakis, A.M. Silva Benavides, B. Cicchi, G. Torzillo, Growth and Hydrogen Production of Outdoor Cultures of Synechocystis PCC 6803, *Algal Research*, Vol.16, 2016, pp. 78-85.
- [5] P.S. Krishna, S. Styring, F. Mamedov, Photosystem Ratio Imbalance Promotes Direct Sustainable H₂ Production in Chlamydomonas reinhardtii, *Green Chemistry*, Vol.21, 2019, pp. 4683-4690.
- [6] S. Mona, S.S. Kumar, V. Kumar, K. Parveen, N. Saini, B. Deepak, A. Pugazhendhi, Green Technology for Sustainable Biohydrogen Production (Waste to Energy): A Review, Science of the Total Environment, Vol.728, 2020, 138481.
- [7] P.D. Parakh, S. Nanda, J.A. Kozinski, Eco-friendly Transformation of Waste Biomass to Biofuels, *Current Biochemical Engineering*, Vol.6, No.2, 2020, pp. 120-134.
- [8] T. Ibrahim, J. Faraj, H. El Hage, K. Chahine, M. Mortazavi, M. Khaled, Theoretical Parametric Study of Photovoltaic Cooling by Water—Energy Enhancement and Environmental-Economic Insights, *International Journal of Thermofluids*, Vol.24, 2024, 100988.
- [9] R. Murr, J. Faraj, H. El Hage, M. Khaled, Renewable Energy as an Auxiliary to Heat Pumps: Performance Evaluation of Hybrid Solar-Geothermal-Systems, *International Journal of Thermofluids*, Vol.24, 2024, 100922.
- [10] S. Ladanai, J. Vinterback, Global Potential of Sustainable Biomass for Energy, in: SLU, Institutionen f'or energi och teknik Swedish University of Agricultural Sciences, Department of Energy and Technology, Report 013, ISSN 1654-9406, Uppsala, Sweden, 2009, pp. 1-32.
- [11] S. Bhushan, A. Kalra, H. Simsek, G. Kumar, S.K. Prajapati, Current Trends and Prospects in Microalgae-based Bioenergy Production, *Journal* of Environmental Chemical Engineering, Vol.8, No.5, 2020, 104025.
- [12] M. Rezaei, M. Sameti, F. Nasiri, Design Optimization for an Integrated Tri-Generation of Heat, Electricity, and Hydrogen Powered by

- Biomass in Cold Climates, *International Journal of Thermofluids*, Vol.22, 2024, 100618.
- [13] C. Koyunoglu, Biofuel Production Utilizing Tenebrio Molitor: A Sustainable Approach for Organic Waste Management, *International Journal of Thermofluids*, Vol.22, 2024, 100603.
- [14] H. Rezk, A. Alahmer, A.G. Olabi, E.T. Sayed, Application of Artificial iIntelligence and Redtailed Hawk Optimization for Boosting Biohydrogen Production from Microalgae, *International Journal of Thermofluids*, Vol.24, 2024, 100876.
- [15] P.R. Newswire, Algae Products Market By Type, Source, Form, and Application: Global Opportunity Analysis and Industry Forecast, 2018 - 2025, NY- Reportlinker, 2018.
- [16] K. Bolatkhan, B.D. Kossalbayev, B.K. Zayadan, T. Tomo, T.N. Veziroglu, S.I. Allakhverdiev, Hydrogen Production from Phototrophic Microorganisms: Reality and Perspectives, *International Journal of Hydrogen Energy*, Vol.44, No.12, 2019, pp. 5799-5811.
- [17] D. Nagarajan, C.-D. Dong, C.-Y. Chen, D.-J. Lee, J.-S. Chang, Biohydrogen production from microalgae—major bottlenecks and future research perspectives, *Biotechnology Journal*, Vol.16, No.5, 2021, 2000124.
- [18] K.R. Abbasi, M. Shahbaz, J. Zhang, M. Irfan, R. Alvarado, Analyze the Environmental Sustainability Factors of China: The Role of Fossil Fuel Energy and Renewable Energy. *Renewable Energy*, Vol.187, 2022, pp. 390–402.
- [19] N. Akhlaghi, G. Najafpour-Darzi, A Comprehensive Review on Biological Hydrogen Production, *International Journal of Hydrogen Energy*, Vol.45, 2020, pp. 22492–22512.
- [20] M. Velasquez-Jaramillo, J.G. García, O. Vasco-Echeverri, Techno Economic Model to Analyze the Prospects of Hydrogen Production in Colombia, *International Journal of Thermofluids*, Vol.22, 2024, 100597.
- [21] R.N. Gurram, M. Al-Shannag, N.J. Lecher, S.M. Duncan, E.L. Singsaas, M. Alkasrawi, Bioconversion of Paper Mill Sludge to Bioethanol in the Presence of Accelerants or Hydrogen Peroxide Pretreatment, *Bioresource Technology*, Vol.192, 2015, pp. 529-539.
- [22] M. Kumar, A. Olajire Oyedun, A. Kumar, A Review on the Current Status of Various Hydrothermal Technologies on Biomass Feedstock, *Renewable and Sustainable Energy Reviews*, Vol.81, No.2, 2018, pp. 1742-1770.
- [23] M. Tawalbeh, A.S. Rajangam, T. Salameh, A. Al-Othman, M. Alkasrawi, Characterization of Paper Mill Sludge as a Renewable Feedstock for Sustainable Hydrogen and Biofuels Production,

- *International Journal of Hydrogen Energy*, Vol.46, No.6, 2021, pp. 4761-4775.
- [24] S. Nanda, J. Mohammad, S.N. Reddy, J.A. Kozinski, A.K. Dalai, Pathways of Lignocellulosic Biomass Conversion to Renewable Fuels, *Biomass Conversion and Biorefinery*, Vol.4, No.2, 2014, pp. 157-191.
- [25] J.A. Okolie, E.I. Epelle, S. Nanda, D. Castello, A.K. Dalai, J.A. Kozinski, Modeling and Process Optimization of Hydrothermal Gasification for Hydrogen Production: A Comprehensive Review, *The Journal of Supercritical Fluids*, Vol.173, 2021, 105199.
- [26] P.C. Hallenbeck M. Abo-Hashesh, D. Ghosh, Strategies for Improving Biological Hydrogen Production, *Bioresource Technology*, Vol.110, 2012, pp. 1-9.
- [27] M. Siebert, G. Torzillo, *Microalgal Hydrogen Production: Achievements and Perspectives*, Cambridge: The Royal Society of Chemistry, Comprehensive Series in Photochemical & Photobiological Sciences, ECCC Environmental eBooks 1968-2022, 2018, pp. 1-496.
- [28] M.L. Ghirardi, P.W. King, M.C. Posewitz, P.C. Maness, A. Fedorov, K. Kim, J. Cohen, K. Schulten, M. Seibert, Approaches to Developing Biological H2-Photoproducing Organisms and Processes, *Biochemical Society Transactions*, Vol.33, 2005, pp. 70-72.
- [29] E.R. Eivazova, S.A. Markov, Conformational Regulation of the Hydrogenase Gene Expression in Green Alga Chlamydomonas reinhardtii, *International Journal of Hydrogen Energy*, Vol.37, 2012, pp. 17788-17793.
- [30] K.D. Swanson, M.W. Ratzloff, D.W. Mulder, J.H. Artz, S. Ghose, A. Hoffman, S. White, O.A. Zadvornyy, J.B. Broderick, B. Bothner, P.W. King, J.W. Peters, [FeFe]-Hydrogenase Oxygen Inactivation is Initiated at the H Cluster 2Fe Subcluster, Journal of the American Chemical Society, Vol.137, No.5, 2015, pp. 1809–1816.
- [31] T. Heidorn, D. Camsund, H.-H. Huang, P. Lindberg, P. Oliveira, K. Stensjö, P. Lindblad, Chapter Twenty-Four Synthetic Biology in Cyanobacteria: Engineering and Analyzing Novel Functions, *Methods in Enzymology*, Vol.497, 2011, pp. 539-579.
- [32] G. Dong, S.S. Golden, How a Cyanobacterium Tells Time, *Current Opinion in Microbiology*, Vol.11, No.6, 2008, pp. 541–546.
- [33] Y. Nakamura, T. Kaneko, M. Hirosawa, N. Miyajima, S. Tabata, CyanoBase, a www Database Containing the Complete Nucleotide Sequence of the Genome of Synechocystis PCC6803, *Nucleic Acids Research*, Vol.26, 1998, pp. 63–67.

- [34] K. Nakasugi, C.J. Svenson, B.A. Neilan, The Competence gene, comF, from Synechocystis sp. Strain PCC6803 is Involved Innatural Transformation, Phototactic Motility and Piliation, *Microbiology*, Vol.152, No.12, 2006, pp. 3623–3631
- [35] S.L. Anderson, L. McIntosh. 1991. Light-activated Heterotrophic Growth of the Cyanobacterium Synechocystis sp. Strain PCC 6803: a Blue Light-requiring Process, *Journal of Bacteriology*, Vol.173, 1991, pp.2761–2767.
- [36] P.-E. Pinchart, P. Marter, H. Brinkmann, Y. Quilichini, M. Mysara, J. Petersen, V. Pasqualini, F. Mastroleo, The Genus Limnospira Contains Only two Species, Both Unable to Produce Microcystins: L. Maxima and L. Platensis, *iScience*, Vol.27, No.9, 2024, 110845.
- [37] T. Fujisawa, R. Narikawa, S. Okamoto, S. Ehira, H. Yoshimura, I. Suzuki, T. Masuda, M. Mochimaru, S. Takaichi, K. Awai, M. Sekine, H. Horikawa, I. Yashiro, S. Omata, H. Takarada, Y. Katano, H. Kosugi, S. Tanikawa, K. Ohmori, N. Sato, M. Ikeuchi, N. Fujita, M. Ohmori, Genomic Structure of an Economically Important Cyanobacterium, Arthrospira (Spirulina) platensis NIES-39, *DNA Research*, Vol.17, No.2, 2010, pp. 85–103.
- [38] T. Xu, S. Qin, Y. Hu, Z. Song, J. Ying, P. Li, W. Dong, F. Zhao, H. Yang, Q. Bao, Whole Genomic DNA Sequencing and Comparative Genomic Analysis of Arthrospira Platensis: High Genome Plasticity and Genetic Diversity, *DNA Research*, Vol.23, No.4, 2016, pp. 325–338.
- [39] L. Böcker, P. Bertsch, D. Wenner, S. Teixeira, J. Bergfreund, S. Eder, P. Fischer, A. Mathys, Effect of Arthrospira platensis Microalgae Protein Purification on Emulsification Mechanism and Efficiency, *Journal of Colloid and Interface Science*, Vol.584, 2021, pp. 344–353.
- [40] R.W. Castenholz, R. Rippka, M. Herdman, A. Wilmotte, In: D.R. Boone, R.W. Castenholz, G.M. Garrity, (eds.), *Bergey's Manual of Systematic Bacteriology*, 2nd edition. Springer: Berlin, 2007, pp. 542–543.
- [41] E. Hoiczyk, Gliding Motility in Cyanobacteria: Observations and Possible Explanations, *Archives of Microbiology*, Vol.174, 2000, pp. 11–17.
- [42] M.T. Zeng, A. Vonshak, Adaptation of Spirulina platensis to Salinity Stress, *Comparative Biochemistry and Physiology A*, Vol.120, 1998, pp. 113–118.
- [43] E. Kebede, Response of Spirulina platensis (Arthrospira fusiformis) from Chitu, Ethiopia, to Salinity Stress from Sodium Salts, *Journal of Applied Phycology*, Vol.9, 1997, pp. 551–558.

- [44] L.P. Loseva, I.V. Dardynskaya, Spirulina Natural Sorbent of Radionucleides, 6th International Congress of Applied Algology, Czech Republic. 1993.
- [45] Y. Amao, N. Nakamura, Biohydrogen Production with the Light-harvesting Function of Grana from Spirulina and Colloidal Platinum, *International Journal of Hydrogen Energy*, Vol.29, 2006, pp. 39–42.
- [46] Y. Kawata, S. Yano, H. Kojima, M. Toyomizu, Transformation of Spirulina platensis Strain C1 (Arthrospira sp. PCC 9438) with Tn5 Transposasetransposon DNA-cation Liposome Complex, *Marine Biotechnology*, Vol.6, 2004, pp. 355–363.
- [47] R.M. Mannan, H.B. Pakrasi, Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413, *Plant Physiology*, Vol.103, No.3, 1993, pp. 971– 977.
- [48] J.L. Ungerer, B.S. Pratte, T. Thiel, Regulation of Fructose Transport and its Effect on Fructose Toxicity in Anabaena spp, *Journal of Bacteriology*, Vol.190, No.24, 2008, pp. 8115–8125.
- [49] J.F. Haury, H. Spiller. Fructose Uptake and Influence on Growth of and Nitrogen Fixation by Anabaena variabilis, *Journal of Bacteriology*, Vol.147, 1981, pp. 227–235.
- [50] M.L. Summers, J.G. Wallis, E.L. Campbell, J.C. Meeks. Genetic Evidence of a Major Role for Glucose-6-phosphate Dehydrogenase in Nitrogen Fixation and Dark Growth of the Cyanobacterium Nostoc sp. Strain ATCC 29133, *Journal of Bacteriology*, Vol.177, 1995, pp. 6184–6194.
- [51] W.J.H. Zimmerman, B. Rosen, T.A. Lumpkin. Enzymatic, Lectin, and Morphological Characterization and Classification of Presumptive Cyanobionts from Azolla Lam, *New Phytologist*, 113, 1989, pp. 497–503.
- [52] P.M. Reddy, H. Spiller, S.L. Albrecht, K.T. Shanmugam. Photodissimilation of Fructose to H₂ and CO₂ by a Dinitrogen-fixing Cyanobacterium, Anabaena variabilis, *Applied and Environmental Microbiology*, Vol.62, 1996, pp. 1220–1226.
- [53] B. Jensen, Fructose Utilization by the Cyanobacterium Anabaena Variabilis Studied Using whole Filaments and Isolated Heterocysts, *Archives of Microbiology*, Vol.154, 1990, pp. 92–98.
- [54] D. Pils, C. Wilken, A. Valladares, E. Flores, G. Schmetterer, Respiratory Terminal Oxidases in the Facultative Chemoheterotrophic and Dinitrogen Fixing Cyanobacterium Anabaena variabilis Strain ATCC 29413: Characterization of the cox2 locus,

- *Biochimica et Biophysica Acta*, Vol.1659, 2004, pp. 32–45.
- [55] M. Nieva, E. F. Valiente. Inorganic Carbon Transport and Fixation in Cells of Anabaena variabilis Adapted to Mixotrophic Conditions, *Plant & Cell Physiology*, Vol.37, 1996, pp. 1–7.
- [56] T. Osanai, S. Imamura, M. Asayama, M. Shirai, I. Suzuki, N. Murata, K. Tanaka, Nitrogen Induction of Sugar Catabolic Gene Expression in Synechocystis sp. PCC 6803, *DNA Research*, Vol.13, 2006, pp. 185–195.
- [57] G. Schmetterer, E. Flores, Uptake of Fructose by the Cyanobacterium Nostoc sp. ATCC 29150, *Biochimica et Biophysica Acta*, Vol.942, 1988, pp. 33–37.
- [58] E.F. Valiente, M. Nieva, M.C. Avendano, E.S. Maeso, Uptake and Utilization of Fructose by Anabaena variabilis ATCC 29413. Effect on Respiration and Photosynthesis, *Plant & Cell Physiology*, Vol.33, 1992, pp. 307–313.
- [59] O. Kruse, B. Hankamer, Microalgal Hydrogen Production, *Current Opinion in Biotechnology*, Vol.21, No.3, 2010, pp. 238–243.
- [60] N. Rashid, K. Lee, J. Han, M. Gross, Hydrogen Production by Immobilized Chlorella vulgaris: Optimizing pH, Carbon Source and Light, *Bioprocess and Biosystems Engineering*, Vol.36, 2013, pp. 867–872.
- [61] S. Oncel, F.V. Sukan, Effect of Light Intensity and the Light: Dark Cycles on the Long Term Hydrogen Production of Chlamydomonas reinhardtii by Batch Cultures, *Biomass Bioenergy*, Vol.35, No.3, 2011, pp. 1066–1074.
- [62] M.L. Ghirardi, Renewable Bio Hydrogen Production: Cooperative Research and Development Final Report, CRADA Number CRD-17-660, National Renewable Energy Lab.(NREL), Golden, CO, United States, 2018.
- [63] Y.V. Sinyak, V.Y. Petrov, Cost Prospects for Hydrogen Centralized Production, *Studies on Russian Economic Development*, Vol.19, No.3, 2008, pp. 239-247.
- [64] R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier, Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria, *Journal of General Microbiology*, Vol.111, 1979, pp. 1–61.
- [65] T. Ogawa, G. Terui, Studies on the Growth of Spirulina platensis, *Journal of Fermentation Technology.*, 48, 1970, pp. 361–367.
- [66] T.C. Currier, C.P. Wolk. Characteristics of Anabaena Variabilis Influencing Plaque Formation by Cyanophage N-1, *Journal of Bacteriology*, Vol.139, 1979, pp. 88–92.
- [67] M.B. Allen, D.I. Arnon, Studies on nitrogen-fixing blue-green algae. I. Growth and Nitrogen Fixation

- by Anabaena cylindrica Lemm, *Plant Physiology*, Vol.30, 1955, pp. 366–372.
- [68] A.K. Sadvakasova, B.D. Kossalbayev, B.K. Zayadan, K. Bolatkhan, S. Alwasel, M.M. Najafpour, T. Tomo, S.I. Allakhverdiev, Bioprocesses of Hydrogen Production by Cyanobacteria Cells and Possible Ways to Increase their Productivity, *Renewable and Sustainable Energy Reviews*, Vol.133, 2020, 110054.
- [69] X. Su, J. Ma, X. Pan, X. Zhao, W. Chang, Z. Liu, X. Zhang, M. Li., Antenna Arrangement and Energy Transfer Pathways of a Green Algal Photosystem-I-LHCI Supercomplex, *Nature Plants*, Vol.5, No.3, 2019, pp. 273–281.
- [70] J. Mondal, B.D. Bruce, Ferredoxin: the Central hub Connecting Photosystem I to Cellular Metabolism, *Photosynthetica*, Vol.56, 2018, pp. 279–293.
- [71] L. Giannelli, A. Scoma G. Torzillo, Interplay between Light Intensity, Chlorophyll Concentration and Culture Mixing on the Hydrogen Production in Sulfur-deprived Chlamydomonas reinhardtii Cultures Grown in Laboratory Photobioreactors, *Biotechnology and Bioengineering*, Vol.104, 2009, pp. 76-90.
- [72] S. Kosourov, A. Tsygankov, M. Seibert, M.L. Ghirardi, Sustained Hydrogen Photoproduction by Chlamydomonas reinhardtii: Effects of Culture Parameters, *Biotechnology and Bioengineering*, Vol. 78, 2002, pp. 731-740.
- [73] A. Hemschemeier, A. Melis, T. Happe, Analytical Approaches to Photobiological Hydrogen Production in Unicellular Green Algae, *Photosynthesis Research*, Vol.102, 2009, pp. 523-540
- [74] M. Anwar, S. Lou, L. Chen, H. Li, Z. Hu, Recent Advancement and Strategy on Bio-hydrogen Production from Photosynthetic Microalgae, *Bioresource Technology*, Vol.292, 2019, 121972.
- [75] F. Khosravitabar, Microalgal Biohydrogen Photoproduction: Scaling up Challenges and the Ways Forward, *Journal of Applied Phycology*, Vol.32, No.1, 2020, pp. 277-289
- [76] R. Bechara, F. Azizi, C. Boyadjian, Process Simulation and Optimization for Enhanced Biophotolytic Hydrogen Production from Green Algae Using the Sulfur Deprivation Method, *International Journal of Hydrogen Energy*, Vol.46, No.27, 2021, pp. 14096-10108.
- [77] R.K. Goswami, S. Mehariya, P.K. Obulisamy, P. Verma, Advanced Microalgae-based Renewable Biohydrogen Production Systems: A Review, *Bioresource Technology*, Vol.320, 2021, 124301.
- [78] C.R. Williams, M.A. Bees, Mechanistic Modeling of Sulfur-deprived Photosynthesis and Hydrogen Production in Suspensions of Chlamydomonas

- reinhardtii, *Biotechnology and Bioengineering*, Vol.111, No.2, 2014, pp. 320-335.
- [79] K.-Y. Show, Y. Yan, M. Ling, G. Ye, T. Li, D.-J. Lee, Hydrogen Production from Algal Biomass Advances, Challenges and Prospects, *Bioresource Technology*, Vol.257, 2018, pp. 290-300.
- [80] P. Nikolaidis, A. Poullikkas, A Comparative Overview of Hydrogen Production Processes, *Renewable and Sustainable Energy Reviews*, Vol.67, 2017, pp. 597-611.
- [81] D. Pal, S. Banerjee, S. Chandra, D. Das, S. Pandit, A. Roy, M. Hasan, M.U. Khandaker, M.A. Alreshidi, The Generation of Biohydrogen from Pretreated Algal Biomass in Batch Fermentation Mode, *International Journal of Hydrogen Energy*, Vol.107, 2025, pp. 321-331.
- [82] M.Y. Azwar, M.A. Hussain, A.K. Abdul-Wahab, Development of Biohydrogen Production by Photobiological, Fermentation and Electrochemical Processes: A review, Renewable and Sustainable Energy Reviews C, Vol.31, 2014, pp. 158-173.
- [83] C. Demirkaya, H. De la Hoz Siegler, *Chapter-Dark Fermentation of Microalgae and Cyanobacteria for Hydrogen Production*, in: A de J Martínez-Rold'an (Ed.), in Book: Biotechnological Processes for Green Energy, and High Value Bioproducts by Microalgae, and Cyanobacteria Cultures, Springer International Publishing, Cham, 2024, pp. 99–111.
- [84] J.V.C. Vargas, V. Kava, J.C. Ordonez, W. Balmant, A.B. Mariano, Mass Transfer Modeling and Maximization of Hydrogen Rhythmic Production from Genetically Modified Microalgae Biomass, *International Journal of Heat and Mass Transfer*, Vol.101, 2016, pp. 1-9.
- [85] H.C. Ong, Y.W. Tiong, B.H.H. Goh, Y.Y. Gan, M. Mofijur, I.M. Rizwanul Fattah, C.T. Chong, Md.A. Alam, H.V. Lee, A.S. Silitonga, T.M.I Mahlia, Recent Advances in Biodiesel Production from Agricultural Products and Microalgae Using Ionic Liquids: Opportunities and Challenges, *Energy Conversion and Management*, Vol.228, 2021, 113647.
- [86] J.V.C. Vargas, A.B. Mariano, D.O. Correa, J.C. Ordonez, The Microalgae Derived Hydrogen Process in Compact Photobioreactors, *International Journal of Hydrogen Energy*, Vol.39, No.18, 2014, pp. 9588-9598.
- [87] Z.-P. Zhang, S.S. Adav, K.-Y. Show, J.-H. Tay, D.T. Liang, D.-J. Lee, A. Su, Characteristics of Rapidly Formed Hydrogen-Producing Granules and Biofilms, *Biotechnology and Bioengineering*, Vol.101, No.5, 2008, pp. 926-936.
- [88] J.-H. Park, J.-J. Yoon, H.-D. Park, Y.J. Kim, D.J. Lim, S.-H. Kim, Feasibility of Biohydrogen

- Production from Gelidium amansii, *International Journal of Hydrogen Energy*, Vol.36, No.21, 2011, pp. 13997-14003.
- [89] M. Mitra, A. Melis, Optical Properties of Microalgae for Enhanced Biofuels Production, Optics Express, Vol.16, 2008, pp. 21807–21820.
- [90] F. Germer, I. Zebger, M. Saggu, F. Lendzian, R. Schulz, J. Appel, Overexpression, Isolation, and Spectroscopic Characterization of the Bidirectional [NiFe] Hydrogenase from Synechocystis sp. PCC 6803*, *Journal of Biological Chemistry*, Vol.284, 2009, pp. 36462–36472.
- [91] C. Maneeruttanarungroj, P. Lindblad, A. Incharoensakdi, Sulfate Permease (SulP) and Hydrogenase (HydA) in the Green Alga Tetraspora sp. CU2551: Dependence of Gene Expression on Sulfur Status in the Medium, *International Journal of Hydrogen Energy*, Vol.37, 2012, pp. 15105–15116.
- [92] H. Masukawa, H. Sakurai, R.P. Hausinger, K. Inoue, Sustained Photobiological Hydrogen Production in the Presence of N₂ by Nitrogenase Mutants of the Heterocyst-forming Cyanobacterium Anabaena, *International Journal of Hydrogen Energy*, Vol.39, 2014, pp. 19444–19451.
- [93] S. Li, F. Li, X. Zhu, Q. Liao, J.-S. Chang, S.-H. Ho, Biohydrogen Production from Microalgae for Environmental Sustainability, *Chemosphere*, Vol.291, 2022, 132717.
- [94] R. Yukesh Kannah, S. Kavitha, Preethi, O. Parthiba Karthikeyan, G. Kumar, N. Vo Dai-Viet, J. Rajesh Banu, Techno-economic Assessment of Various Hydrogen Production Methods – A Review, *Bioresource Technology*, Vol.319, 2021, 124175.
- [95] M. Hannon, J. Gimpel, M. Tran, B. Rasala, S. Mayfield, Biofuels from Algae: Challenges and Potential, *Biofuels*, Vol.1, No.5, 2010, pp. 763-784.
- [96] M. Kumar, Y. Sun, R. Rathour, A. Pandey, I.S. Thakur, D.C.W. Tsang, Algae as Potential Feedstock for the Production of Biofuels and Value-added Products: Opportunities and Challenges, *Science of The Total Environment*, Vol.716, 2020, 137116.
- [97] S. Pankratz, A.O. Oyedun, A. Kumar, Development of Cost Models of Algae Production in a Cold Climate Using Different Production Systems, *Biofuels, Bioproducts and Biorefining*, Vol.13, No.5, 2019, pp. 1246-1260.
- [98] W. Amos, **Updated** Cost Analysis Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae Completion Milestone Report, **National** Renewable Energy Laboratory, Golden, Colorado, 2004. Report No. NREL/MP-560-35593.

ISSN: 2534-8825 19 Volume 9, 2025

- [99] I. Akkerman, M. Janssen, J. Rocha, R.H. Wijffels, Photobiological Hydrogen Production: Photochemical Efficiency and Bioreactor Design, *International Journal of Hydrogen Energy*, Vol.27, No.11–12, 2002, pp. 1195-1208.
- [100] Dutta, S., F. Neto, M.C. Coelho, Microalgae Biofuels: a Comparative Study on Techno-Economic Analysis & Life-Cycle Assessment, *Algal Research*, Vol.20, 2016, pp. 44-52.
- [101] C. Xin, M.M. Addy, J. Zhao, Y. Cheng, S. Cheng, D. Mu, Y. Liu, R. Ding, P. Chen, R. Ruan, Comprehensive techno-economic analysis of wastewater-based algal biofuel production: a case study, *Bioresource Technology*, 211 (2016) 584–593
- [102] J. Rupprecht, From Systems Biology to Fuel-Chlamydomonas reinhardtii as a Model for a Systems Biology Approach to Improve Biohydrogen Production, *Journal of Biotechnology*, Vol.142, 2009, pp. 10–20.
- [103] C.C. Chong, Y.W. Cheng, K.H. Ng, D.-V.-N. Vo, M.K. Lam, J.W. Lim, Bio-hydrogen Production from Steam Reforming of Liquid Biomass Wastes and Biomass-Derived Oxygenates: A Review, *Fuel*, Vol.311, 2022, 122623.
- [104] N.S. Mat Aron, K.S. Khoo, K.W. Chew, A. Veeramuthu, J.-S. Chang, P.L. Show, Microalgae Cultivation in Wastewater and Potential Processing Strategies using Solvent and Membrane Separation Technologies, *Journal of Water Process Engineering*, Vol.39, 2021, 101701.
- [105] É.E. Santo, M. Ishii, U.M. Pinto, M.C. Matsudo, J.C. Monteiro de Carvalho, Obtaining Bioproducts from the Studies of Signals and Interactions between Microalgae and Bacteria, *Microorganisms*, Vol.10, No.10, 2022, 2029.
- [106] S. Ban, W. Lin, F. Wu, J. Luo, Algal-Bacterial Cooperation Improves Algal Photolysis-Mediated Hydrogen Production, *Bioresource Technology*, Vol.251, 2018, pp. 350–357.
- [107] E. Touloupakis, C. Faraloni, A.M. Silva Benavides, J. Masojídek, G. Torzillo, Sustained Photobiological Hydrogen Production by Chlorella vulgaris without Nutrient Starvation, *International Journal of Hydrogen Energy*, Vol.46, No.5, 2021, pp. 3684-3694.
- [108] J.G.K. Williams, Construction of Specific Mutations in Photosystem II Photosynthetic Reaction Center by Genetic Engineering Methods in Synechocystis 6803, *Methods in Enzymology*, Vol.167, 1988, pp. 766–778.

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

Prof. Dr. Delia Teresa Sponza and Post-Dr. Rukiye Öztekin took an active role in every stage of the preparation of this article.

The authors equally contributed in the present research, at all stages from the formulation of the problem to the final findings and solution.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

The experimental phases of this research study were conducted at the National Research Council (NRC) of Canada, Research Centres, Ontario, Canada. The authors would like to thank this body for providing financial support.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

US

APPENDIX

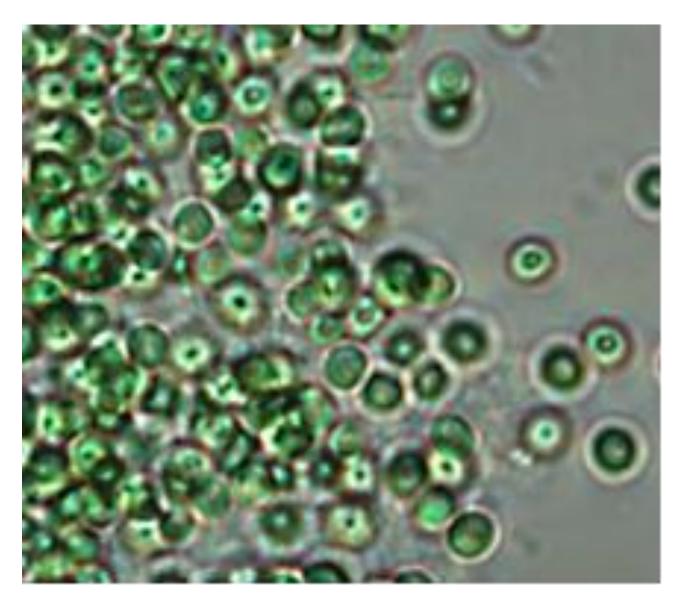


Figure 1. Electron microscopy image of *Synechocystic sp.* PCC 6803 prokaryotic algae (image size: 10 μm).

ISSN: 2534-8825 21 Volume 9, 2025

Figure 2. Elecron microscopy image of *Spirulina platensis* prokaryotic algae (image size: 10 μm).

Figure 3. Electron microscopy images of *Anabaena variabilis* prokaryotic algae (image size: 10 μm).

 $\textbf{Table 1.} \ Comparison \ of general \ advantages \ and \ disadvantages \ in \ H_2 \ production \ by \ direct \ photolysis \ and \ indirect \ biophotolysis \ processes \ from \ algal \ microbes$

H ₂ Production Processes	Advantages	Disadvantages
Direct Photolysis Process	Pure H ₂ generations	Requirement of highlight intensity
	High solar conversions	Limitation of H ₂ production due to
		the existence of O ₂
	CO ₂ consumptions	
Indirect Biophotolysis Process	Overcome the incompatibility	Low H ₂ productions
	problem of the simultaneous	
	production of O ₂ and H ₂	
	Simple medium of	The number of capable
	microorganisms	microorganisms is limited
	Cost effective	High substrate requirements

ISSN: 2534-8825 24 Volume 9, 2025

Table 2. The effect of C/N ratio for prokaryotic algae namely $Synechocystis\ sp.$, $Spirulina\ platensis\ and\ Anabaena\ variabilis\ under direct\ photolysis\ for\ H_2\ production\ efficiencies.$

	H ₂ Production Efficiencies (%)						
C/N Ratio	Synechocystis sp.	Synechocystis sp. Spirulina platensis Anabaena variabilis					
0.1	99.40	99.54	99.31				
0.2	87.80	86.15	93.46				
0.4	72.54	73.40	86.11				
0.8	64.03	65.79	73.40				
1.0	51.29	55.47	61.20				

ISSN: 2534-8825 25 Volume 9, 2025

Table 3. The effect of C/N ratio for prokaryotic algae namely $Synechocystis\ sp.$, $Spirulina\ platensis\ and\ Anabaena\ variabilis\ under undirect biophotolysis for <math>H_2$ production efficiencies.

	Н	H ₂ Production Efficiencies (%)					
C/N Ratio	Synechocystis sp.	Synechocystis sp. Spirulina platensis Anabaena variabilis					
0.1	89.47	89.63	88.20				
0.2	75.68	75.04	82.33				
0.4	61.42	62.29	74.98				
0.8	53.91	54.68	62.29				
1.0	40.17	44.36	50.08				

ISSN: 2534-8825 26 Volume 9, 2025

Table 4. The effect of pH values for prokaryotic algae namely $Synechocystis\ sp.$, $Spirulina\ platensis\ and\ Anabaena\ variabilis\ under direct\ photolysis\ for\ H_2\ production\ efficiencies.$

	H ₂ Production Efficiencies (%)			
pH Values	Synechocystis sp.	Spirulina platensis	Anabaena variabilis	
6.5	64.31	49.51	74.56	
7.0	81.15	63.58	81.82	
7.5	99.40	70.64	99.44	
8.0	85.47	84.27	97.09	
8.5	73.33	91.87	83.24	
9.0	59.74	99.54	65.57	

ISSN: 2534-8825 27 Volume 9, 2025

Table 5. The effect of pH values for prokaryotic algae namely $Synechocystis\ sp.$, $Spirulina\ platensis\ and\ Anabaena\ variabilis\ under undirect\ biophotolysis\ for\ H_2\ production\ efficiencies.$

	Н	H ₂ Production Efficiencies (%)			
pH Values	Synechocystis sp.	Spirulina platensis	Anabaena variabilis		
6.5	53.19	40.37	62.45		
7.0	70.04	52.47	71.70		
7.5	89.47	60.55	88.20		
8.0	76.35	75.16	75.07		
8.5	71.10	80.75	72.13		
9.0	42.58	89.63	56.46		

ISSN: 2534-8825 28 Volume 9, 2025

Table 6. The effect of illumination intensity for prokaryotic algae namely $Synechocystis\ sp.$, $Spirulina\ platensis\ and\ Anabaena\ variabilis\ under direct\ photolysis\ for\ H_2\ production\ efficiencies.$

Illumination Intensity	H ₂ Production Efficiencies (%)			
(μmol/m².s)	Synechocystis sp. Spirulina platensis Anabaena variabili			
120	82.36	75.50	61.37	
168	99.40	94.34	74.90	
180	87.10	99.54	83.05	
216	76.17	96.12	99.44	
250	65.48	88.05	94.51	

ISSN: 2534-8825 29 Volume 9, 2025

Table 7. The effect of illumination intensity for prokaryotic algae namely $Synechocystis\ sp.$, $Spirulina\ platensis\ and\ Anabaena\ variabilis\ under undirect\ biophotolysis\ for\ H_2\ production\ efficiencies.$

Illumination Intensity	H ₂ Production Efficiencies (%)			
(μmol/m².s)	Synechocystis sp. Spirulina platensis Anabaena variabila			
120	71.25	64.39	50.26	
168	89.47	89.63	61.78	
180	76.88	87.42	72.02	
216	55.05	84.01	88.20	
250	54.37	77.09	82.41	

ISSN: 2534-8825 30 Volume 9, 2025

Table 8. The effect of incubation temperature for prokaryotic algae namely $Synechocystis\ sp.$, $Spirulina\ platensis$ and $Anabaena\ variabilis$ under direct photolysis for H_2 production efficiencies.

Incubation	H ₂ Production Efficiencies (%)				
Temperatures (°C)	Synechocystis sp. Spirulina platensis Anabaena variabilis				
20	71.22	59.68	77.82		
25	88.05	77.84	92.45		
30	99.40	94.32	99.44		
35	84.34	99.54	95.08		
40	74.09	97.11	79.89		

ISSN: 2534-8825 31 Volume 9, 2025

Table 9. The effect of incubation temperature for prokaryotic algae namely $Synechocystis\ sp.$, $Spirulina\ platensis$ and $Anabaena\ variabilis$ under undirect biophotolysis for H_2 production efficiencies.

Incubation	H ₂ Production Efficiencies (%)				
Temperatures (°C)	Synechocystis sp. Spirulina platensis Anabaena vari				
20	60.01	48.56	66.70		
25	76.05	65.73	81.34		
30	89.47	83.20	88.20		
35	73.22	89.63	84.03		
40	64.04	85.00	68.75		

ISSN: 2534-8825 32 Volume 9, 2025

Table 10. The effect of duration of H_2 production for prokaryotic algae namely *Synechocystis sp.*, *Spirulina platensis* and *Anabaena variabilis* under direct photolysis for H_2 production efficiencies.

Duration of H ₂	H ₂ Production Efficiencies (%)				
Production (hours)	Synechocystis sp. Spirulina platensis Anabaena variabilis				
20	65.42	61.44	82.49		
40	73.40	85.56	99.44		
80	88.11	91.14	93.65		
100	99.40	99.54	88.52		
120	91.78	95.63	66.47		

ISSN: 2534-8825 33 Volume 9, 2025

Table 11. The effect of duration of H_2 production for prokaryotic algae namely *Synechocystis sp.*, *Spirulina platensis* and *Anabaena variabilis* under undirect biophotolysis for H_2 production efficiencies.

Duration of H ₂	H ₂ Production Efficiencies (%)				
Production (hours)	Synechocystis sp. Spirulina platensis Anabaena variabilis				
20	54.30	50.32	71.37		
40	65.28	74.45	88.20		
80	76.00	80.04	82.51		
100	89.47	89.63	76.40		
120	80.66	85.42	55.38		

ISSN: 2534-8825 34 Volume 9, 2025

Table 12. Comparison of H₂ production costs from various algae-based technologies with studies in the literature.

Conversion	Yields	Cost (\$/kg H ₂)	Capital cost	H ₂ Production	References
chemistry			(MM\$)	Technology	
				Readiness	
				Level (TRL)	
Direct Thermal	1239 kg/h	8.65	NA	5	[86]
gasification					
		5.66	215	7	[83]
Indirect	2-5x10 ⁻⁷	2.04-13.53	NA	5	[62]
biophotolysis	mol/m ² .s				
Thermal alga	-	10			[28]
_		2.60\$	NA	7	[56]
		ent of Energy's prim	2	Target goal by NREL *	[62]

^{*} Note: NREL is the U.S. Department of Energy's primary national laboratory for energy systems.

ISSN: 2534-8825 35 Volume 9, 2025