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Abstract: This paper examines how the diagnosis of heart conditions is enhanced at the conjunction of modern 

computational methods and  Seismocardiography (SCG),  Without the requirement of invasive methods, SCG 

detects minute vibrations on the chest wall brought on by the heart's movements providing vital information on 

the heart function noninvasively. However, because of the complexity of the signal and the variety from person 

to person, the task of interpreting the signal accurately is challenging. To get beyond these obstacles, this work 

employs advanced signal processing techniques. In order To isolate significant frequency components from the 

signal the Discrete Wavelet Transform (DWT) is used. It further lowers noise in SCG signals and enhances 

better feature extraction. R-peaks in ECG signals are identified by The Pan-Tompkins algorithm identifies. 

They are then synchronized with SCG data, which allows to achieve a thorough segmentation and analysis of 

each heartbeat. To further refine the SCG signals interpolation techniques like Akima Interpolation and 

Piecewise Cubic Hermite Interpolation (PCHIP) are used to produce a continuous dataset, guaranteeing smooth 

and consistent signals for analysis. The SCG signals are then broken into Intrinsic Mode Functions (IMFs) by 

Hilbert-Huang Transform(HHT), which yields a more precise time-frequency analysis that is tailored to each 

individual signal. This study shows that seismocardiography (SCG) can provide accurate and non-invasive 

measurements of heart function by combining SCG and  (ECG) data using advanced computational techniques. 

SCG has great potential as a reliable diagnostic tool in clinical settings, offering an easy and dependable way to 

assess cardiac health. 
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1 Introduction  

Nearly half of the lives in Europe are lost every year 

accounting for heart and circulatory diseases. 

Cardiovascular illness affects millions of people 

across the continent and the number of occurrences 

has only increased in the past 25 years[2] 

The vibrations of the body caused by heartbeats are 

recorded by using the seismocardiogram. 

Seismocardiography is a non-intrusive method for 

recording cardiac data for diagnosis The SCG collects 

data about the mechanical activities of the heart along 

with heart sounds and cardiac output[1,3] 

SCG when compared to its alternative approaches in 

competition, it was not extensively used in clinical 

settings. Recent technological developments have 

been able to rekindle interest in the usage of SCG. It 

has been able to grab attention due to its advantage of 

enabling constant and automated surveillance along 

with the added benefit of emerging as a reasonably 

priced substitute for the current cardiac monitors[3]. 

The vibrations transmitted to the barrier walls of the 

heart at low frequencies are not effectively captured. 
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Since the impact is almost negligible, the 

nonintrusive method falls short in capturing all the 

disturbances and it faces difficulty in correlating them 

with cardiac activity. To validate the utilization of 

cardiac sounds for the evaluation of heart functions 

further research was necessary[3] 

Comprehending the importance of the undulating 

waves and how they correlate to cardiovascular 

diseases was a significant challenge when 

interpreting SCG signals. Salerno and his team, 

understanding the importance of Echocardiography 

in the field of heart health explored the connection 

between SCG waves and Echocardiograms. A novel 

feature point-based method was used to differentiate 

between normal and abnormal morphologies in 

individual ECG and SCG cardiac cycles[11] 

It is challenging to compare the outcomes among 

studies without standardized diagnostic protocols. 

Due to variations in the anatomy of the body, sensor 

positions and body types, the variation in SCG signal 

is also inevitable[13,12]. The low-frequency 

components of the heart are essential for recognizing 

heart activity. These frequencies often overlap with 

the other signals of the body. Improved techniques 

and consistent standards are thus required to make 

SCG a more reliable tool for interpretations[12]. 

The identification and marking of specific peaks of 

interest. In Siesmocardiogram (SCG) signals present 

challenges due to the complex structure and 

differences between individuals. This complexity 

poses difficulties for traditional methods for detecting 

peaks, particularly when compared to the 

identification of peaks in electrocardiogram (ECG) 

signals [8].  

2 Feature Extraction and Recognition 

of ‘R’ Peaks in Signal 

DataSource-

https://www.frontiersin.org/articles/10.3389/fphys.2

021.750221/full 

The database encompasses pertinent 

echocardiographic parameters associated with each 

subject, encompassing discharge rate, valve area, and 

average gradient pressure. It comprises recordings of 

6 channels of 3-axis SCG and 3-axis GCG, 

accompanied by comprehensive patient information, 

demographic data (number, age, gender), recording 

meta information, axis definitions, and synchronized 

recorded ECG signals. Additionally, the database 

incorporates echocardiogram reports. Notably, this 

database stands as the inaugural collection of SCG 

and GCG signals obtained from cardiovascular 

patients. 

2.1 Decomposing signals into different 

frequency components 

A denoising algorithm based on discrete wavelet 

transform (DWT) enhances the SCG signal by 

decomposing, thresholding, and reconstructing it in a 

three-step process. The adaptive thresholding method 

improves algorithm performance, offering a time-

efficient and effective denoising solution[14]. 

The DWT(discrete wavelet transform) analyzes 

signals by utilizing proportioning functions and 

wavelets that correspond to low-frequency and high-

frequency filters[Fig.2]. Through the use of these 

filters, the most important are represented frequencies 

present in the original signal by coefficients of big 

wavelets in their respective frequency spectrum, 

while also considering their time region 

identification[5]. 

Fig.1 A sample SCG  raw Signal 
 

Fig.2 Resultant SCG after Discrete Wavelet 

Transform 

 The Discrete Wavelet Transform (DWT) separates 

noise and cardiac signals into different scales, helping 

to isolate low-frequency components associated with 

baseline wander and extracting vital features from the 

SCG signal for diagnostic or monitoring purposes. 

2.2 QRS complex detection 

Once the signal is decomposed, identifying 

the QRS complex allows us to align heartbeats with 

SCG data. Accurate detection of QRS complexes is 

L. S. Jayashree, M. Sherlin Jenifer
International Journal of Biology and Biomedicine 

http://www.iaras.org/iaras/journals/ijbb

ISSN: 2367-9085 25 Volume 9, 2024

https://www.frontiersin.org/articles/10.3389/fphys.2021.750221/full
https://www.frontiersin.org/articles/10.3389/fphys.2021.750221/full


crucial for various applications, including heart rate 

monitoring, arrhythmia detection, and clinical 

diagnosis. 

 

During real-time processing of the signals, QRS 

complexes are separated by using the Pan-Tompkins 

method. This Algorithm is able to accurately detect 

heartbeats even in noisy ECG signals. It is due to this 

reliability the Pan-Tompkins algorithm is preferred 

particularly when the signals can be noisy. It is 

comparatively a simpler and efficient method making 

it perfect for cardiac monitoring. It employs custom 

thresholds to identify the QRS signals and 

additionally, it filters out common noises[15]. 

Finding peaks in the ECG features and figuring out 

their placements, heights and widths are all part of the 

signal processing process. Employing  the algorithm 

on the signal aids in prioritizing the QRS complex 

over noise and identifying the peaks within the 

signal[6]. 

The first step in the algorithm involves the bandpass 

filtering of the original ECG signal given as input. 

The QRS complex’s quick upstroke and downstroke 

patterns are then identified by computing the signal’s 

derivatives. Following that the derivatives are 

squared. This step is done to highlight the magnitude 

of variations in the slope making it easier to spot the 

peaks in the signal[Fig.3]. Subsequently,  the squared 

signals are processed under a moving window 

integrator. This procedure is specially designed to 

minimize other signal variations by integrating the 

signal over a predetermined window.  

Fig.3 R Peak Detection 

The integrated signal is then subjected to a dynamic 

threshold to determine the potential output of using 

QRS complexes .Peaks that surpass this threshold are 

then recognized as QRS complexes. To prevent 

multiple detections of a single QRS complex, a 

refractory period is frequently implemented. 

The suggested method relies on accurately 

identifying[Fig.4] the R-peak of the ECG to segment 

the SCG and ECG signals.[8] 

Fig.4 Detection of R-peaks in ECG Cycles.  

 

 2.3 Mapping R-Peaks to SCG Data 

Aligning the R-peaks from the ECG data with the 

corresponding cycles in the SCG data by identifying 

peaks or specific features in the SCG data that 

synchronize with the R-peaks. After the 

synchronization points are identified, extract the SCG 

cycles that align with each R-peak in the ECG data by 

segmenting [Fig.5]the SCG signal into cycles. 

 

Fig.5 SCG Signal Segmentation 

 2.4.Interpolation 

After aligning the signals, we apply interpolation to 

smooth the data, ensuring continuity before the 

Hilbert-Huang Transform is applied. Interpolation is 

particularly useful when dealing with continuous 

data, and it helps in creating a smooth representation 

of the data between discrete points One way to make 

sense of data is by creating a function or curve that 

fits the existing data points. This allows us to predict 

values at points within the range of the given data. 

The Akima interpolation method involves the use of 

continuously differentiable sub-spline interpolation, 

which is achieved through the construction of 

fragmented third-order polynomials.[7]Akima 

interpolation is known for producing smooth curves 

with reduced oscillations[Fig.6] and artefacts near the 
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data points, making it advantageous for input signals 

with sharp transitions or peaks. 

Fig.6 SCG Cardiac Cycle after Akima Interpolation 

 The PCHIP interpolation is designed to generate 

interpolating curves that maintain monotonicity. 

PCHIP interpolation constructs a piecewise cubic 

polynomial between each pair of adjacent data points. 

The polynomials are determined to be monotonic, and 

the resulting curve smoothly transitions between 

these polynomials. The property of monotonicity 

ensures that the interpolated values avoid introducing 

undesirable oscillations or loops between data points. 

This feature makes [Fig.8]PCHIP interpolation 

particularly well-suited for applications where 

preserving the monotonicity of the input signal[Fig.7] 

is critically important. 

Fig.7 Original SCG Signal 

 

Fig.8 PCHIP Interpolated Signal 

Then Hilbert Transform is used to extract the 

instantaneous phase and amplitude information from 

each (IMF) Intrinsic Mode Functions. Before 

applying the Hilbert-Huang Transform, it's common 

to use interpolation for several reasons. Firstly, HHT, 

specifically the Empirical Mode Decomposition 

(EMD) part, is sensitive to data smoothness. 

Interpolating ensures a continuous signal, preventing 

inaccurate decomposition into Intrinsic Mode 

Functions (IMFs). Additionally, interpolation helps 

in handling missing data by estimating missing 

values, providing a complete signal for more accurate 

IMFs and reliable analysis. Moreover, interpolating 

increases the sampling rate, improving frequency 

resolution for a more accurate Hilbert spectral 

analysis. Lastly, interpolation smooths sharp 

discontinuities, preventing artefacts in the IMFs.  

3 Problem Solution  

To empirically assess the viability of the suggested 

technique. After performing EMD utilized within the 

Hilbert-Huang Transform (HHT), The subsequent 

action involves applying the HHT to the obtained 

Intrinsic Mode Functions (IMFs). 

 

 
 Fig.9 IMFs generated after performing EMD 

restricted to 4 IMFs 
 

Applying the Hilbert Transform results in a matrix 

format, with each row representing an Intrinsic Mode 

Function (IMF)[ Fig.9] and each column representing 

a sample point or time step. We refer to this matrix as 

the "HHT matrix," which contains the IMFs. 
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 Fig.10 HHT Matrix after restricting IMF number to 

4 IMFs 

 

The result of applying the Hilbert Transform can be 

arranged in a matrix format where each row 

represents an IMF and each column represents a 

sample point or time step. This matrix would be 

referred to as the "HHT matrix" containing the IMFs 

The quantity of Intrinsic Mode Functions (IMFs) 

generated varies for each patient, consequently 

influencing the dimensions of the Hilbert-Huang 

Transform (HHT) Matrix as the number of rows in 

the matrix coincides to the number of IMFs. To 

establish a consistent HHT Matrix across all patients, 

the limit is set to four IMFs per cycle[Fig.10]. 

Following the restriction of the number of IMFs, the 

dimension of the HHT matrix is 4 x 256, with "4" 

representing the number of IMFs generated through 

Empirical Mode Decomposition (EMD) and "256" 

denoting the number of data frames or time steps in 

the authentic signal. 

The outcomes of the Hilbert Transform, particularly 

the instantaneous frequency, are frequently portrayed 

through time-frequency representations. 

Spectrograms [Fig.11]or time-frequency plots 

facilitate the comprehension of how the signal's 

frequency characteristics evolve. These visual aids 

have a vital function in elucidating the temporal 

dynamics of the signal's frequency content. The 

techniques was chosen because it effectively analyzes 

nonlinear and nonstationary data, unlike traditional 

methods that assume data linearity and 

stationarity[16].This adaptive, localized approach 

allows for detailed time-frequency-energy analysis 

through Hilbert Spectral Analysis, making HHT 

particularly useful for complex, naturally occurring 

processes. 

 

To create a spectrogram, you need to split the EEG 

signal into short, overlapping segments, utilize the 

Fourier Transform on each segment to extract its 

frequency spectrum, and then represent these spectra 

as a function of time[9] 
 

  
Fig.11 Hilbert Spectrogram 

Unlike traditional methods, HHT does not rely on 

predefined basis functions, making it more flexible 

and capable of adapting to the unique characteristics 

of SCG signals. The potential applications of HHT in 

biomedical signal processing, such as in 

electrocardiograms (ECG) and 

electroencephalograms (EEG), suggest that it could 

become a standard tool for analysing a wide range of 

physiological signals.   

4 Future Work 
Applying the HHT to other bodily signals beyond 

SCG could significantly open up  novel developments 

in biomedical signal processing. Expanding the usage 

widens the understanding of various physiological 

processes. The study lays a groundwork for further 

investigations in the future wherever time-varying 

signals are commonly found like geophysics and 

vibration analysis. Building on the findings of the 

study exploration on combining HHT with other 

analysing techniques, like STFT or CWT might add 

to new development in hybrid approaches. 

Particularly, considering the computational 

complexity of HHT, optimising it to a clinical scale is 

necessary to accentuate its efficiency. In future areas 

of research of HHT in SCG analysis, it is crucial to 

address the inaccurate decompositions produced due 

to mode mixing in EMD. 

 

                  5 Conclusion 
      In summary, The study emphasizes the 

importance of yielding the true potential of 

seimocardiograhy(SCG) for evaluating cardiac 

functions. An innovative tool alone is used in 

combination with other advanced methods for feature 

extraction and R-peak detection in ECG signals. It 

highlights the use of the Discrete Wavelet Transform 
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and the Pan-Tompkins algorithm for optimising the 

methodology discussed and applied to SCG data. 

Using HHT for time-frequency analysis is a superior 

way to extract meaningful features from the data. 

Through the systematic advancements in 

computational techniques used and the improvement 

of the signal processing algorithm enhance this work 

and show that SCG can offer great potential in precise 

cardiac assessments.Further careful development on 

this innovation and validation of new procedures is a 

great advantage to the field of cardiac assessment. 

Overall, the results and methodologies presented in 

this study open the door for additional research and 

development of non-invasive diagnostic tools. These 

cutting-edge diagnostic instruments have the 

potential to revolutionize patient care. 
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